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SUMMARY

We introduce a general definition of positive dependence for finite-state
processes, and show that if successive observations are positively dependent,
all tests that are asymptotically equivalent to standard Pearson chi-squared
tests have asymptotic null distributions stochastically larger than those
obtained under the usual independence assumptions. Ignoring positive depen-
dence therefore leads to too frequent rejection of null hypotheses. This
qualitative conclusion applies in particular to certain cases of Markov depen-
dence, and of dependence induced by cluster sampling, that have been studied by

previous authors.
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1. INTRODUCTION

Suppose that X], X2""’Xn are identically distributed categorical variables
taking values 1,2,...,M. A statistician wishes to test a model that specifies
the probabilities P(Xt =1i) = pi(e) as functions of an m-dimensional parameter
6. (Alternatively, the model may state restrictions on the Py but we will
use the equivalent parametric formulation.) A common example is the model of
independence in a rxc contingency table, where M = rc and & consists of (r-1)
+ (c-1) functionally free marginal probabilities. Such models are commonly
tested by the Pearson statistic, estimating 6 by an asymptotically efficient
estimator based on the M observed cell frequencies. Under mild regularity
conditions, the asymptotic null distribution of this statistic is XZM—m-]'
This theory assumes that the Xt are independent. What will be the effect of
serial dependence among the Xt?

A number of authors have considered this question for various models, ob-
taining explicit results only in rather restricted cases. Altham (1979),
Tavare and Altham (1983) and Tavare (1983) study the Pearson chi-squared test
for independence in two-way contingency tables when the marginal variables
Yrow, Yco] are in fact independent, but each follows a stationary ergodic

Markov chain. When the r-state chain Yrow and the c-state chain Yco] are re-

versible, the asymptotic null distribution of the pearson statistic is that of

r-1 c-1 T+ u.
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where Zij are iid N(0,1) and Xi,uj are the non-unit characteristic roots of the

transition matrices of Yro and Yco]’ respectively.
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Another type of dependence is introduced by cluster sampling, as in Cohen

(1976) , Altham (1976) and Section 5 of Rao and Scott (1981). Rao and Scott (1984)

describe the asymptotic behavior -of chi-squared tests in Toglinear models under
general survey designs. Within this context, their asymptotic theory is more
general than ours. Rao and Scott study statistics that assume knowledge of the
sampling design, while we are concerned with the fate of a naive statistician
who ignores serial dependence in analyzing categorical data.

Our goal is to give a general qualitative result: positive dependence

among successive observations causes all Pearson-type tests for categorical data

to reject a null hypothesis too often. More precisely, the asymptotic null dis-

tribution of the statistic is stochastically larger under positive dependence
than in the iid case. This result applies not only to tests of models for the
cell probabilities, but also to the full versus reduced model tests of nested
hypotheses employed in loglinear or other generalized linear models. Though we
discuss only chi-squared statistics, all conclusions apply equally to Tog like-
1ihood ratio and other asymptdtically equivalent statistics, a large class of
which is described by Cressie and Read (198&). Statistics not in this class are
generally used only when (a) model parameters are estimated other than by
efficient estimators based on cell frequencies; or (b) the dependence structure
is known and the statistic is adjusted to it. Case (a) is common in tests of
fit for quantitative variables when estimators based on ungrouped data are
avaTIabIe, but is rare in analysis of categorical data. The‘adjustments required
in case (b) in some particular settings are discussed in the ljterature cited
above. |
We.w111 employ the following general notion of positive dependence among

identically distributed Xt'



Pefinition:1.. The process {Xi} is. positively dependent (PD) if all of .the

M x M joint probability matrices R, with (i,j)th entry P(Xt =1, X, = j) satisfy
a'Rts a > 0 for all vectors a.

Note that the matrices R,_ need not be symmetric. Any=square matrix R such that

ts
© a'Ra > 0 .for all.vectors a vill be called generatized-positive semidefinites-
(gpsd). Definition 1 is equivalent to E{h(Xt)h(Xs)} > 0 for all functions h,

and to Cov {h(Xt), h(XS)} > 0 for all h. Gleser and Moore (1983) discuss the
definition in these latter forms, and in the exchangeable case (Rts symmetric)
relate it to other notions of positive dependence. We shall see in Section 2
that PD arises quite naturally in a study of the behavior of tests for categorical
data under serial dependence.

The previously mentioned special case of testing independence in a two-way
table whose margins are generated by reversible Markov chains illustrates our
results. PD is equivalent in the reyérsib]e Markov case to nonnegativity of the
characteristic roots of the transition matrix. Under the null nypothesis of

independent margins, the AsMa of (1.1) are among the roots of the transition matrix

J
for the rc-state chain generating the table. Hence (1.1) shows how positive
dependence makes the distribution of the Pearson statistic stochastically Tlarger
than XZ(r-])(c-])‘ The size of this effect increases with the strength of the
positive dependence, and can be arbitrarily large as Xi“j + 1. Mixed signs among
the Ai“j (general dependence) have quite complicated effects on the distribution.
Our methods are based on those used by Moore (1982) and Gleser and Moore
(1983) in the case of testing fit of quantitative variables to parametric families
of distributions. Section 2 presents the basic asymptotic theory, while Section 3

gives the main result. Section 4 presents applications to Markov dependence and

to cluster sampling, and gives some discussion of the practical consequences of our



results. Throughout, we are concerned with the behavior of tests when the model
tested is in fact true, but the statistician ignores dependence among successive

observations in conducting the test.

2. ASYMPTOTIC RESULTS

Observations X]"”’Xn on an M-state process yield cell frequencies
N],...,NM. A model specifies cell probabilities p(g) = (p1(e),...,pM(e))' in
terms of 6 in @, an open set in R™.  We assume that the model satisfies the usual
conditions first stated by Birch (1964). In particular, when a specific 8y in

@ is the true value, it is assumed that the map p(e) is totally differentiable

at 64> that sall pi(eo) >0, and that the Mx m matrix B with (i,j)th entry

Py 55; (2.1)

has full rank m < M. (Here and throughout, & = %9 is assumed when the
argument ¢ is suppressed.) Birch's conditions apply to (in the iid case) multi-
nomial sampling. A1l of our results hold for the Poisson and product multi-
nomial sampling models as well. For eXamp]e, the iid case of our (2.6) below
appears for these sampling models as (4;174) of Haberman (1974), and the exten-
sion to dependent Xt is just as given here.

Birch's conditions imply that when Xt are iid, maximum likelihood estimators

én eventually exist and

(8, - 6y) = (B'B)"B'vn +o(1), (2.2)



where Vn is the M-vector of standardized cell frequencies having ith component

(N,

l A
. npi)/(npi)z. Birch also shows that the Pearson statistic X2(en)

= Vn‘(én)vn(én) for testing the model p(8) satisfies

xz(éh) = V(I - PRIV + op(1) (2.3)

where Py = B(B'B)'] B' is the orthogonal projection onto the range of B. Note
that the asymptotic behavior of the right sides of (2.2) and (2.3) depends only
on that of V = Vn(eo).

Suppose now that the Xt are dependent, but that each has a common univariate

marginal distribution. We require of the process'{Xt} only that under 8,

N,
L — . in probability, i = 1,...,M. (2.4)

Vn — N(0,z) in law, L= 1;m Cov(Vn). (2.5)

When {Xt}isa stationary ergodic (i.e., aperiodic positive recurrent)
Markov chain, (2.4) and (2.5) are always satisfied. See Cox and Miller (1965),
p. 98 for (2.4) and Doob (1953), p. 228 for (2.5). More generally, if {X;3
is a stationary process, the mean-sqﬁare ergodic theorem states that (2.4)
holds if and only if

-1 n-1

. . 2 .
n tZO {P(Xy = 1, Xqpy = i) - pi} > 0.

This is a mixing condition on {Xt}. For such processes, central limit theorems



for stationary processes then imply (2.5) under a variety of stronger conditions.
See e.g. Withers (1981) for references.
An examination of the proof in Birch (1964) shows that (2.4) and (2.5)

are sufficient for (2.2) and (2.3). Consequently, the representations (2.2),

(2.3) hold under our assumptions for both the iid and dependent cases. The
resulting asymptotic distributions will differ because the Timiting covariance
matrix r of (2.5) will reflect dependence among the Xt' In fact, computation

shows that

Cov (V) =1-aqq'+Q

2 i . ,
where q = (P]?-,...;pMz)",'I is the identity matrix;, -and

1 { -
4= w t %=] Qs
t#s

for Qts the MM matrix with (i,j)th entry

V=)

{P(Xy = 1, X5 = 3) - pyps3/ (pyps5) %

Hence, =1 - qq' + Q, where Q = 1im Qn' Note that gq'B = q'Qts = 0, and that
in the iid case all Qts = 0.

Consider next the testing of a reduced model specifying that 6 = g(t)
for + in an open set T of rRY, q < m. If both the reduced model pR(r) = p{g(t)}
and p(e) satisfy Birch's conditions, and g:T — Q is totally differentiable at
the 7, such that 09 = g(TO)’ then the B-matrix (2.1) in terms of T at Ty
satisfies BT = Ba , where A is the mxq matrix of derivatives aei/aTj. Since
-1g

the columns of B are in the range of B; the projection PR = B (B'B )
T _ T T T T

satisfies P,P, = P = P

rPB gPr = Pr- Thus PB - RR is an orthogonal projection of rank

m - q.



The statistic for testing the reduced model pR(T) versus the full model

p(e) is (in one of several equivalent forms),

2 _ v2;A 2/
XR = X (Tn) - X (en)
where ?n is the mle or asymptotically equivalent estimator of t from N1,...,NM

under the reduced model. By (2.3) (notefthat,vhx1nv01Ves:no,estimation,’SO-ﬁs the

same in both models),

X, =V ! (PB - PR)Vn + op(]) (2.6)

2
R n

when the reduced model is true. The expression (2.6) includes (2.3) as the

special case in which the full model does not constrain the Pis and p(e)
defines the reduced model. Another familiar example is the éase of Toglinear
models, Tog p(g) = Ag for an Mxm matrix A of rank m. Reduced models set some
components of g(say the last m - q) to zero, so thate = (r,£) and g(1) = (r,0),
where . has dimension q, and ¢,0 have dimension m - q. Other generalized linear
models ¢{p(e)} = Aeare also covered by our formulation.

These results are familiar in the iid case. We have remarked that they

hold much more generally. Here is a summary statement.

Theorem 1. Suppose that’{Xt} is any process such that Xt are identically
distributed and (2.4), (2.5) hold. Suppose also that a full model p(e) and a
reduced model pR(T) = p{g(r)} both satisfy the regularity conditions of Birch
(1964). When 6,7 are estimated by estimators that are asymptotically efficient

for {Xt} iid, the Pearson statistic for testing pR versus p satisfies

2 _ .
XR = Vr'](PB - PR)Vn + op(])

when the reduced model is true and ¢ = 9



3. POSITIVE DEPENDENCE

The framework of Section 2 can be used to study the effect of serial
dependence on the asymptotic null distribution of tests for categorical data
in considerable generality. Here we are interested in the effect of positive

dependence. in the sense of Definition 1.

Let D = diag (p1,...,pM). Then from

3 o
and q'Qts = 0, it follows that Qts + Qst (which always has characteristic root
0 in the qq' direction) is gpsd if and only if Rts is. Hence if {X;} is PD,

Qn and Q (which are symmetric) are psd.

It follows from (2,6) and the asymptotic normality of Vn that

M

XR N 121 Ai;$ in law,

where Z; are iid N(0,1) and As .Xi(w) are the characteristiciroots of

s ld

a
2

(1-aq' +0Q) (Pg - Py) (3.1)

Setting Q = 0 in (3.1) defines the iid case of this matrix,which we call WIID'
Since W - Wrpp s psd if Q 15,'{Xt} PD implies that Ak(W) z-xk(wIID)’ where
xk(E) is the kth largest characteristic root of the matrix E. (Of course,

wIID = PB - PR’ so that its nonzero roots are m - q 1's and Xg is asymptotically

2

X m-q') We have proved our main result.

Theorem 2. If {Xt} is PD and the conditions of Theorem 1 hold, the asympto-

tic null distribution of any Pearson-type statistic Xﬁ is stochastically larger



than when {Xt} is iid.

4, EXAMPLES AND DISCUSSION

Markov dependence. Suppose {Xt} to be a stationary ergodic Markov chain

with transition matrix T and vector of stationary probabilities p. Then

computation shows that

vl
vl

+ D

1
2

(z' - 1)D®, (4.1)

i

D

(z - 1)b”

O
1l

1

where 7 I - (T-ep'), e a vector of 1's, in agreement with Tavare and Altham.
The concept of PD for Markov chains is investigated in detail in Gleser and Moore
(1985). If rij = P(X1 =i, X1+k = j), a necessary condition for PD is that

i 3_p§ for all 1 and k, and a sufficient condition is that rij + rji 5_2p1pj
for all i # j and all k. These conditions have obvious interpretations relating
the joint distribution of (X],X]+k) under PD to that under independence.

When the chain is reversible (i.e., R,__ is symmetric), PD is equivalent

ts
to Q psd and to nonnegativity of all characteristic roots of T. Thus in the
reversible case (whichincludes all 2-state chains), {Xt} PD has a natural
description in terms of T and is also the natural condition (Q psd) for all chi-
squared statistics to be stochastically larger than for iid observations. The
nonreversible case, which appears to be more common than reversible chains in
scientific models with more than two states, is more complex. Counterexamples
shows that neither of the equivalences mentioned above holds for nonreversible

chains. But {Xt} PD continues to imply that Q is psd'and hence that Pearson-type

tests can be misleading.
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Cluster sampling. To fit cluster sampling into the serial dependence frame- .

work, we assume that Xt's from the same cluster are adjacent in the sequence.

Suppose there are N clusters, of sizes Mv for v = 1,...,N. Setting Zivt =1 if

. i where Xt is the t-th observation from the vth cluster, we assume that

X

Z. t from different clusters are independent, that E(Ziv
v

and that the matrix

¢) = pj(0) for all w,t,

{E(Z )} :R\)’ t#s-

ivtZivs!Hi,3=1,.. ..M
This is the model of Altham (1976), generalized to allow the matrices Rv, which
describe within-cluster dependence, to vary among clusters. Under this model,
ts of Definition 1 are the same for all Xt’xs
in the same cluster (in particular, Ryg s symmetric), while Xt,XS are indepen-

the joint probability matrices R

dent if in different clusters.
In this model for cluster sampling, {Xt} is PD if and only if all Rv are
psd. The models for positive dependence within clusters proposed by Altham
and others, and reviewed in Section 5.2 of Rao and Scott (1981), are all special
cases of this natural definition. It follows that Pearson statistics are stochas-
tically larger under PD clustering than in the iid case whenever a central Timit
theorem for the Ni for the specified design is available. As in the Markov case,
a usable null distribution is available only in restricted cases. Extending
(5.3) of Rao and Scott (1981),
N Mv(Mv-1)
Cov (V)=1-gqq"+ vZ1 {(—— 1D
The 1imit of Q, (the Tast term on the right) will rarely be tractable.
Rao and Scott (1984) study a more general class of statistics for survey

data under regularity conditions similar to ours. Our naive statistician ignores
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serial dependence; theirs is aware of the sampling design, and uses an estimator
p of p based on this knowledge, rather than our Ni/n of (2.4). Rao and Scott
give most attention to the use of such p in standard chi-squared statistics,
identical to our Xg if ﬁi = Ni/n. These statistics are not properly standardized
relative to the asymptotic covariance matrix of ﬁ, and do not in general have XZ

asymptotic null distributions. It is not surprising that the resulting distribution

is stochastically larger than the iid-case distribution Qf:Xg;wheﬁ the 1imiting co-
variance matrix V of 5 is larger than the iid-case covariance matrix C of the

Ni/n, in the sense that V-C is psd. This follows from Theorem 1 of Rao and Scott
(1984). In principle, this result includes our cluster sampling example. But it
does not lend itself to specifying general conditions such as PD that cause true.

null hypotheses to be rejected too often.

DiScussibn. In the Tight of the conclusions Qf this and gar]ier studies;
statisticians who suspect serial dependence in their data should conduct a test
for such dependence prior to applying standard procedures for categorical data
analysis. When a finite Markov chain model is appropriate, Chatfield (]973)
reviews tests for independence of successive events and Katz (1981) provides
references to some more recent work. More general nonparametric tests for random-
ness include the classical runs tests and, in some Circumstances; rank tests such
as that proposed by Bartels (1982).

The analysis of data when serial dependence has been verified is a topic
requiring further study. In the case of dependence induced by a sampling design,
alternative analyses are available. The weighted Teast squares approach based on
the Wald statistic (Koch, Freeman and Freeman, 1975) is well known, and Rao and

Scott (1981, 1984) propose other statistics. Thomas and Rao (1984) have studied
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the small-sample properties of a number of tests in this context. The develop-
ment of procedures for dealing with more general dependence, e.g. in a time
series, is at a more primitive stage. Distributions of classical statistics can
be explicitly calculated only in a few special cases, such as that leading to (1.1),
It is also sometimes possible to explicitly compute the "true" statistic,
i.e. the quadratic form in the standardized cell frequencies Vn(én) whose
centering matrix is a generalized inverse of the limiting covariance matrix of
the Vn(én). When testing fit to a completely specified model (e0 known), = in
(2.5) is I-qq' + Q. If I + Q is nonsingular, which is generally the case,
(I+Q)-] is a generalized inverse of I. Hence when 6 is a consistent estimator of
0 v, (1+) 1, has the %2 | Timiting null distribution. In the Markov case, Q
is given by (4.1) and can in principle be consistently estimated by employing
the obvious count estimators of stationary and transition probabilities. Altham

(1979) has given upper and lower bounds on the "true" statistic that are quite

generally true and will often be useful.
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