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Abstract

Let A° and B° be subsets of R". Necessary and sufficient conditions on
the pair (A°, B°) are found for the existence of an n-dimensional characteristic
function whose real part is zero precisely on A° aﬁd whose imaginary part is
zero precisely on B°. The necessary and sufficient ¢onditions continue to
apply if the characteristic function is required to be infinitely differentiable.
A corollary of the main result is the existence of infinitely differentiable

characteristic functions with compact support.
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1. Introduction and Summary

Let f: R L be the characteristic function of a probability distribution
on R". Let A+c: ]Rn be the set on which Re{f(.)} is strictly positive, and
let A" be the set on which Re{f(.)} is strictly negative. Let B' be the
set on which Im{f(.)} is strictly positive. What can we say about the sets
A+, A", and B'? Since f is continuous, A+, A", and B are open sets. Since
f(t) = T(-t) for all t € R", we have A" = -A", A" = -A", and B' n (-B") = p.
Clearly, A n A" =g. Finally, it follows from f(0) = 1 that 0 ¢ A" and
0¢s".

This paper will show that these obviously necessary conditions on the
triple (A+, A", B+) are also sufficient to insure the existence of an
n-dimensional characteristic function whose real part is positive precisely
on A+ and negative precisely on A, and whose imaginary part is positive
precisely on B+. Furthermore, this characteristic function may be taken to
be infinitely differentiable.

Let A° cR" be a closed set satisfying 0 ¢ A® and A° = -AC,

Let
B = R" be a closed set containing 0 whose complement (BO)C can be expressed
as (Bo)C = B+\J(-B+), where BY is an open set satisfying B n (—B+) =f. It
follows immediately from the main result that there exists an n-dimensional
C” characteristic function whose real part is zero precisely on A° and whose
imaginary part is zero precisely on B®. These sufficient conditions on A° and
B° are obviously necessary.

Examples of one-dimensional characteristic functions with compact support

are well known and are usually mentioned in graduate courses in probability -

theory. However, the usual examples, and all those obtainable from the famous



sufficient condition of Polya (see Theorem 6.5.3 of Chung (1974)) are not
differentiable at zero, and the authors are not aware of any previously
published examples of C” characteristic functions with compact support.

We now summarize the method of proof. Let f] and fz be one-dimensional
characteristic functions corresponding to strictly positive bounded densities
r and ro. Then the convolution f1*f2 (call it f*) is the Fourier transform
of the product riro- Since rirs is the density of a finite positive measure

with total mass f*(O), it follows that h defined by
* *
h(t) = £ (t)/f (0)

*
is the characteristic function of the probability density r]rz/f (0). Now
suppose further that f1 and f2 are real-valued, nonnegative Ck functions with
compact support, and that ry and ro, are unimodal densities. Then h will

2k function with compact support, and the corresponding

be a nonnegative C
probability density will be unimodal. Section 2 uses this trick (in a slightly
disguised form with the roles of characteristic function and probability
density being switched at first) to construct nonnegative, one-dimensional
characteristic functions 94 and 9o which are C* and positive precisely on
(-1,1). Furthermore, the corresponding densities py and p, are unimodal,

and the tails of py are thin compared to those of Py- Section 2 proceeds

by using 9 and 95 to construct n-dimensional characteristic functions 9.0

and 9 .n which are nonnegative, C , and positive precisely on the open unit
ball centered at the origin. The corresponding densities remain unimodal,

with p]’n having thinner tails than.pz’n. The main theorem is proved in

Section 2. A function f is obtained by adding C” perturbations defined in



terms of g]’n to the characteristic function gZ,n‘ The perturbations make the
real and imaginary parts of f positive and negative on the proper sets, and
they do not destroy the property of infinite differentiability. Finally,

the relative tail behavior of p],n and p2,n causes the Fourier transforms of
the perturbations to be uniformly small compared to p2,n (the Fourier transform
of gZ,n)’ so that the Fourier transform of f is everywhere positive. It
follows that f is the characteristic function of a probability density, and

this completes the proof of the theorem.

2. Construction of the Characteristic Functions 9N on and 9 n

For x ¢ R, x # 0, define

sin x)

_ 6
Y‘(X)—;-z-(]— X

Let r(0) = 1, so that r is continuous.

Lemma 1 The characteristic function of the probability density

(372) 1=t s v

Erggf: Direct calculation.

Lemma 2 The function r is unimodal and positive;

Proof: Since r is symmetric and since r(0) = 1 and 1im r(x) = 0, it will
X300

suffice to prove that the first derivative r'(.) has no zeroes for x ¢ (0,=).

But

r'(x) = --ﬁ% [(2+cos x)x - 3sin x],
X



so that it will suffice to prove that w(.) defined by

w(x) = (2+cos x) x - 3sin x

has no zeroes on (0,<). It is easy to see that w(x) is positive for

x > w. To take care of x € (0,n), note that

w'(x) =2 - 2cos x - x sin x
w'(x) = sin x - x cos X

w’{x) = x sin x

The third derivative w”(x) is positive for x € (O,w). Since wf(O) =
w'(0) = w(0) = 0, it follows that w(x) is positive for x € (O,w), and
we are done. .
Let X; X2,....be i.i.d. random variables with density (3/2)'{(1-|t|)+}2.

Define

w
1]
e~ 8

Xk/k and S, = Xk/k .

Let h] be the density of S1, and let h2 be the density of 52. Since

2k=1 2 n2/6, the density h] is positive precisely on the interval

-4 - w4/90, h, is positive precisely

(-n2/6,n2/6). Likewise, since 2E=] k
on (-1%/90,1%/90).
It follows from Lemma 1 that the characteristic functions of 51 and

52 are given by



i r(x/kz)

Gy (x)

and

I r(x/k
k=1

b,

dp(x)
respectively.

By the Fourier inversion theorem (see the corollary on page 155 of

Chung (1974)),

for j = 1,2. Setting t = 0 yields
2mh.(0) = | q.(x)dx.
J 2
Thus, 5j(') defined by

i

is a probability density with characteristic function given by

Qj(t) = hj(t)/hj(O), J = 1,2



Obviously, §1 and 52 are positive precisely on (-ﬂ2/6,ﬂ2/6) and
(—n4/90, ﬂ4/90), respectively. Since r(.) is symmetric about 0 and
unimodal, B] and 52 are also symmetric and unimodal. From the definitions
of r(.) and qj(.) above, it is easy to see that

m

Tim " p(x) = 0

Yoo
for j = 1,2 and for all m 0. Thus, the densities B] and 52 have all moments.
It follows that é] and §2 are C'. (See Theorem 6.4.1 of Chung (1974)).
Finally, we need to show that, for each a>0, there is a positive constant

K(a) such that
(2.1) - pplax) < K(a) py(x)
for all x € R.. (This is the reSu}t concerning relative tail behavior which

was alluded to in the introduction.) To do this, it will suffice to show

that the ratio

2. 90 5 ad)
RS 1 r(x/k")
. . . r(ax/kz) .
is bounded in x for each fixed a>0. The kth factor 72———ﬁ3—- in (2.2)
r(x/k

is continuous in x and converges t0‘(a2k4)'] at *= and is therefore bounded

in x. If b>c>0, then 0 < %%%%%.i 1 for all x € R, by Lemma 2. Since

N
i%~>-lI for k > a 2, all but finitely many factors in (2.2) are bounded above
k



by 1 for all x. Since all factors in (2.2) are bounded in x, and all but
finitely many factors are bounded by 1, it follows that (2.2) is bounded
in x.

Define 91> 9o» p], and Py by resca]ing Q], 62, 5], and 52 as follows.

g,(t) = g;(n°t/6)

9,(t) = g,(n"t/90)

py(x) = (6/1%)p,(6x/7)
po(x) = (90/1*)p,(90x/x™).

Our results for 51, 62, B], and 52 imply the results for 91> 995 Pq» and

Py given in the following lemma.

Lemma 3 The functions 9 and 95 defined above are real-valued, nonnegative,
¢” characteristic functions which are positive precisely on (-1,1). For
each a>0, there is a constant K'(a) such that the corresponding (unimodal)

density functions P and Py satisfy

py(ax) < K'(a) py(x)

for all x € R.
In order to prove our main theorem, we will need an n-dimensional

analog of Lemma 3. For the remainder of this paper, t and x will denote



points 1in R" with respective coordinates ti and Xy i=1,...,n.
For j=1 and 2, let Xj be a random vector in R" whose coordinates

are i.i.d. random variables with density pj. Then Xj has density

. n
Py.a(x) = 1 pslx)
j=1
and characteristic function
" n
gj’n(t) = i21 gj(ti)

Let M be a random nxn orthogonal matrix (with the normalized Haar measure
on the group of nxn orthogonal matrices as its probability distribution),
and suppose M is independent of Xﬁ. Then Zj = Mlj_is a spherically symmetric

random vector in R" with density
Py,n(¥) = én-] P nll1x]{udv(u),

where s"1 = {te B™: ||t||=1} is the unit sphere in R", and v is the

1

rotation invariant probability measure on s"' . The characteristic function

of Zj is
9; nlt) = én_1 95 n(l1tlTu)dv(u),

which is C* and is positive precisely on {t Ean; l1t]|</n}. For j=1
and 2, let



(2.3) (95 () = g5 (Ft)
and
(2.4) Py a(X) =0 Epy (n7E ),

If we Tet L(a) = {K'(a)}" for a>0, then Lemma 3 and the definitions of

p]’n and p2,n imply
Py nlax) < L(a) p, (x)

for all x € R". This completes the proof of the following Temma.

Lemma 4 The functijons 9 0 and 95 defined above are real-valued,
nonnegative, C” characteristic functions which are positive precisely on
{t € R": [[t||<1}. For each a>0, there is a constant L(a) such that the

corresponding densities functions P1.n and Po n satisfy
H] ]

Py nlax) < L(ap, .(x)

for all x € ]Rn.

Remark The spherically symmetric densities P1 o and P, , 2re obviously

unimodal, but this will not bhe needed in what follows.

3. The Main Theorem

Theorem Let A+, A", and B+ be open subsets of R" satisfying A+ = -A+,

A=A, 8 n(BY) =9, A" nA =0, 0cAt, and 0¢ BT, Then there



exists an infinitely differentiable characteristic function f on R"
satisfying

A= {t e R%: Re(f(t)) > 0}

A" = (teR": Re(f(t)) < 0}

+ n
and B ={teR: Im(f(t)) > 0}.

Proof For c cR" and r a positive constant, let
B.(c) = {t E]Rng ||t-¢]] < r}

be the open ball in R" with center c and radius r. We may assume

without loss of generality that B](O)(: AT, Define

-~

AT = AT it eR™: [[t]] > 1723

Since A" is open, it is the union of a countable set'{Br;(cj)}?=] of
~ ~ J
- A+, we have Br;(-cj)c: A" for all j. Define
J

open balls. Since At

+ N .
fj(t) g]’n{(t-cj)/rj} +_g]’n{(t+cj)/rj}.

By Lemma 4, s positive precisely on B (c.) y B. (-c.). Taking a
J Y‘J- J rs K|

Fourier transform yields

10



1

. :.( 'C-) 'i( 'C-)
(zﬂ)'":én e'1(x't)f§(t)dt cre A Y ripy n(rsx)

= er cos(x-cj)p]’n(rjx)

(Part (c) of the Fourier inversion Theorem 7.7 of Rudin (1973) implies that
P1.n and Py, are the Fourier transforms of 99 1 and 95 respectively.)
Let {“j}§=1 be a sequence of positive constants satisfying o < 2_3_2{2er(rj)}-].

Then

-n -i(x-t) © +
| (2m) ]]{n e 1‘2] ocjfj(t)dtl

(2]

<1

-j-2 -1
J 2 {L(rj)} p]’n(rjs)

]

1
< I p‘z’n(.x) .

Furthermore, by choosing the aj'S to converge to zero sufficiently fast,

we can insure that f+(.) defined by

£ (t) = ujfgm

U~ 8

Jj=1

is C* and in L](IRn). Note that the real-valued, nonnegative function
£7(.) s nonzero precisely on A*.

Let'{Br. (cj)}°° be a sequence of open bhalls whose union is A",
J J=1
and let

f;(t) = =gy pt{t-c3)/rsy - gy L{(tre)/ris.
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The same argument used above shows that we can choose a sequence of positive

constants'{Bj};=1 such that f (.) defined by

(1) = ]

ik sjfj(t)

is ¢, in L' (R"), and satisfies
- (xet) - 1
@)™ e Dt (e)dt] < 4 py (%)

Note that the real-valued, nonpositive function f (.) is nonzero precisely

on A .

j=1 be a sequence of open balls whose union is B, Let

Let' {Bru(cg)}
J
.im = 2 : n n ' 1 n
fJ (t) - 1[9'] ,n{('t-c;j)/rj} = g'l ,n{(t+cj)/rj}]'
Then

(2n)™" o e_i(x't)f;m(t)dt =
R

4i(x-c3) i(x-cg) )
= {e -e } rjp1,n(rjx)

-2 ry s1n(x-cj) p]’n(rjx)

Again, we can choose a sequence of positive constants'{Yj}j=] so that

£1M(.) defined by
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FiM(t) = !

Y fimeg
PARARIL

1

is C*, 1in L! (R"), and satisfies

1(2'”)-“ I.R[n e-'i(x-t)f'im(t)dtl <-2Tp2,n(x),

Note that the function f1m(.) is pure imaginary, and that its imaginary
part is positive precisely on B+.

Now let
F(t) = g, (t) + £7(t) + F(t) + F(t).

Clearly the real and imaginary parts of f are positive and negative

on the proper sets. The function f is ¢”, and in L](]Rn). Define

p(x) = (2m)™" J e (Xt g(t)qt.
R

The function p(.) is real-valued, since f(t) = f(-t) for all t ¢ R".

Sincé
2™ [ e X e () el < 2p, (x)
R 9
and

(Zw)'"lén e'(*’t)gzgn(t)dt = Py p(x),
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we have

Py n(X) < p(x) < 2p, (x).

|

By the Fourier inversion theorem (Again, see Theorem 7.7(c) of Rudin (1973).),

i(x-t)

f(t) = [ e Mp(x)dx.
R

Also, since f(0) = 9o n(0) = 1, we have
é“ p(x)dx = f(0) = 1.

Thus, f is the characteristic function of the probability density p, and

f satisfies all the requirements of the theorem.

Acknowledgement. The proof of Lemma 2 is due to Doug Critchlow.
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