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HAsymptotic Optimality for Cp, Cp» Cross-validation

and Generalized Cross-validation: Discrete Index Set

KER-CHAU LI

Abstract. Data-driven techniques of selecting a good estimate from a

proposed class of linear estimates f{i(h), h € H are studied. Here

nl
i(h) takes the form M(h)y with y being the vector of n independent

observations whose mean value y =.(u1,..r,un)' is to be estimated.

Many selection procedures have been proposed inecluding Mallows' Cp, CL’
cross-validation and generalized cross—-validation. Let M denote the

h selected by any of these procedures. Under certain reasonable condi-

tions, it is shown that

n'y - 5| |#inftn7 [y - 5(n)||%:h € H} - 1

in probability. The applications in nearest neighbor nonparametric

regression and model-selection are discussed.

1. INTRODUCTION

Let y = (y{,¥5,+-+4¥,)" De a vector of n independent observa-
“n

tions with unknown means Hiy Hoy eeey Hpe Write



Yi=u *e, 1=1,2, .ccpm, (1.1)
and assume that the random errors e; are identically distributed with
mean 0 and variance cz. Suppose that to estimate p = (u1,u2,...,un)',

-~

n

a class of linear estimators {i (h) = Mn(h)y»' indexed by h € H,, 1is
“n “n

proposed. Here M (h) is ann x n matrix and H, is just an index
set. After observing y;'s, our concern is to select an i from H,

so that the average squared error L (f) = n'1||u -q (ﬁ)||2 may be as
n “n

small as possible (|| * || denotes the Euclidean norm). The following

are three well-known procedures of selection.

(i) Mallows' C;, (Mallows 1973): select R, denoted by fiy, that

achieves

1

min n-1|[y‘ - i (h)||2 + 26%n” " tr M (h).
J ~n _

h€H n
n
(ii) Generalized cross-validation (Craven and Wahba 1979): select A,

denoted by f,, that achieves

a7y - am]|?
n

min 1 >
hGHn (1 - n tr Mn(h))

(iii) Cross-validation (Allen 1974, Stone 1974, Geisser 1975, Wahba and
Wold 1975): select H, denoted by ﬁc, that minimized the sum

of squared prediction errors for Yy with Yi itself being



excluded from the data set. A rigorous definition of this pro-
cedure requires the specification of estimators (or predictors)
to be used when sample size is n - 1. Suppose given

Y15 Yoo ceer Yi=1s Yi+1» "f’yn' we want to predict Yi by

E?=1 ﬁij(h)yj with ﬁii(h) being zero. Then ﬁc achieves

. 2
min y - H_(h)y
heHn ll‘n n ”nll '

where M (h) is an n x n matrix with mij(h) as the ijth

entry.

In defining CL' we assume that 02 is known. If 02 is unknown,
the stability of its estimate may play an influential role in the selec-
tion. GCV and CV do not depend on 02; this seems to be a\éreat advan-
tage. The goal of this paper is to demonstrate that under reasonable

conditions, these procedures are asymptotically optimal (A.0O. hereafter)

in the sense that

Ly ()

inf Ln(h)
hSHn

-> 1, (1.2)

in probability. Thus using these procedures, statisticians may do as

well as if they knew the true y . We shall consider only the case that

n

the cardinality of H, is finite. The continuous case, particularly

the ridge regression setting will be treated in a forthcoming paper.



Consider the expected average squared error Rn(h) = ELn(h)'

h € Hn’ Among the conditions to be imposed in order to derive the

desired results, the following one is most crucial

Y (an(h))-m -> «, for some natural number m. (A.1)

h€H
n

Sometimes (A.1) may be implied by the weaker condition:

inf nR (h) = =, (1.3)
heH

which means that the optimal convergent rate, when y is known, is

n

slower that n~!. It seems that without (1.3) we cannot find any selec-

tion procedure A to satisfy (1.2); otherwise the resulted estimate of

u would have unattainably small error.

n

As prime examples to demonstrate the application of our general

results we shall treat the following two special settings in details:

Example 1. Model selection: Suppose associated with yi there are

Pn explanatory variables Xi1s Xio» xipn, arranged in the decreasing

order of importance. Take Hn = {1,2,...,pn}. To estimate w , one
“n

may employ the first h variables to form a linear model

Yy = Z?=1 xijsj + e; with unknown parameters 8 j=1, ..., h and

jl
then use the least squares estimator {i(h) = xh(x'hxh)-1X‘hy , Where Xh
- “n



is the h x h design matrix (xij)‘ Assume that the information matrix
is non-singular. Now, M (h) = xh(xh'xh)'1xh is a projection matrix of

rank h. CL procedure reduces to the more famous Cp

criterion which

select A that minimizes

min ||y - ﬁ(h)||2 + 2¢°n.
he&H “n -
n
Later in Section 2 we shall show that (1.3) implies (A.1) for m = 2. ﬁM
and ﬁG are both A.0. In view of the relationship between ﬁc and ﬁG,
there seems no guarantee that ﬁc will be A.0. unless the diagonal
elements of M (h) are nearly equal to each other, in which case Ao
is almost the same as ﬁG‘ The assumption (1.3) seems quite reasonable

if p,, the number of explanatory variables, grows as the sample size

increases. For instance, in the problem of selecting the suitable
degree of a polynomial.to fit a response curve, (1.3) will hold when the

true regression function is not a polynomial (Shibata 1981).

Shibata (1981) demonstrated the A.0. property of a related selec-
tion procedure, Final Prediction Error (FPE) criterion, which selects A

by minimizing n-1||y - ﬁ(h)||2(n + 2h), under the normality assump-
i, -

tion of e,, (1.3), and the rank of the largest model considered

P. = o(n). The last condition makes his selection procedure not com-

n

pletely data-driven because it is hard to judge when P, will be small
enough compared with n. It was also claimed that Cp and FPE are

asymptotically equivalent. But apparently without the assumption that



P, = o(n) this can be false; for example if P, = n, then FPE always

n

Qur results (both C_. and GCV) do not require this

selects A = p_,
; n p

assumption.

Breiman and Freedman (1983) studied another procedure, Sp,
firstly proposed by Hocking (1976), then explored by Thompson (1978),

which selects A by minimizing (n - 1)||y - ﬁ(h)||2/(n -h({n-h-1).

Obviously Sp is almost identical to GCV for large n. Under a regres-

sion model with infinitely many non-zero parameters, Breiman and Freed-

man showed that Sp‘ is A.0., under the conditions that all explanatory

variables and random errors are jointly normal and that

Hn = {1,...,n/2}. The first condition excludes many interesting appli-

cations; for instance, fitting a response curve by polynomials.

Example 2. Nearest neighbor nonparametric regression (Stone 1977):

Let p Dbe a natural number and X be the compact closure of an open
connected set in RP. Suppose Yys» Y24 eeey ¥, are observed at distinct

levels x , x, ..., x , which become dense in X uniformly as n = =,

1 2 n .
Assume that ¥; = f(x ) for an unknown continuous function f on X.
i
Let x denote the jth nearest neighbor of x in the sense that
“i(J) ~i
Hx - x || is the jth smallest number among the n values

i 7i(g)

[lx - x |}, i* =1, 2, ..., n. Ties may be broken in any systematic
= g

manner. Take H, = {1,2,...,n}. For any h € H,, let {i (n) be the
“n

h-nearest neighbor estimate of y , with the ith coordinate given by

n



Z?=1 wn,h(j)yi(j) for some nonnegative weight function wn,h( * ) such

that

a2

“n,n{1) =1 | (1.4)
and
Wa,nli) 2wy (i +1) for any i, 1 £1ish-1. (1.5)

Under these and some other conditions, we shall demonstrate that

ﬁM- fig and A are A.0., if

lim [ inf an(h)]/n”“"% ®, (1.6)
n=>* |h € Hy, |
L i

for some natural number m, which is a sufficient condition for (A.1).
In view of the results for the optimal convergent rates in nonparametric
regression (e.g., Stone 1982), (1.6) is quite natural although it is

slightly stronger than (1.3).

Section 2 establishes the asymptotic efficiency of ﬁM. Then these
results will be used to treat ﬁG in Section 3. The main idea involved
here is the notion of nil-trace linear estimates, firstly introduced by
Li (1983) to bring a connection between GCV and C,. This approach to
GCV though valid asymptotically may look shaky when the sample size is

not large. A better approach suggested by Li (1983) is by means of



Stein's estimates and Stein's unbiased risk estimates, Stein (1981). 1In
Section 4,we shall show that the G-cross-validated Stein estimate is
A.0. Finally, Section 5 is devoted to the study of Cross-validation
with special attention to the nearest neighbor nonparametric regression
whose consistency was established by Li (1984). All the proofs will be

given in Section 6.

To simplify the notation without ambiguity, we shall frequently

omit the subscript n.

2. Cb AND ch

Let e = (eq,e5,...5e,)" and A (h) = I - M (h) where I is the
- :

n x n identity matrix. The motivation of CL comes from the simple

identity that

iy - g ||? + 26%07" tr M (n)
n

=n'le [|2 + L (n) + 20" <e JAp(h)u > + 2n" (6% tr M_(n) - <e M. (h)e
“n “n “n “n -

Since n”'|e ||2 is independent of h, f, also minimizes
“n

(6% tr M (n) - <e ,My(h)e >)

L, () + 20 '<e ,A_(R)p > + 2n°
- “n n n

n

over h € H . 1If we can show that n_1<e A (Ru > and
“n “n

n

>).



n"1(o? tr M (h) - <e ,M_(h)e >) are negligible compared with Lg(h)
“n “n

uniformly for any h € H , then (1.2) is established for f = Ay. In

other words it remains to show that in probability,

sup 0 '<e ,A (h)p >/R (h) = 0 (2.1)
h €H “n “n
n
sup n 1|°2 tr M (h) - <e M,(h)e >|/Rn(h) =0 (2.2)
heH “n “n
n
and
sup L.(h)/R.(h) - 1] = 0. (2.3)
heH Iy n |

Some assumptions will be made to establish (2.1) ~ (2.3). Specifi-

cally, we have

Theorem 2.1. Assume that (A.1) and the following conditions hold:
4m
Ee1 < =, (A.2)

Iim  sup A(M,(h)) < =, (4.3)
n->®=hec Hn

where A(Mn(h)) denotes the maximum singular value of M (h). Then fy

is asymptotically optimal.

(A.2) might be weakened at the expense of introducing more compli-



cated proofs. (A.3) is usually satisfied unless the class of estimators

i(n),h € H,, is poorly motivated. In fact, if MM (h)) > 1 then fi(h)

is inadmissible and other better linear estimators can be easily con-

structed to replace {i(h). We now turn to the application of this

theoren.

Consider the model selection of Example 1. (A.3) holds obviously

because Mn(h) is a projection matrix. To see that (1.3) implies (A.1)

with m = 2, observe that

nR (h) = [|A,(h)yl |2 + ho? 2 ho?.

Hence for any fixed natural number k

k
I (R (n)72 s th (R (n))2 +o¢" § h2

h € H
n

Sk [ inf an(n)] LIS B N
lh € H, k

Now by (1.3), we can chose k => » slowly enough so that
k(inf an(h))'2 => 0. This proves (A.1). We summarize the result by

the following.

Corollary_g,l: For the model-selection setting of Example, Cp is

- 10 -



A.0., if (1.3) and (A.2) with m = 2 are satisfied.

2

Note that if ¢ is replaced by a consistent estimate then the

above corollary also.holds.

Next consider the nearest neighbor nonparametric regression problem
of Example 2. Under (1.4) and (1.5), (A.3) follows from Lemma 4.1 of Li

(1983). Now we have the following desired result.

Corollary 2.2: For the nearest neighbor nonparametric regression

problem of Example 2, ﬁM is A.0., if (1.6) and (A.2) hold.

3. GENERALIZED CROSS—-VALIDATION

A simple way to derive GCV is by means of nil-trace linear esti-

mates (N.T.L.E.) u(h) =¥ (h)y where

n

M (h) = —a (WI + (1 + o (h)IM () with a (h) = tr M (h)/tr A (h).
Clearly the trace of M;l(h) is zero and when applying C, to the new

class of estimates {u(h): h € H'} we end up with GCV. The asymptotic
justification of replacing f{i(h) by wu(h) was given in Li (1983),
Theorem 2.1. The following version of this theorem is more appropriate

for further development.

Theorem 3.1. For any sequence of random variables ﬁn' taking

values in Hn, such that

.—11_



lim p{ln-1 tr An(ﬁn)| >§8} =1, for some § > 0 (3.1)

n—> e
and
lim (a7 troM A3/ e M o(A M (A) = 0. (3.2)
n—>e
We have
nH TR - fa)||2/R () > o. (3.3)

This theorem shows that under (3.1) and (3.2), N.T.L.E., E(ﬁn), is
a good approximation to the original estimate ﬁ(ﬁn), Put

Mn_(ﬁn) = (aij')i,j=1,.-,..,n° Clearly

(n~1 ¢p Mn(ﬁ'))z' =L

e~
1]
[ TAY

=077 tr M (RN ().

(3.2) amounts to saying that the weight a,.

ii of ¥i for estimating its

own mean ui should be small. This seems to be a prerequisite for con-
sistency. For most settings (3.1) is weaker than (3.2). Therefore it

is natural tq anticipate that the AfO. property of ﬁG may follow from
the result of Section 2 when applied to the class of N.T.L.E. Specifi-

cally we have

- 12 -



Theorem 3.2. Assume that (A.1) ~ (A.3) and the following condi-

tions ho;d:

inf  L_(h) = 0; (A.4)
h €H
n
for any sequence. {hn € Hy} such that (4.5)

n~! e Mn(hn)M'n(hn) - 0

-1 2,.~1
we have (n ' tr Mn(hn)) /n ' tr Mrl (hn)M'n(hn) - 0;

sup n-1 tr M (h) Y, for some 1> Y, > 0; (A.6)
hed
n
o Sue (n”! tr Mn(h))z/n'1 tr M (M, (h) €Y, : © (AT
n

for some 1 > Y2 > 0.
Then R, is A.O.

(A.4) claims only the existence of a consistent selection procedure

when ;  is known. Since the risk of i(h), R,(h), is no less than

n

its variance o2 tr M (h)M' (h), (A.5) implies that the good candidates

(in terms of having small risks) in Hn’ put a small weight on Yi for

estimating its own expectation M.

Now consider the model selection problem. Since

tr M (h) = tr M (h)M' (h) = h, (A.5) is obviously satisfied. However

-13-.



(A.6) and (A.7) require that the largest model has rank P, £ nY for

some O § Y < 1. But this constraint can be easily removed by the fol-

lowing arguments.

First let h” be the minimizer of  inf L,(h). (2.3), which fol-
heH

. n
lows from (A.1) = (A.3), implies that Rn(h*) — 0 because of (A.4).
From this it follows that h'n~! = 0. Therefore denoting

H' = H, [l th: h S nY}, we see that the minimum loss does not increase

for the restricted class H'n; i.e., infy ¢ Hn Ln(h) = inf, ¢ H'n Ln(h)

except for a small probability that tends to 0 as n - «., On the other

hand, Li (1983) proved that i(A;) 1is consistent providing that the

following addition condition on the random errors hold:

there exists a constant k' so that for any a 2 0, (3.4)

sup P{k -ad<e Sx+ a} £ k'a.
X €R

(A.8) is satisfied if €; has a bounded density. Using this result and

the arguments for h* before, we see that ﬁGn'1 —=> 0. Thus asymptoti-

the model selected by GCV when the class of models con-

cally ﬁ'G
sidered is restricted to H',, will be the same as fi;, the model
selected from the entire class Hn. Therefore we see that it is not
necessary to have the condition P, € nY. The following theorem conveys

the result we have established.

Corollary 3.1: For the model selection problem of Example 1, HG

- 14 -



is A.0. if (1.3), (A.z) with m =2, (A.4) and (3.4) hold.

Next, turning to the nearest neighbor nonparametric problem,
..1 '
observ at n tr Mn(h) wn’h(1) and

n”! tr M (M’ (h) = S v (022w 207t - w 2. Thus
n n(h) = 121 a,n(1)5 2wy (1) a,p(1))%. Thu

it is clear that the following condition implies (A.5):

there exist fixed positive numbers A and AZ such that (3.5)

3
-(1/2+A2)
"n,h(1) < AMh for any n, h.

This condition was used in Li (1983) and can be easily satisfied by most
commonly used weights; for example, uniform weight, wn h(i) = h—1- In
addition, (A.6) is also a reasonable restriction on the weight functions

providing that Hn'=-{2,...,n} (note that GCV is undefined for h = 1

because ||y - ﬁn(1)|l2'= 0 and 1 - n~' tr M,(1) = 0.) It reduces to
n
the following condition:
sup w_ (1) £Y, for some Y 0< Y, <1. (3.6)
h=2,...,n n,h ! 1 !
Finally it is obvious that (3.5) and (3.6) imply (A.7). Therefore we

obtain the following desired result.

Corollary 3.2: Suppose that the weight functions satisfy the regu-
larity conditions of (1.4), (1.5), (3.5) and (3.6). Then HG is A.O.,

if (A.2), (A.4) and (1.6) hold and Hn = {2,...,n}.

-15_



k. STEIN ESTIMATES

The replacement of § (h) by u (h) does not seem appropriate if
“n “n

n”! tr M (h) is not negligible. This is a weak point for considering

u (h). A better viewpoint is by means of Stein estimates and the asso-
“n

ciated unbiased risk estimates, defined by

f

(h) =y - o tr A (n) * |8 (n)y|]72 * A (n)y
n

n n

L3 =]

and

SURE, (n) = ¢% - o'(tr A (n))2/n]|A_(wy]|?.

The original version of these quantities given in Stein (1981) was a
little complicated and only for a symmetric An(h). Stein estimates

possess the nice property that they dominate the raw data y as esti-

n

mates of under the normality of the error distribution and some mild

n

assumption about the largest characteristic root of An(h). Li and

Hwang (1984) studied the asymptotic behavior of {i (h) for the non-
“n

parametric regression problem. Basically { (n) and f (h) will be
“n “n

very close to each other providing that {i (h) is very close to the
“n
true value y , Hence using Stein estimates we do not lose any effi-
*n

ciency if it is the case that the corresponding linear estimate performs

- 16 -



well; if not, by the property of bounded risks, we still have some
guarantee that estimation error may not be as big as the linear ones

which usually have unbounded risks. This justifies the replacement of

fi(h) by § (h). Now it is easy to see the interesting result that the
- “n

natural way of selecting § (h), minimizing SURE (h), is exactly the
n

same as GCV. Li (1984) argued that SUREn(h), initially proposed as an

estimate of the risk of Stein estimate {i (h), indeed does more than
“n

anticipated: it is always a consistent estimate of the true loss

n-1|lg, - i (h)||2 although sometimes the true loss does not converge
n "n

(hence for this case SUREn(h) cannot be a consistent estimate of the

risk En"' ||y (n) - @ (h)}|2). In addition, the consistency is uniform
n n

for , € R™. The consistency of the G-cross-validated Stein estimate

n

ﬁ'(ﬁG) was also established there. The following theorem strengthens
“n

this result by proving the asymptotic efficiency of {i (ﬁG).
n
Theorem 4.1. Under the assumptions of Theorem 3.1, we have
“Tila 2, .
T E (Bg) - w [/ inf L (h) > 1
“n “n h €H

in probability.

As in Section 3, Theorem 4.1 applies to the model selection and

nearest neighbor nonparametric regression.

-17_



5. CROSS-VALIDATION.

Let ;®(h) denote the delete-one estimate of

s Mh(h)y . Intui-
n “n

tively u®(h) will be only slightly different from {(h) when the sam-

ple size is large. Since diagonal elements of Mn(h) are all zero now,

we see that C.V. is just the C,, applied to {uc(h). h € H}. Thus one

may use the results of Section 2 to establish the A.0. property of HC.
However a yigorous proof requires suitable conditions on Mn(h) to

ensure that the difference between fi(h) and u%(h),

n'1||ﬁ(h) - uc(h)llz, is negligible in comparison with the loss

n'1|[E‘ - g(n)][z. For the case of nearest neighbor nonparametric
n

regression we have the following theorem.
Theorem 5.1. Under the assumptions of Corollary 3.2, ﬁc is A.O.

For the model selection problem, we have not obtained any useful

general results yet. But observe that

- - n ' -
nHly - |2 = a7 PRSI R, ()20 = a2 (n)7?
n =

where ﬁni(h) is the ith coordinate of {i (h) and ani(h) is the ith
“n

diagonal element of M (h). Compared with G.C.V., it seems that if

a.(th, i=1, ..., n, are very close to each other, then C.V. and

ni(

G.C.V. may be almost equivalent. Hence the results of G.C.V. may be

- 18 -



used to justify C.V.

6. PROOFS

Proof of Theorem 2.1. We shall prove (2.1) first. Given any

§ > 0, by Chebychev inequality we have

P{ sup n-1|<e A (h)p >|/Rn(h) > 8}
“n “n

h €H
n

-2 | 2m
n mE<en,An(h)}_1n>

)
h € H szRn(h)Zm

$ ¢ - gem ) n_--2m . IIAh(h)E ||2m . Rn(h)-Zm'
n

h € Hn_

for some constant C > 0. Now since n-1||An(h)u ||2 $ R (h), the last
L

expression does not exceed C6-2m Y (an(n))_m, which tends to 0 by

n€H
n

(A.1). Thus (2.1) is proved. (2.2) can be established in a similar

manner by noting that

E(a® tr M_(n) - <§n,Mn(n)gn>)2m S C'(tr M_(n)M' (n))"

2. -1

for some C' > 0 and that ¢“n ' tr M (h)M' (h) S Rn(h). Finally it is

clear that (2.3) will follow from the following two statements:

- 19 -



sup 0 [<A (M)u M _(he >[/R (h) = 0 (6.1)
h € H n n

and

sup n | | M, (n)e ||2'— o2
H “n

n

tr M (n)M',(h) | /R (h) = 0. (6.2)

Since <An(h)Eh’Mn(h)gn> = <M'n(h)An(h)Bn,gn> and

||M'n(h)An(h)En||2 < A(Mn(h))zllAn(h)Enllz, the proof of (6.1) will be

the same as that of (2.1) in view of (A.3). Similarly, write

lIMn(h)g ||2'= <M' (h)M,(h)e ,e > and observe that
n n "n

tr(M' ()M (n))2 S A(M_(n))2 tr M'_(n)M_(h). We see that (6.2) can be

proved exactly as (2.2). This completes the proof of Theorem 2.1.

Proof of Theorem 3.1. Similar to the proof of Theorem 2.1, Li

(1983).

Proof of Theorem 3.2. Put L (nh) = n” ||t - U[IZ and

B (n) = EL(h). A simple computation leads to

tr M (WM (R) = 7' (Er M (h))°
tr M (M (h)' = = ’
(n~! ¢r An(h))2

_20_



| [a, (M| 12+ tr M (n)M' (h) - n”' (tr Mn(h))z

nR_(h) = . (6.3)
0 (n”! tr An(h))2

Now by (A.6) and (A.7) it is easy to check that (A.1) and (A.3) hold

when R (n) and M (h) are replaced by R (h) and M (h) respectively.

Hence from Theorem 2.1 we see that

C (f.)/ inf L.(h) —> 1. (6.4)
n**'G he Hn n

In fact, the follo&ing analogue of (2.3) also holds:

L.(h)/R.(h) - 1] = oO. (2.3")
hsélpﬂn Ly n | .

Let hy, ve the minimizer of Lp(h) over h € H . From (6.4) it is
clear that (1.2) will hold for A = ﬁG if we can verify that

L (he)/L (hy) = 1 (6.5)
and

Un(ﬁc)/Ln(ﬁG) -> 1. (6.6)

Theorem 3.1 can be used to prove (6.5) and (6.6). To see this, first
observe that (3.1) always holds because of (A.6). Next, from (2.3) and
(A.4), it follows that n"1 tr Mn(h*)Mn(h*)' —> 0. Hence by (A.S),

(3.2) holds for A = hy. Theorem 3.1 applies for Ay = hy. (6.5) fol-

- 21 -



lows as a simple consequence of (3.3) and (2.3). Similarly, (6.6) will
hold if we can show that n" ! tp Mn(ﬁG)Mn(ﬁG)' -> 0. Now by (56.5) and
(A.4) we see that Eh(h*) - 0, which implies Eh(ﬁc) - 0 because of
(6.4). Finally from (2.3') we conclude that Rh(ﬁG) —> 0 which in turn
-1

implies n ° tr Mh(ﬁG)HTﬁ(ﬁG) —> 0 as desired. This completes the proof

of Theorem 3.2.

a
Proof of Theorem i l By Theorem 3.2 it suffices to show that
n g (B - & (Bg)||3/Ly(8g) = o. (6.7)
n n

First observe that

2
fn 162 4 4 (B

l 1A, (Rg)y | |®

nT|E (B - B (B2 = sl B PSS YT
n n ]
= [n7e® - a7 ]e |19 - L (Ay) - 207 e ,u - G(AG)>

-1 -1
- n71a? tr M _(Ag)1%/n7 |18 (Ay|]?
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and that
nH A B2 =0 e + (- G(BN[|Z > o
n n

because of the consistency of é(ﬁc). Therefore to prove (6.7) it is

enough to verify

(n"1g2 - n“‘||§n||2)2/Ln(ﬁG) -0 (6.8)
(n"T<e Ly - §(B)>)2/L (Rg) > 0 (6.9)
n
and
-1 2
(n™' tr M. (Rg)) /L (Rg) = o. (6.10)

Now (1.3), which is weaker than (A.1), and (2.3) imply that

nLn(ﬁG) —> =, Thus (6.8) follows frém the central limit theorem. Next
as was proved in the proof of Theorem 3.2, (3.2) holds for ﬁn = ﬁG'
This together with (2.3) implies (6.10). Finally to prove (6.9), it

suffices to show

(n-1<§n,An(ﬁG)Bn>)2/Rn(ﬁG) - 0 (6.11)
and

(n7'<e ,Mn(ﬁc)gn>)2/Rn(ﬁG) - 0. (6.12)

n
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It is not difficult to see that (6.11) follows from (2.1) and that
(6.12) fo;low5'from (2.2), (6.10) and (2.3). This completes the proof "
of Theorem 4.1,

Proof of Theorem 5.1. Let L (h) = n '[|y - u&(n)||2 and
4o~ M

Rn(h) = EC,(h). The following useful statement will be proved late:

if h —> » then Rp(hy)/Rp(hy) = 1. (6.13)

First Theorem 2.1 can be used to show that
C (Ax)/ inf L.(h) = 1 (6.14)
T hen ™ ’

and

 Sup o, (n)/R (n) - 1] =0, (6.15)
n _

providing that (1.6) and (A.3) also hold when R,(h) and M,(h) are
replaced by R,(h) and M,(h) respectively. Denote the minimizers of
inf R, (h) and inf R (h) by hy and My respectively. Now from (A.4)
and (2.3), we see that hy, — = and Rh(hg) —> 0. Thus from (6.13) it
follows that R (Ag) => 0, which clearly implies Ay —> 0. By (6.13)
again we see that Rn(h*)/Rn(h*) —> 1, Therefore (1.6) also holds when
Rn(h) is replaced by R, (h). On the other hand the arguments in the
proof of Lemma 4.1 of Li (1983) can be used to show that (A.3) also

holds with M (h) replaced by M,(h). Now by (6.14), (6.15) and (2.3),
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it is enough to show that R (f.)/R,(R;) —> 1. This again will follow
from (6.13) providing that A, - =. Finally, from (6.14) and (6.15) it
follows that R, (fi;) —> 0, which clearly implies Az ~> = as desired.

This completes the proof of Thecorem 5.1.

Proof of (6.13). Let f_= sup f(x). By the definition of

X € X
M. (h),
-1 > 10 fn . .
no M) e [T =g DL G (@) -y (3 - OEx )
n i=1 Lj=2 ' ' i(3)
2
+ W (1) (x ) - w (h)f(x )
n,h ~i(3) n,h ~i(h+1) ]
2
- h 5
S I G (1) =Wy () + Wy (1) * W () £
j=2> ’ ) ] y
s (122,

where the first inequality follows from (1.5). Now compare

2

"

R, (n) = n'| lgn - B ()| 12+ a wn,h(i)2 with

i=1

2 W h(1)2. We see that

T

BT D

Ryt = n ']y - My(mpf]® + o
b ¢ .

h
Rn(h)/Rn(h) - 1 if wn,h(1)2/i§1 wn,h(i)z -> 0, or, due to (3.5) and
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the fact that 2?=1‘wn,h(i)2 2h”!, if h = =, This completes the proof

of (6.13).
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