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A Generalization of Autocorrelation and
Partial Autocorrelation Functions Useful for
Identification of ARMA(p,q) Processes

1. Introduction.
For identification of the order of moving average process-ﬁ; autoregressive
process the autocorrelation function Py and the partial autocorrelation function

p'k have been successfully used (see Box and Jenkins, 1976). For general mixed

ARMA(p,q) processes. neither the autocorrelation function P, hor the partial

autocorrelation function pé show a simple behavior which 1eads'tg,a simple and

useful procedure of determining the orders p and q. o

-

In this article we propose a new definition-ef. generalized aQtocorre]atiOn

function p(k,2) (k > 0, 2 > 0) with the following properties.

(P1) ol2) =p,,  2>1,
(P2) (k1) = pls - k21,
(P3) -1 <olkse) < 1,

(P4) ~ For an ARMA(p,q) process -

o(ks2) =0 if k>pandg>q. .

R

The first property (P1) says that when o(k,2)'s are arranged in a two dimensional
array, then the first row coincides with autocorrelation coefficients. Simi]arIy
(P2) says that the first column coincides with partial autocorrelation coefficients.
o(k,2) is in fact a correlation coefficient between certain randpm variables
and this is reflected in (P3). (P4) is the main property-of-tﬁéi%roposed

procedure that makes it useful for the identification of ARMA(p,q) p;ocesses.



Recently several generalizations of autocorrelation and partial autocorrelation
functions have been proposed for the purpose of identification of ARMA(p,q)
- processes. They include R- and S-arrays of Gray, Kelley, and McIntire (1978);
"GPACF" (Generalized Partial AutoCorrelation Function) discussed in Woodward
and Gray (1981) Tiao and Box (1981), and Jenkins and Alavi (1551); Cofner Method
of Beguin, Gourieroux, and Monfort (1980); ESACF (Extended-Samb1e AutoCorrelation
Function) of»T;ay and Tiao (1984); SCAN (Smallest CANonical correlation) of Tsay -
“and Tiao (]983).Thé Lésic ideas underlying these procedures are quite similar.
Some differences between these procedures are discussed 1n¢TsayTénd Tiao (1983) and
Tsay and Tiao (1984). ESACF ahd SCAN of Téay and Tiao Seeéltg'be more sophisticated |
among these procedures. The major advantage o;\ESACF and SCAN is that they can ‘
handle nonstationarity (unit roots) in"autoregressive part directly. The
procedure proposed below is restricted to stationary ARMA précesses. Onrthe
other hand the proposed procedure has the following attractive properties:
~a) it contains autocorrelation and partial autocorrelation coefficients as
special cases, b) simple asymptotic theory generalizing the usual asymptotic
theory for autocorrelation and partial autocorrelation coefficients, c) quick
computatign by recursiVe formulae generalizing-the Durbin-Levinson,%Eéursive
method (Durbin (1960), Levinson (1946)). Because of these propertiés, the
proposed procedure seems to be a natural generalization of autocorrelation
and partial autocorrelation functions. It is also an efaboration of ideas 'in
Section 5 of Bartlett and Diananda (1950).

In Section 2 the definition of the generalized autocoreeia@jon function
is given and then the properties (P1) - (P4) are proved. In SeZtion>3 the
asymptotic distribution of the sample generalized autocorrelation function is

studied. Theorem 3.2 unifies and generalizes the well known results on the



asymptotic distributions of sample autocorrelation coefficients rk’(k?> q)

for MA(q) processes and the sample partial autocorrelation coefficients ré

(k > p) for AR(p) processes. In Section 4 recursive formulae for computing

o(k,2) are given. This recursive procedure is straightforward generalization

of the well known recursive procedure of obtaining partial autocorrelation
coefficients (Durbin (1960), Levinson (1946)). 1In Section 5 some simulation
results are g1ven to 111ustrate the behavior of the proposed procedure.

Throughoyt th1s art1c1e we mean by ARMA(p,q) process the time series Xi

generated by
-

s

or

B(L)xt = a(L)vt s

where By = g = 1, L is the lag operator, B(L) = 1+B]L+;..+Bpr, a(L) =

]+a]L+...+aqu, and Vi is the white noise term with EVE =>051‘ Futthé?ﬁgre

for regularity we assume that the roots of the polynomial equation B(L) =0
lie outside the unit circle and vt's are independently and identically distributed.

We will not repeat these assumptions later.

—

2. Definition and Some Properties of the Genera11zed .
Autocorrelation Function. - =

=

Let o(k) denote the autocovariance function of a second-order stationary
sequence. For k > 0 Tet g(2,k) = (o(2), o(2+1),...,0(24k-1))", and g(2,-k) =
(o(2),0(2-1),...,0(2-k+1))". Let 2(2 k) denote a kxk (nonsymmetric) Toeplitz



matrix with o(2) on the main diagonal, i.e.,

o(2)  o(et1) ... o(gtk-1)
o(e-1) a(2) eee  o(2+k-2) -
2(2,k) = . ) )

o(2-k+1)  o(2-k+2) ... o(2)
Now we give the definition of a generalized autocorrelation function.

Definition. Let k > 0, £ > 0. A generalized autocorrelation function p(-,-)

)

is’ defined as

o(kt1,241) = [o(keat1) - g(e+1,k) 5 (2,k) Tg(kt2,-K)]
/L0(0)-29(1,k) '£(2,k) 1o (2+1,k) (2.2)
+o(941,K) ' (2,K) T 5 (0,005 (2,k) g (2+1,K) ]
if [z(2,k)| # 0, |
=0 if [g(e.k)] = 0. e

When k = 0 terms involving g(z,o) are taken to be zero since they are

zero-dimensional. Hence p(],£+])=0(2+])/0(0)=p£+]. It is also easy to check

—

that when ¢=0 then p(k+1,1) coincides with the partial autocorrelation function

EYaY

.p&+]. The properties (P1), (P2) are verified. -
We now discuss the motivation for the above definition and then prove the

properties (P3) and (P4). For a set of arbitrary numbers b]""’bk’ (bos1), let



k
Y=Y =} b.x .= b(L)xt, . (2.3)

where L is the lag operator and b{(L) = 1+b]L+...+bkL . Let P = L_] be

the forward shift operator and let

K

teaek-1 = L PiXeogokoted (2.4)

2= Ty gg-1 = DIP)X

Note that Z is:definéd-in terms qf the reversed process, x The time

-t
reversibility of the covariance structure of stationary sequence.ﬁé essential

_ A . i
in considering Z. Now consider the correlation coefficient b&tween Y and Z:

Cor(Y,Z). By the time reversibility of the proce;ENWe have

L
s

Var(Y) Var(Z)

R'Z(0-k+Db
= (04257 )1k i1 R(0KIg ) (2.5)
K

) bib.o(i-j),
ig=0 "9

where b = (l,b],...,bk) and Q(]) = (b],...,bk) . Note that Var(Y) can be
written as b(P)b(L)o(0) where P, L are now operating on the argument i of o(1i).
(See the notation Hi in Bartlett and Diananda, 1950). The covariance between

Y and Z is given by

—

MJJI'

T ‘

Cov(Y,Z) = Q'§(2+1,k+1)
= c(z+k+1)+zgz])g(g+k,-k)+gz])£(z,k)§(]) - ‘(2;6)
k- '
= 3 b;b.o(a+k+1-1-J)
i,j=0 1

n

b(L)20 (2+k+1),



where Rv= (bk’bk-l"°"b0) and Q(]) = (bk""’bl) . In general we will place
a v over a vector to denote the vector with its elements in the reversed order,

for example, g(2+k,-k) = 5(2+1,k). Combining (2.5) and (2.6) we have Cor(Y,Z) =

o
b(L) %0 (k+2+1)/b(L)b(P)5(0). | T

Now we choose a partfcy]ar set of (by,...,b )" = R(7) defined by

I8

_--»;V(g,\k)'g(” = -g(2+1,k), (2.7)

2Q

or Q(]) = -g(z,k)'-]g(2+1,k) provided that g(z,k) is nonsinéy]ar; With this
~ choice of Q(]), Cor(Y,Z) reduces to the right hand side of (2;2)land this
proves the property (P3). Note that (2.7) can also be expressed as

-

F(2:k)byy = -glark,k). - (2.8)

It remains to show (P4). Note that (2.7) is the set of k Yule-Walker

equations for the following ARMA(k,%) process:
Yy = B(L)xt = a(L)vt,

where g(L) = 1 + B]L+...+3kLk, afL) =1+ a]L+...+a2L2,_gnd vi's are the white
noise terms. If %(z,k) is nonsingular then (2.7) gives the values of the
parameters By,...,8 . Now the smallest time index in a(L)v, is.t - g in % Vi_g
and the largest time index in Zy , , ; is t - 2 -1 in ByXt-g-1= Therefore

Y=Yoand Z =27, 1 are uncorrelated and o(k+1,2+1) = 0. Note that if
k > p, £ > q then an ARMA(p,q) process is a special case of ARMA(k,%) processes
having Bp+] = ... = Bk = 0 and %+ = ... =0, = 0. This proves the property



(P4) with the provision that p(k+1,2+1) = 0 if l%(z,k)l = 0. Now all properties
(P1)-(P4) have been verified. J

We have mathematically verified all properties (P1)4(P4), but the
motivation for defining p(k+1,2+1) = 0 when {%(z,k)l = 0 has tq-be discussed
more carefully for further developments in the next section. An 1mpor£ant
question is whether g(z,k) is nonsingular or singular when k >p, & >q for

an ARMA(p.,q) process. For an nxn matrix A let N(Q) denote the null space of

A and let v(é) be the nullity of A, namely

N _v(Q) = dim(N(A)) = nA—.rank (A). - ;"

By a nondegenerate ARMA(p,q) process we medan the process B(L)xt = a(L)vt,

where deg 8(L) = p,dega(L) = q, Bp # 0, and % # 0.

Proposition 2.1. Consider a nondegenerate ARMA(p,q) process. If k > P,

% > q, then-

v(%(%,k)) = m1'n(k—p,!&—‘q).~ o L e (2.9)

Tow e

Furthermore if v = v(z(2,k)) > 0, then a basis of N(z(2,k)') is given by
'I‘]'-l = (Boss1a~--aspso,---30)'s ,7\12 = (O:BO:’---sBpsoa---:,O)--,..., ‘Q\) = (0,...,0,

80,...,Bp,0,...,0) » where BO =] and Ry has first v-1 zero elements. Similarly

a basis of N(%(Z,k)) is given by Rys---sh, with their elements in the reversed

iy

order.

~

The proof of this proposition will be given in Appendix. Now consider

(2.7). ‘It has a specific solution p* = (B],...,Bp,o,...,o)'. A general

solution of (2.7) is then R(]) = (b],...,bk)' = qp* + =155 04 where Cysenesly



are arbitrary constants. With these bi's consider Y in (2.3) and Z {n (2.4);
We claim that Cov(Y,Z) = 0 and Var(Y) = Var(Z) is bounded away from zero, so
that Cor(Y,Z) = 0. By Proposition 2.1 we have s(2.K)n. = n'z(2,k) = 0,

hv vl nln, "\

i=1,...,v. Also by (2.8) we have plg(a+k,-k) =0, i = T,...,»" Using these

results in (2.6) we obtain

\

_ o Y
H S0 ‘COV(Y9Z) = 2 B.iB
. i,J=0

j0(2+k+1-i-j).

But this is zero by the same argument given above to prove the property (P4).

Furthermore Y = E:=0 bixt-i=B(L)Xt+2

Var(Y) 3_03 for all CpsennsC e This proves the above claim. In terms of

AY] - v .
i=]ciB(L)Xt:TZQ‘L)Vt+Zi=TCiu(k)Yt-i' Hence

generalized inverses we have proved the following:

Proposition 2.2. For an ARMA(p,q) process the first expression of (2.2) is
1

zero for all (k,2) such that k > p and ¢ > g, if g(ﬁ,k)' is taken as any
_géhera]ized inverse.

This proposition shows that it is Togically consistént to define o(k+1,241) = 0
if l%(z,k)] = 0. We will see.in the next section-that these~con§jdgf§tions are
essential for the discussion of sample generalized autocorrelation coefficients.

3. Asymptotic Distribution of Sample Generalized
Autocorrelation Coefficients.

In this section we discuss distributional properties of sample generalized
autocorrelation coefficients, In practical applications_samplegéutocoyariances,
8(2), ¢ =0,1,..., are computed from observed time series. The;; sgmble
autocovariances can now be substituted into (2.2). We call the resulting quantity

sample generalized autocorrelation coefficient and denote it by r(k+1,2+1). These

sample generalized autocorrelation coefficients can be arranged in a two-dimensional



T

table. If there is a pair (p,q) such that r(k,2)'s are close to zero tbr a]}
pairs (k,2) such that k > p and £ > g, then this indicates that the observed
time seriés comes from an ARMA(p,q) process.

Clearly we need to assess the sample variability of r(k,2)'s for judging
whether they are significantly different from zero or not. Suﬁﬁgse that an
observed time series X is a nondegenerate ARMA(p,q) process. The fb]]owing
question arises: Does r(k,2) tend to be small for (k,%) where k > p and
2 > q? The dttticuit}’here is that as a sample quantity the matrix é(z,k) is
nonsingular wtth probability one so that the first expression of- (2.2) is
atways uséd although the population matrix g(z,k) is singuldr. _Using Propdsition

2.1 we can show that r(k,2) tends to be small indeed.

Theorem 3.1. Let r(k+1,2+41) be the samBTé"Qenera]ized autocorrelation coefficient
obtained from an ARMA(p,q) process of length T. Then for k sz, L >q,

r(kH,e41) = 0, (T 12y, | i
Proof. We first note that the denominator of r(k+1, 2+1) stays bounded away from zZero
in probability. This can be shown as follows. As in (2.5) the -denominator is
of the form Q'%(O,k+1)g Where the first element of Q is equal to 1. Hence

||R||'3;] and this implies that the denominator is bounded f?bm‘b91o;~by the
smallest characteristic root of é(o,k+1). However the smallest charécteristic
root of é(o,k+1) converges in probability to the smallest characteristic root
of 2(0,k+1) which is positive because %(0,k+1) is positi;e definite., This shows.
that the denominator is boundedpéway from zero in étobability Therefore it

suff1ces to show that the numerator is of the order Op( ]/2) gﬁbte that

~

1l

Num = o(k+2+1)=g(4+1,k) "5 (2,k) T glk+,-k)

=g
4V
(

k A
(-1) ety z+1,k+1)/det%(2,k).
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Consider

Pr{]Num|<cT']/2}=Pr{T(v+])/ﬁdeté(2+1,k+1)l§pTv/2|det%(z,k)I},

where v = min(k-p,2-q).

Let the singular value decomposition of §(2+1,k+1) and %(z,k) be

X §(2+1,k+1) = g]ggz,
R1kRz> , .

z(2,k)

4

where g], QZ’ E], 52 are orthogonal matrices and R and E are diagonal matrices
with diagonal elements dij = 845 1=1,...,k+1, and e T g5 15150005k,

respectively. Here we specify

|v
\
(o]
v
(o]

= 6k-v+] =...=6k=6k+]’

\"
4
A\
o

ey > = Cpoyt] Tt TEe

) = gi é(l,k)gé. From the joint

Let D= (dij) = Qi %(2+1,k+1)gé and = (eij

asymptotic normality of sample covariances (see Sections 8.3 and 8.4 of

- y=1/2
e1j+0p(T o).

Anderson, 1971, for example) it follows that aij = dij + Op(T']/Z), éij

——

hence

]deté(z+1,k+])| = Idetél = Op(T-(v+])/2)’ )

TR

. . /2
|det(2.k)] = [detf| = 0, (T/2).
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Therefore

Tim Tim Pr{|Num| < cT™ / b= 1.

Croo T

This completes the proof. O
Note that when k > p or 2 > g the asymptotic distribution of the numerétor
of r(k+1,2+1) invo]yes,g’ratio of normalrrandom: variables. Thus we expect

to see a Cauchy-Tike behavior for the numerator of r(k+1 2+1).

1/2 r

When k =porg=gq,T k+1,2+1) has an asymptotic ngrma] d1str1but1on
with mean zero. The following result unifies and genera11zes the we]] known
results on autocorre]at1on coefficients of MA(q) processes and on part1a1

autocorrelation coeff1c1ents of AR(p) processes.

t = OL(L)\j/t.x

Let Yt = s(L)xt = a(L)vt and Tlet p¥ be the autocorrelation coefficients of

Theorem 3.2. Consider a nondegenerate ARMA(p,q) process: g(L)x

Y. For (k,2) such that k=p or z=q,T]/2r(k+1,z+]) are asymptotically jointly

normally distributed with mean zero. The asymptotic_covakiance between

71/2 ( 172

r(k+1,2+1) and T/ “r(k'+1,2'+1) is given by . . | T

S

W YY '
o ii_q P3P4-(k-k')-(2-2"). (3.1)

" For the proof the argument in Section 5.6 of Anderson (1971) can be

generalized in a straightforward way:

uJJi‘

Proof. The denominator of r(k+1,2+1) converges in probabi]ity to VAR(Y)
VAR(Z) = ZJ Oa for all k, 2 such that k = p or ¢ = g. Hence we only need

to consider the numerator.



Let

-1/2 =
T hk,g-(1/T

) T

Y.Z
tzl tot-k-g-1

T —
=(]/T)tZ]B(L)XtB(P)Xt-k—l-]

I
=(1/T)tZ]a(L)vtB(P)xt_k_z_]-

The right hand side is the same as the numerator of r(k+1,2+1) ékcept'for the
. £y -

adjustment of endpoints and that é],...,ép(,...,ék) are'repﬁ%qulby Byse--sB

(,O,...,O), hk . corresponds to hj in formula (27), Section 5.6 of Anderson

P

(1971). With the same argument as in Anderson (1971) hk l's can be shown to
have an asymptotic joint normal distribution with mean zero. Their asymptotic

covariances are given by lim-E(h, h , ). We evaluate this expected value
T k,2 k' ,2 ,

first. Consider

ECYVeZygep-1¥sZsok g1 21)

— .

=E{a (L)VtB (P)Xt_k_l_‘i O[(L)Vs‘B (P)XS_;(‘l _2'»'":“}*._” .

Note that the only nonzero contribution to the expectation comes from the term

where the same vt;i's are taken from both a(L)vt and a(L)vs. This term contributes

E(VE_E(B(P)Xy_y_, 18(P)x_yi_yip)

TR

%i%i-t+s

to the expectation. Let y¥ = E(Y = osfg;ATI ajaj+]il denote the

t¥e-i)
autocorvariances of Yt‘ "By the time reversibility of the process the second

expectation is the same astyi_k_2_5+k.+2. = E(B(L)xp_y_oB(L)X (v _o1).
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Now summing the terms involving v, .'s we obtain

t-i

R Y
E(Ytzt-k-z—1 Yoo grogiay) = Yt-sVt-k-g-s+k '+

Hence

Y Y
E(hk NS )= (]/T)t §=] Yt-sYt-k-g-stk'+p

Y Y
” ; TiTi-(k-k')-(2-2") -

b

Note that the last summation is only finite. Now using VAR(Yt) = VAR(Zt) =

Yg and p¥ = Yg/Yé we have

1}m E(hk PN +)/[VAR(Y)VAR(Z)] = ; p¥p¥-(k-k')-(£—2').

and this gives the asymptotic covariance.

1/2

It remains to verify that the difference between hk and T x_.(numerator

-1/2-

of r(k+1,2+1) converges to zero in probab111ty. Let hk g denote T'/% times

the numerator of r(k+1,2+1). Then (except for the adjustments of end points) we

have
A k G )] -
h, -h =T BiB:i=BiBilT } Xo sXy | o 1o
Koo k,2 i,§=0 [RRIRR AR CEIE 3 4 2 S SN R
k ; =
1/2

I T7%(8s-8; )BJT i kg 413 - (3.2)
1,J=0
k 1235 g )]

+
I~1

(6578307 33 kepa1-5°
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T ~ e
where a; . = Li=1 Xt_iX-j- Now 84 > 8 and (1/T)a, K2+~ + o(k+g+1-j-1)
in probability. Considering i = k, j = p in the first term and i = p, j =k

in the second term on the extreme right hand side and noting k+2+1-(k+p)

2+1-p > g+1-p we see that indices fall in the range where the Yute-Walker
equations hold. Hence we have

T8 ta 50, i=1,....k

j T2 J,k+e+1-3 > 2T

C-IM

Ll e |
—
I
—
-
"
=
-
I

T 3 ,keertog 7 0 = T -

in probability. Therefore the two terms on the extreme right haﬁdxside of
(3.2) converge to zero in probability and this completes the proof O

For a nondegenerate ARMA(p,q) process y¥ Cov(Yt,Y .) can be cons1stent1y
estimated by

AY ~ A~
vi = B'5(pH1)g
g

(i) - cy(q+1,lo) Z(q p) g(i-1,-p)
- g(i+1,p)'E(a,p)"” g(q+1,p)
+g(a+1,p) 2 (@:P) 7 F (1,005 (q,p) TG (aH LB, -

-1

(3.3)

Let r¥ = ;¥/;g, i=1,...,9. Then as a corollary to Theorem 3.2 we have

Coroilary 3.1. Suppose that xt,is a nondegenerate -ARMA(p,q) process. Then
T1/2

r{p+1,q+1)/[1+2 § (r Y)ZZI]/2 has an asymptotic standard normal distribution.
i=1 - -

Corollary 3.1 can be conveniently used as a test statistic for‘tﬁe null

hypothesis that an observed process is a nondegenerate ARMA(p,q) process.
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4. Recursive Formulae.

One advantage of our generalized autocorre]atipn function is that it
can be qu{ckly computed by recursive fofmu]ae presented below. It is a
straightforward generalization of the well known recursive procedure for
partial autocorrelation coefficients (Durbin (1960), Levinson (1946))-_,Starting
from (g+1)-st autocorrelation coefficient pq+]=p(],q+]), the formula gives .

a recursive relation for obtaining p(p+1,q+1) for successive values of p. For
g=0 it reducesjéo Durbin-Levinson procedure.

In this ééction the distinction between population quantitfés and sample
quaptities is not important. Hence we omit A although the;necurs1ve formulae
ar; used with sample quantities in practice. AlS6 we use p,q as genera] running
indices rather than true orders of AR and MA parts.

Let q>> 0 be fixed in the following discussion. We define p dimensiona]

vectors b( ), c(p) d( ,p), %(1;p) (i=0,...,q) as follows:

Definition:

2(g,p)'b(p) = -g(q+1,p)

z{q.p)'¢(p) = -g(q-p,p) o T )
d(isp) = z(i.p)b(p), 1 =0,....q,
e(isp) = z(iplelp)s 1 =0,....q.

Using these definitions, &, in (3.3) can be expressed as

T

\E ? (1)+b(p)' (i-1 -p)+0(1+1 p)'b(p)
+ g(1;p) Q(p), i=20,...,9.
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Then from (2.2) we have

p(p*1.9+1) = [o{p+q+1)+g(p+a,-p) 'b(p) I/v, .

7

Now we give the initial condition and updating formulae for Q(p), g(p)

d(isp), e(isp).

Initial condi}ion.

i=20,...,9. .
. -

Actually these are zero-dimensional and the condition is trivial.

~ -

Updating. Let -
3(1)(P+1) | g(])(i;p+1j 7
b(p+1) = . d(izp+1) = [ _ , 1=0,....q,
by 47 (P+1) dpyp (15p+1)

where bp+](p+1), dp+](1;p+1) are scalars and Q(])(p+1), g(])(i;?+1) are

p dimensional vectors. Let

e, (i;p+1)

¢y (pt1)
(i3p+1) =
wP o(2)

c(ptl) =
v i3p+1)

5(2)(p+1)
where c](p+1), e](i;p+1) are scalars and g(z)(p+1)“and g(z)(i;p+1) are p

dimensional vectors. Then

o

_ olgrprl) + g(a+p,-p) 'b(p)
Ppr (1) = - gy glgq+p,-p)c(p)

R(])(p+1) = b(p) + by (ptl)c(p)
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_o(a-p-1) + g(a-1,-p) ‘¢ (p)
R ! ) R G e M YR

B pr1) = ¢(p) + ¢, (p+1)R(P),

dpey (I'PH1) = by (p1)a(4) + g(i-p,p) 5 (ps1),

g (isp41)

4(15p) + b1 (p*1) [g(isp) + g(i+p,-p) ],

e;(i5p+1) = ¢ (p*1)o(i) + g(i+1,p)" g(z)(p+1), .

[, *

o B (13p41) = gi3p) + ¢, (p+1) [d(isp) + g(i-Ts-p) 1.

These formulae can be readily verified by writing (4.1) for p+1 in
appropriately partitioned form. When q = 0 g(p) equals Q(p) with its e]ehenté
'1n the reversed order. d(0sp) reduces to -g(1,p) and %(O;p) reduces to -é(],p),
Hence these need not be éa]cu]ated separately. However for gene(al q>0,
these quantities form essential working values and have to be stored in memory

for each updating step.

S w

5. Simulation Results.
Here we present some simulation results. An ARMA(],J) process
(B(L) = 1-.5L, a(L) = 1+L) and ARMA (3,3) process (8(L) = (1-.5L)(1+.5.2),
a(lL) = (1+.5L)(1+L2)) of Tength 200 were generated 100 times. ‘For each pair
(p,q) the null hypothesis HO: p(ptl, g+1) = 0 was tésted’us%né'd;}ollary 3.1
with asymptotic significance Tevel .1. The ehtries of the following tables
show how many times the null hypothesis was rejected out of 100 trials. In

Table 1 the asymptotic expected number of (2,2) element is 10 (in comparison
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to 8 which was actually observed). In Table 2 the same holds for (4,4)
element. The pattern implied by the property (P4) of o(k,2) in Section 1 can

be clearly seen in these tables.

Table 1

Xt .5xt_] = Vi + VioT
number of rejections out of 100 trials

g
"Moo 100 49 19 13 12 0 -9
100 8 8 3 5 6 44 7
100 6 6 3 2 2 0 .0
99 5 4 3 2 0 ] T
80 12 2 0 .0 1 1 0
65 6 4 0 1 0 1 1
50 9 2 1 1 1 0 0
37 3 2 2 0 0 0 0
Table 2
Xt"Sxt-1+'5xt-2-'25Xt-3=vt+'5vt-1+vt-2+'5Vt-3 - .
' number of rejections out of 100 trials )
p\d-
100 100 58 12 1 9 6 8
99 87 37 8 13 11 -5 7
36 10 65 7 14 2 2 0
1 54 0 8 0 0 3 1
79 3 1 2 0 1 I
26 a1 0 4 0 0 0o D
52 3 5 1 1 1 0 1 7
1 34 2 4 1 0 0 0
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Appendix.
Here we give a proof of Proposition 2.1. We consider several cases.

Case 1: k = p. )

—

For the case k = p, & = q, Anderson (1971, p.240) shows that I(q,p)' is
nonsingular. For the case ¢ > q, Anderson's argument can be modified in a
straightforward way _to show that %(Q,P)' is nonsingular. The essential condition

" for the proof of this case is that Bp # 0.

Case 2: k > p,2 = q. ' -

We shall show that z(q,k)' is nonsingular in this case. Thé essential
condition for this case will be the asampfion % # 0. We argue by induction.
First we show that %(q,p+1)' is nonsingular. Consider g(q,p+1)'% = 0. We
want to show that this implies £ = 0. In the partitioned form this can be

written as

(9-1,-p)* €1
. . . = ‘.'Q-, L “Nf* (A] )

ofq)

oM 2Q

glatl,p)

where £y is a scalar and %(2) is a p-dimensional column vector. From the second
set of equations we have

—

£(2) © -alg(q,p)"]g(qﬂ,p) = £81) . . = (A2)

n

where g(1) = (81,...,8p)'. Then the first equation recudes to
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P
0=t,0) olg-1)e,).
i=0
But
P ola-ile; = ElB(LIxIx, )
i20 i t" 7 t-q
= E{[Q(L)Vt]xt_q}
= o E{v, x ) =a 02.
q-""t-q"t-q qv
Hence 0 = g1aqo§. This implies £, = 0 and consequently g(;35= 9 ;nd £ =0.

This proves that %(q,p+1)' is nonsingular.

For induction suppose that %(q,j)' is nonsingular. We want to show that

%(q,j+1)'is nonsingular as well. The argument is the same as for the case
J

= p. The differences are that p is replaced by j in (A1) and E(]) is

replaced by (s],..o,s s0,..45)" in (A2).

P .
This proves that |2(a.k)'| # 0 for all k > p.

Case 3. k>p,e>q,andk -p<e-q. . e

e

We shall show that v(%(l,k)') = k-p and R12e e *Rkop given in Proposition
2.1 form a basis of N(z(e.k)").

The upper Teft pxp corner of Q(z,k)' is §(2,p)'. As we have already
shown %(z,p)' is nonsingular. ~Therefore rank (%(z,k)') > por v(%(z,kf) < k-p.
Now we want to show that vw(z(2,k)') > k-p. In order to show this it suffices
to check that Q]""’Qk—p given in Proposition 2.1 belong to N(E(Q:k)') because
they are clearly linearly independent and then V(E(z,k)') = dim N(E(z,k)') >
k-p. Note that in this case Rk-p = (0,...,0,30,...,3p) and the element at the

upper right corner of E(z,k)'is<x2—k+1). Now k-p < ¢ - g implies g-k+1 > g+1-p.
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This implies that indices fall in the range where thé Y&]e-Wa1ker equations ..
hold. Then %(z,k)'gi, i=1,...,k-p simply reduce to the Yule-Walker
equations and therefore 0 = %(l’k)lﬁi’ i=1,...,k-p. This proves that
v(z(2,k)")
N(Z(2,k)").

k-p. It has been also shown that R1oe- o Bkp form a basis of

Case 4. k>p, 2 >q,and k - p > 2 - q.

Let r 'ﬁ;2+k;"fThen r > p. The element at the upper right corner of

g(z,k)' is o(2-k+1). Now (&-k+1)+r-1=q. We see that the upper -right rxr

corner of %(z,k)' is %(q,r)'. We have already shown that gig,r)f is

o

nonsingular. Therefore rank (%(z,k)') > rank (%(q3h)') =r of‘v(é(z,k)')_i
2-q. Now we want to show that v(z(%,k)') > %-q. As in the previous case

it suffices toVShow that Rys--- Be]ong to N(%(l,k)'). In this case

S,ng_q
Rg-q has additional k-(v-1)-{p*+1) = k-p-(2-g) zeros at the end and the last
nonzero element of Re-q is the (2-g+p)-th (:%-q+p=v-1+p+1) element. Therefore

the last nonzero term in g(2,-k) Rg-q is 6pc(2—(2-q+p)+]) = 5pc€q+1-p)., We

see that again the indices fall in the range where the Yule Walker équations

hold and we obtain Q0 = z(2,k)'n
ny n N

5 i=1,...,2q. _This implies that.»(%(z,k)') =

w e

2-q and Nyoeee form a basis of N(%(Q,k)‘).

’Qz-q
ATl cases have been examined and this completes the proof. O
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