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by Thomas S. Salisbury

§1. Introduction

in [2], E. ginlar apd J. Jacod consider, among other things,
the problem of whether every continuous strong Markov process of
bounded variation is deterministic (a problem apparently also
posed by S. Orey). They show that this question is equivalent
to that of whether every strong Markov process satisfying an
ODE X, = F(X,) is deterministic. At the time of writing [2],
they thought they had a proof that this was indeed the case.
They later found an error in this proof, but subsequently
established the result in the case that (X_) is one—dimensional.

t
More formally, they can show the following

(L.1) Theorem. Let (X be a real valued (time homogeneous)

&)

continuous Hunt process of bounded-variation. Then Xt is a.s.

a deterministic function of Xg-
We will show that this” result is false in dimensions bigger
than one. In fact, we will produce a non time homogeneous real
valued continuous Hunt process that is not deterministic. It
will arise as a deterministic function of a space-time versioﬁ
of a time changed Brownian motion.
I would like to thank Erhan ginlar and\Jean Jacod for

advertising their problem. I would also like to thank Burgess

Davis for many helpful conversations and invaluable suggestions.



§2. The Construction -

Let Q = [0,) xC([0,»),R). The canonical realization of

a continuous space-time stochastic process is
(1,/By) (s,0) = (s+t,0(t)).

Let F, = o(1,,B; s <t), and set ¥ =F%_. Let P5'¥ pe

the law on (2,7), of space-time Brownian motion started at

S,X

(s,x). As usual, "a.s." means P -a.s., for every s,x.

A set of the form
[u,v] x [a,b] © [0,®) xR

will be called a box. For each union G of finitely many

disjoint boxes [ui,vi]><[ai,bi], we will define a process

Mi as follows; It behaves like a Brownian motion till the first

G .
t

until Tt = vi,' and then resume Brownian behaviour until the

hit of G. 1If this occurs in the i'th box, we 'hold' M

next hit of G, etc... (see Figure (2.4)).
More formally, let -SG(O) = AG(O) = 0, and define

S(n) = SG(n) and A(n) = AG(n) inductively as follows:

S(n+l) = S(n) + inf{t > 0; (TO-+A(S(n))-+t,BS(n)+t) € G}
A(t) = A(S(n)) + t - S(n), for ¢t € (S(n),sS(n+l))
A(S(n+l)) = Vi if (TO-+A(S(n+l)—),BS(n+l)) € [ui,vi] X[ai,bi].

Let ﬁG(t) be the (continuous) inverse of AG(t), and define

G
M7(t) = B )
z&G(t)
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We will let G become dense in an appropriate manner, and show
that these processes converge.

Let

I'(t,y,p) = sup{m; there are disjoint open subintervals
I(1)..I(m) of [0,t], each of length > p, such
that for each i there is an s € I(i) with

B, -v| < o}

A(t,y,Z,p) = the number of upcrossings of [y+p,v+ 1]

and downcrossings of [y-zZ,y-pl by (Bs)sE[O,t].

(2.1) Lemma.
(a) For every t > 0, Es'x[pf(t,yrp)] -0 as p.¥v 0,

uniformly in s, x and vy.
(b) For every t >0 and ¢ > 0, ES’X[A(t,y,C,p)]

remains bounded uniformly in s, x and y, as p ¢ O.

Proof: (b) follows from Doob's up and downcrossing bounds, via

the translational invariance of Brownian motion, and the strong

Markov property at inf{s; B, = y+p}. sSimilarly, by the strong
Markov property at inf{s; Bs = yj:p}, we have that
E5' ¥ [pl (t,y,0)]

< S5 E°'®[2p+inf{s; B, =+ p}] +E°"[pT (t,p,0)]
z|<p

< 2p-+p2-+E°’°[Lebesgue measure of a p-neighbourhood of

{s < t; B, € [0,20]].
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As p v 0, the integrand decreases boundedly to the Lebesgue

measure of {s < t; B, = 0}, which is zero. O

If ¢ is nondecreasing and right continuous (for our
purposes, actually continuous), denote its right continuous
inverse by ¢ (that is, - $(t) = inf {s > 0; ¢(s) > t}). If

G 1is the union of finitély many disjoint boxes, we let

Ag(t) (s,0) = 2%(t) (s,w00),

and define ﬁi and Si. similarly.

Let Y consist of all nondecreasing, continuous ¢ such

that ¢(0) = 0 and &(t) -t is nondecreasing.
(2.2) Lemma. For ¢ € ¥, and G as ébove,

) > 6(A5(t)) for every -t > 0.

G
¢

respectively. Since ¢ is continuous, the inverse of A'

Proof: Write A(t) and A'(t) for AG(t)‘ and A (d(t))

is ¢°ﬁ§, so that it will suffice to show that A(t) < A'(t)

for every t. Let t(n) = SG(n) for n‘i 0. We will show by

induction.that A(t) < A'(t) for every t € [t(n),t(n+l)).
Note first that on any interval (s,r) not containing

any time t(n), we have that

A'(t) —A(t) > (A'(s) +¢(t) - (s)) - (A(s) + t - s)

| v

(A'(s) +t~-s) - (A(s) +t-5s)

= A'(s) -A(s).



This starts the induction off, as ¢(0) =0 implies.thét

A(0) = Ag'(O) < A'(0). Similarly, assuming that A'(t) > A(t)
on [t(n),t(n+l)), we need only show that A'(t(n+l)) 3.A(t(n+1)).
If A'(t(n+tl)-) > A(t(n+l)), there is nothing to show. Thus
assume that A'(t(n+l)-) < A(t(n+l)), and let [u,v] X I be

the box of G to which (To-+A(t(n+l)—),B belongs.

t(n+1)
Then

u < Ty tA(t(ntl)-) < Tog tA' (t(n+l) =) (by induction)

< +A(t(n+l)) = v.

To
But in this case,

To+A'(t(ntl)) > 1o +AT((t(ntl)-)) = v =

0 p +A(t(n+l)),

To

showing the result. O

Now let & (6) cohsist of all nondecreasing continuous functions
¢: [0,) > [0,) such that .]¢(t)-t| < ¢ for every t > 0.

In the following lemma, it is more or less clear that some §
will work. Specifying that’ é§ and then verifying the result

is a tedious task however, and the proof has been relegated to

the next section; readers are advised to omit it!
(2.3) Lemma. For G as above, and .€ > 0

P9 ¥ (sup{ [a%(£) -AC(t) |; £ > 0, 6 € 2(8)} > €) + 0

G
¢

as ¢ ¥ 0, wuniformly in s, x.



Proof: See §3.

Now let Ze(n) < ». Set G(0) = ¢, £(0) =1, and
define G(n) and H(n) inductively as follows;
Use Lemma (2.3) to £find &(n) € (0,£(n-1)/2) so that

G(n-1) (£) _ ﬁG(n—l)

sup P°'*(sup{|A s

() [: £ >0, ¢ € 2(4E(n))} > e(n))
S,X v

< g(n).

Then use that lemma again, to find 6(n) € (0,£(n)) so that

sup Ps'x(sup{lﬁG(n_l)(t)-§i(n~l)

S,X

() ]; £ >0, ¢ € 2(8(n))} > E(n))
< g(n).
Now use Lemma (2.1) to find p(n) € (0,2” ") so that

sup P5'*(3p(n) [T (n,y,p(n)) +A(n,v,2 %, 0(n)) +1]
S,X,Yy . :

§(n) e(n)

2 ) < .
520+l 520+

Let B(n) be the union of those boxes

([p(n) (4k + (-1)T +1), p(n) (4k+ (-1)3 +4)] n [0,n])
x (2 _o(ny, AL, ()]
2 2
not intersecting G(n-1), for which k > 0 and |j] < 22D,

Let G(n) = G(n-1l) U H(n).



N
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Recall (cf. [1]) that a continuous ]Rz—valued'strong

Markov process is a Hunt process if its semigroup maps Borel

functions to Borel functions.

(2.5) Theorem
AG (n) ) . ~
(a) A decreases to a function A as n - «,

Moreover, the convergence is a.s. uniform.
ey -
(b) A(t) is continuous in t and -+ = as t >, a.s..

(¢) A(r) is an (f,,) stopping time for each r > 0.

t+
Let ?t ='?ﬁ(t)+' If T is a (§t+) stopping time
then A(T) is an Gft+) stopping time, and
Ipr S TR (my 4
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(d) Let Mt = Bﬁ(t)'

T we have that

Then for all (§,,) stopping times

t+

M = M, (1,,,B2 ) 'for every t, a.s..

i
(e) ((T,,M).,% ,PS’X) is a continuous Hunt process.
t't t+

[Note: the monotone convergence of (a) is not strong enough.
It will be crucial that A is not constant, and for that we need

uniform convergence].

G(n))

£ spends

Proof: Let v(n) be the total time that (Tt,M

in H(n). Fix n >1 for now, and let

Ay G(n) .y _.G(n) ,__. ..
o(t) = t+ [ @7 (x) =27 (z-))1 &(n)

r<t | {(TO¥FA (r-),B_) € H(n)}.

Let ¢ be the‘(continuous)'inverse of $. Then ¢ € ¥ and

aC(B) (4 =7A$(n-l)($(t)),
so that also
AC(R) (g) = 4 @RC(n=1) (4, .

¢

The monotone convergence part of (a) now follows by Lemma (2.2).
Now suppose that [u,v] x [y-p(n),y+p(n)] is a box of
H(n) of length 3p(n) (this is a restriction only if v = n),

which is hit by (Tt,Mi(n)). Let
I = A% (0), 8™ (4) 4 p(m)).

If B_ € (y=2"%,y+2™) for s € I, then |I| > p(n).
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If not, then (Bs) makes an upcrossing of [y+p(n),y+2_n]

14

s€I

or a downcrossing of [y-2"",y-p(n)]. Thus

#{boxes of H(n) hit by (Tt,Mt

< 1w B om)ysnm, 2, L o4y,
lj|<22n 2. '2 2
and hence
P % (v (n) > 8(n)) < Y ;éii < g(n).
2

|5 ]<2%0
If v(n) < 8(n) then ¢ € 8(8(n)). Therefore

(2.6) P ¥ (sup |AC(71) (¢) CAS(M) (4| > 2£(m))
t
G(n-1)

o (t)| > £€(n)) < 2e(n),

< Ps’x(suplﬁG(n—l)(t)-ﬁ
t .

so that the remainder of (a) follows from the easy half of the

Borel-Cantelli Lemma. Part (b) follows in turn, as each ﬁG(n)

is eventually linear with unit slope.

To show (c), let A be the right cohtinuous inverse of g.
Then A(t-) = lim_AG(n)(t—)- for every t. By constrﬁction,
each AG(n)(t) is adapted to (?t), hence so is A(t-). Thus

A(t) is adapted to (f,,), and

t+

Br) <t} ={r<amleg,,

so that A(r) is an . )) stopping time. We may therefore

t+

. G _ T,
define Ut _'FA(t)+’ Then also
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{a(e) < s} ={t<A(s)) €75, =9,

so that A(t) is a (3s+)—stopping time.
Let T be a (fs+)—stopp1ng time. For B € §T+, we

have that
Bn {A(T) < t.< A(s)}
=BN {T<a(t) <s}ef =73 ..
so that for each r also
Bn {A(t) <t <A&(s) <r}e 7 s
Taking the union over s € @, we see that for each r > t,

B N {A(T) < t} €7 .

) stopping time, and 9T+ C'?ﬁ(T)+’

) stopping time. Then

Thus A(T) is an (ft+

Turning to (d), let T be a (4.

t+
Tp e'fﬁ(T)+’ so that by the strong Markov property of (B,)
at A(T),
s,x 2G(n) . _#G(n) A )
P (SUP{ IA (t) (TT'BA(T)+') Aq) (t) (TT'BA(T)+.) |'

t >0, ¢ € ¢(4E(n+l))} > e(n+l))

T,,Bs . .
= S/ ¥[p T AT (gup( A8 (D) (4, -5 )5 e 2 o,

¢ € 9(4E(n+1))} > e(n+l))] < e(n+l).
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Thus by the Borel-Cantelli Lemma and (2.6), we have that a.s.

there is an n, such that for n >n

0!
lﬁc(n)(t)__gG(n+l)(t)| < 2&(n+l) for every t, and

sup{ lﬁG(n) (t) (TT'Bﬁ(T)+-) — A (t) (TT’Bﬁ(T)+-) I;

t 20, ¢ € ¢(4E(n+l))} < e(n+l).

Let n > ny. Then

IﬁG(n) (T) —K(T) I _<_ z lﬁG(k) (T) _AG(k'i‘l) (T) I
k>n

<25 E(k+l) < 2 ) 2% Kg(n+1) = 42 (n+1).
k>n k>n

By (a) we have that ﬁ(T) < ﬁG(n)(T), 'so
. _ AG(n) ~ .
o(t) = t+A (T) —A(T) € 9(4&E(n+l)).
We have that ¢(§(T)+t) = ﬁG(n)(T)+-t, and by construction,

ACG(n) () (/B ) = A8 (peg) ~ASM) (qy f£or every t.

Thus
B () (10,85 gy ) =A%) (mat) +ACD) (1) | < e (na1).
Letting n - «,° we see that

ﬁ(t)(TT’Bﬁ(T)+-) = ﬁ(T+t)-—ﬁ(T) for every t, a.s.,

showing (4d).
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>

Finally, let T be a ¢ stopping time, 2 € ¥

t+) T+

bounded, and f bounded and measurable on path space. Then
S,x .
E”T2E (T, My, )]

= Es’x[Zf((T.,M.)(TT,BA(T)+.))]

% TT,M

SrXrze T Tre((r.,m) 0.

= E

This shows the strong Markov property. Because of their Brownian

heritage, the transition function for each of the (Tt,Mi(n)

can (given sufficient time) be found more or less explicitly.

)
Thus each of these is a continuous Hunt process, hence so is
We will need the following fact later:
(2.7) Lemma. Let (s,y) € [u,v] x [a,b] ©€ G(n). Then
Ps’y(Mt =y for t € [0,v-s]) = 1.
Proof. By construction,
ﬁG(k)(v—s) = 0, pSrY _ a.s.

for each k > n. Thus also ﬁ(v-s) =0, pSrY _ a.s., showing

the result.

Now enumerate the boxes of G = UG(n) as

[tn—xn,tn+xn] X[an,bn]. Choose Yo > 0 so that
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Let
0, y<o0
f(y) = y, 0<y<1
l, y>1 ‘
m sy-a, t-tn
gm(t,y) =1l+t- Y ynf<b —y ><[1—| = l]vo).
n=1 n n n

Each g is continuous on [0,®) X R. Since

lg. .7 -9 | <y , and
m+l m m )

Iy, <1

o[
A
8

we see that the g, converge uniformly to a continuous
function g.

Fix s for the moment. Each gm(s,~) is nondecreasing
and moreover is strictly increasing on any interval (an,bn)
with n <m and’ s € (tn-xn,tn-kxn). By construction, the
union of such intervals becomes dense in R as m + o, sgo
that in fact each g(s,:) is strictly increasing, hence one
to one. Let h(s,-) be its inverse. Then h is coﬁtihubus.

For (s,x) € [0,) xIR, define

s,X s,h(s,x)

Q =P

(2.8) Theorem. Let Xt = g(Tt,Mt). ‘Then (Xt) is continuous

and nondecreasing a.s., yet
Q. ) S,X
((Tt,Xt),Jt+,Q )

is a nondeterministic Hunt process.
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Proof: Since A(t) <t for every t, (Mt) is a

s’x-martingale for each s, x. It is nonconstant by (b) of

Q
Theorem (1.5), hence is nondeterministic. Therefore since

each g(r,-) is one to one, (Tt,Xt) is both nondeterministic
and strong Markov. It is continuous since g and (Tt,Mt)

are. It is therefore Hunr, since g and h are Borel. Thus
all that remains to be shown is that (Xt) is a.s. nondecreasing.
It suffices to show that each gm(Tt'Mt) is.'

By definition each g,(*+¥) 1is absolutely continuous

with 'derivative'

m oy y-a
n n : )
1- ) T f<b — ) sign(t -*)
n=1 “n n n
oy
>1- ) 2>1-8> 0.
n=1 xn

Thus each gm(-,y) is increasing. Moreover, [0,) xR may
be decomposed into finitely many boxes (now allowing infinite
sides) which.either are subsets of some G(n), or on which
gm(t,y) ~does not depend on y. It is clear that gm(Tt,Mt)
increases while (Tt,Mt) remains in any rectangle of the latter
type, and by Lemma (2.7) it also increases on rectangles of the

former type. Qg
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§3. Proof of Lemma (2.3)

@®  Dpefinitions and outline of proof:

Let m > 1 be the number of boxes of G, and write

m
G = iL=Jl[ui,vi‘]>< [ai’bi]'
For convenience, let I; = [ai,bi]; Choose Y € (0,1) so
that ]ai-bjl > Y whenever I. Ij = ¢, and lui-vjl >y

otherwise ‘(thus all boxes have length at least Y in the time
direction, and are at least distance Y apart).

. Given X € (0,1), choose n € (0,(Y/5)Ae) so that
PO’O(IBtl <y for t € [0,2n]) > l-% and

Po’o((t,Bt) hits D) < A/sz, for every set D
of the form [s,s+4n] x{y} not intersecting

the y/2-neighbourhood of (0,0).

Then choose 6§ € (0,n/3) so that

A

0’0 AR
( I

B, =0 for some t € (28,n-8)) > 1-

P t

write A(t) = a%(t). Let

T(l) = inf{t > 0; (Tt,Bt) € g[ui-d,vi4-6]x Ii}'

0, if T(l) = o
J(1)

i

i, if (TT(l)’BT(l)) € [ui-é,vi-+6] XIi,

and define T(n), J(n)*:inductively for n > 2 by

N
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T(n) = inf{t >T(n-1); (TO+A(t—),Bt) €

U [u,-2n,v,+2n] x I.}
i€{1..mN\{I(1)..J(n-1)} * i i

0, if T(n) = «

J(n) = ] _
i, if (1g*A(T(R)=) By )) € [9;-2n,v,+2n] X I,.
Let
C'(1) = AT} <y Tp(qy € lug(yy = 8,vz(q) = N1,
('rt,Bt) hits (TT(l) + 26’TT(1) +1n=-6) x IJ(l) , and
1Bg=Bp(qy | <¥ for te [T(1),T(1) +2n]},
Cc" (1) = {T(l) <=, 1 + 6}, and

1) € Yoy "V V3)

IBt-BT(l) | <y for t€ [T(1),T(1) +2nl},

C(l) = {T(1) = «} U-C'(1) U Cc"(1).
For n > 2, let

C'(n) = {T(n) <= and T0+A(T(n)—) € [gJ(n) +2n,‘vJ(n) -2nl},

"C"(n) = {T(n) <~ and Bt € (aJ(n) 'bJ(n)) for t€ [T(n),T(n) +4nl1},
1 on C'(n)

v{n) ={({2 on C"(n)
0 elsewhere ,

C(n) = {T(n) = «} U C'(n) U C"(n),

C=Cc(l)n..ncC(m).
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SG, and

Let S

L =1 " ’ K=1 n .
C ‘(l) C (l)ﬂ{(Tt,Bt) hits [u yrv )7] x I }.

J(1 J(1 J(1)

A straightforward induction shows that the following conditions

hold:
(3.1) If K=1 then S(1) =T7(1) and TO+A(S(1))‘=VJ‘(1) < 10+A(S(1)—) +n.
(3.2) S(1) € [T(1),T(1)+n) and (10 +A(S(1)) ,Bs(l)) € {VJ(l)}XIJ(l) onC'(1l).

(3.3) . S(K-L +n)

T(n) on CNC'(n) for n> 2.
(3.4) S(K=-L+n) = T(n) +2n< T(n+l) and

('ro + A(S(K-L+n)~-) ,B

S(K—L+n)) € {uJ(n)} % (aJ(n) 'bJ(n))

on CNcC"(n), for n>2,
(3.5) S(K-L+n) == on Cn{T(n) = »}, for n>1.

We will show from this (see @ below) that P°’*(c) > 1-2
for every s and X.

Now let ¢ € &(8), and write

[— v = G

A' = A¢, s S¢,
Kt = lC"(:l_)ﬁ{('r B ) hits fu v ] x1 }
t' 7o (t) J(1)""J(1) J(1) "

Conditions analogous to (3.1)-(3.5) hold for these objects as
well, but we will state matters slightly differently; we will

show that the following conditioné hold on C (for n =1..m):
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(3.6) If K'=1 then T(1) <¢(S'(1)) <T(2), 1,+A'(S'(1)) =

0 Vi)’

and'TO-+A'(S'(l)-)€ (T0-+A(T(l)—)-6,vJ(l)]
(3.7) T(L+n) <¢(S'(K'+n)), and if T(L+n) < then also

o(S'(K'+n)) < T(L+n+1).

(3.8) If T{I+4n) <= then (7o +A'(S'(K'4n)) /By (51 (gisn))) € Vg (pan) ¥y (gan):

(3.9) If T(L+n) <« then |[S(K+n) - S'(X'+n)| <.

The induction step will be shown in (3), and the induction started
off (and (3.6) shown) in @ and'©.

Lastly, we will show (in C)) that from these conditions it
follows that

(3.10) sup|A(t) -A'(t)| < e on C,
t .
completing the proof of the lemma.

(@ Proof that P°'*(c) > 1-1:
Fix s and Xx. For i # j, each component of

[uj-2n,uj4-2n)xf{aj,bj} or (vj-zn,vj4<2n]x {aj,bj} is of

distance at least
- Y
Y 2n > § + >
from {vi}><Ii. By (3.1) we have that

A(T(1)) € [VJ(l)’VJ(l)i's] on C"(;).

By (3.2)-(3.5), we may therefore apply the strong Markov property

at either T(l) or 8S(n), and obtain that for n = l..m-1,
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P/ ¥(C(n) \ C(n+l))

m
< Y P F(I(n)=i) sup Pr'y((Tt,Bt)
i=1. rE[vi,vi+6)

y€Ii

h.t '-_2 -+2 U -_2 7 .+2 X { -’b.
1SjL;'£Ji([l'13 n,ug n) (vj vy n?) a J})

A A
< 4(m~1) —— < =—,
8m2 2m

Similarly,

m
PEr¥(a\c(1)) < ¥ PS/*(I(1)=1i) sup
' i=1l ref[u.-6,v,+68]
1 1
eI,
[Pr’y([Bt—yl >7Y for some t< [0,2n]

+ Pr’y(Bt # y for any t€ (28,n-68))]

<

N >

Thus

(m=1)X _ X

s,X 4L
P () >1 2m 2

>1-A.

() Proof of (3.7)-(3.9); induction step:
Let k > 1, and suppose that (3.6) holds, as do (3.7)-(3.9)

for n =1..k. Then

S'"(K'+k+1l) =inf{t >S"(K'+k); (v +t-S'(K'+k),B ) € G}.

J (L+k) ¢ (t)

¢ cannot be constant on [S'(K'+k),S'(K'+k+l)] (if it were, then

[Tg AT (ST (K1+k)) , Tp+a" (8" (R'+K) )48 (K'+k+1) =8 ' (K'+K) 1% {By (5 (x14py) }

would stretch from one box of G +to another, hence would be of
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length at least 7Yy, whereas

S'(K'+k+1l) -S'(K'+k)

= S'(K'+k+1)-¢ (S' (K"+k+1) )+ (S' (K'+k))~-S' (K'+k) < 26 <v).
Thus

¢(S'(K'+k+1)) =inf{r > ¢ (S' (K'+k)); (v +t-S'(K'+k),Br)

J (L+k)

€ G for some t with ¢(t) = r}.
By induction, if ¢(t) = r, then
(3.11) | (£=8S"(K'+k))-(r-S(R+k))| < 8§ + n < 2n.

Since also T(L+k) < ¢(S'(K'+k)), and (To+A" (£) /By ()
g [uJ(n)’VJ(n)]w<IJ(n) for any n 5_L-+k_ and t > S‘(K'+k),
we have that T(L+k+1l) < ¢(S'(K'+k+l)).

On C N {Y(L+k+l) =1} we have by (3.11) that

¢(S' (R'+k+1)) = T(L+k+l), and

104-A'(S'(K'+k+l)-) € [u

I (L+k+1) VI (L+k+1) 37

showing (3.7) and (3.8). (3.9) follows by (3.3).

Oon C N {Y(L+k+l) = 2}, we have by definition that

€ (a

' Bd>(t) J(L+k+l)’bJ(L+k+l))

for t € [$(T(L+k+1)-),d (T (L+k+1)+4n)].

Also,‘
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[T + 2" (S (T(LAK+1) =) =) = (uy 1y gy =20 |
(3.12) = IVJ(L+k) + ¢ (T (L+k+1) =) -S' (K'+k)
4(vJ(L+k)-+T(L+k+1)—S(K+k)]

< 8§ +n < 2n - 26,

SO that
U (p4k+1) 40 < Tp AT (O (T(L+k+1) =) =) < YT (L+k+1)
< TO-FA'($(T(L+k+l)—)—)+$(T(L+k+l)+4n)-3(T(L+k+l)-).

" Since 4n < vy, we conclude that

(TotA" (€)1 By (1)) £ 18 (T (L4k+1) =) , & (T (L+k+1) +47) ]

hits no box of G other than [ud(L+k+l)’VJ(L+k+l)] xIJ(L+k+l)’

and that it hits that box in the set

fug (paxe1)? ¥ T3 (nek+1) °
Condition (3.8) and the remainder of (3.7) now follow.
To show (3.9), observe that )
|S (K+k+1) -S' (K '+k+1) |

= | (S(K+k)+u
(3.13)

J(L+k+l)-vJ(L+k))

(8T (R Uy (1) Vo (zek) )|

Thus, the induction step is shown on C N {T(L+k+l) <»}. It

holds vacuously on the remainder of C.
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(@ Proof of (3.7)-(3.9) for n=1, on CnN C'(1):

S'(1) = inf{t > 0; (1 y) € G}, so that

t’B¢(t

d(S' (1)) =inf{r_>_¢>(0);('rt,Br) € G for some t with ¢(t) =r}.

-1_| <8 whenever ¢(t) = r, we have that

Since ITt .

(3.14) ¢(S' (1)) >T(1l) everywhere on {T(l) <=},

Moreover, on C'(l) U C"(1l) we have that lBt_BT(l)I < vy for

t € [T(1),T(1) + 2n], and hence that

T(2) >T(1) +2n and (7,By 4\ )ie 0, 7(1)+n]

(3.15)

hits no box of G other than [uJ(l)’VJ(l)]x IJ(l)'

On C'(l1) N C, there is by definition an r € (T(1l) + 28,T(1) +n-39),

with Br € I ‘Then r = ¢(t) for some t € (T(1l) +8,T(1l) +n).

J(l)°
Since

< T +68 < 1 +n < v

U7(1) T(1) T (1) J(1)’

we see that

I x1I

(TerBy(gy) € [Ug(1)/V5(1) J(1)"

Recalling (3.15), we obtain (3.7) and (3.8). (3.9) follows by

(3.2), (3.14) and the fact that ¢(S'(1l)) <r < T(l) +n.
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(® Proof of (3.6) and of (3.7)-(3.9) for n=1, on C 0 C"(1):

Fix a point in Cn C"(l). If K' =1, then

S' (1) < v Ty < T(1) +n. Thus (3.6) follows by (3.14) and

J(1) " To
(3.15). Further (breaking things up into the two cases; that
Ty +A'(S'(1)-) belongs to (TO-i-A(T(.l)—)—(S,TO+A(T(l)—)] or

(T +A(T(1)-),v we have by (3.1) that

J(l)])

(3.16) |A(T(L)+n) -a' (T(L)+m) | < n.

Likewise, if K' = 0, (3.16) still holds and also
T(2) AS'(1) > T(1) +n. Thus (3.16) holds on all of C nc"(y),

and irrespective of K!',
S(K'+1l) =inf{t >T(1l)+n; (1y +A' (T(l)+n)+t—T(l)—n,B¢(t)) € Gl.
Thus as in @,
9(S'(K'+1)) =inf{r > ¢ (T(1)+n); (1o +A' (T(1)+n)+£-T (1) -n,B_)
EVG for some t with ¢(t) =r}.

We conclude as in C) that T(2) < ¢(S'(XK'+1l)), now using the

inequality
| (A" (T(1)+n)+t) ~ (A(T(L)+n)+x) | <n+6 < 2n,

instead of (3.11).
On CnNn C"(1) N C'(2) we may now proceed as in C).
On Cn C"(1) N C"(2) we may do likewise, the only modifications

being that instead of (3.12) we use that
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[To + A (B(T(2)-) =) = (uy 5 = 2m) |

|Tg + AT (T(1)+n) +$(T(2))-T(1) - n
~(Tg +A(T(1)+n) +T(2)-T(1) - n) |

and that instead of (3.14), we have that

|S(K+1) - S' (K'+1) |
=|Tu)+n+uJQ)—AmCU+n)
“(T(L) +n+uy e,y =A(T(1) +n)) |

< n.

Thus by induction, we have shown (3.6)-(3.9) on C, for

n=1.m.

(® Proof of (3.10):
Fix a point of C. Let t0 = 0, and for n > 1 set
tn = VJ(n)"TO if T(n) < « (and tn = o otherwise). If

n >0 1is such that [t .t is a finite interval, then

n+l)
conditions (3.1), (3.2), (3.4), (3.6), and (3.8) show that there

are t,t' € [tn,t such that A and A' are linear (with

n+l]

unit slope) on [tn,t) and [tn,t') respectively, and then

are constant on the remainder of [tn,t (Note that for

n+l) .

n =0 in particular, we may have that t,t' = tn or tn+l)'

Similarly, if tn < ® = ¢ then both A and A' are linear

n+l’

on [tn'tn+1)’ with unit slope. Thus we will have that

[ﬁ(r)-—ﬁ'(r)l < € for every r, provided only that this holds
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for finite r of the form tn. This in turn follows from

(3.1), (3.6) and (3.9) (for example, if n > 1 then

lA(VJ(L+n5-TO)'-A|(VJ(L+n)_T0)I = lS(K+n)-—S'(K'+n)|

< n < ¢

showing (3.10), and hence the Lemma. [}
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