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An alternative to significance tests

by Victor Solo

.ABSTRACT

There are a number of problems with pure significance tests even
within a classical view. Firstly they give no measure of magnitude of
difference. Secondly and related is that for large enough sample size
any null hypothesis will be rejected (since rounding errors in stating
the null hypothesis will be detected): this yields the confusion of
practical significance versus statistiéa]_$ignifican§e. On the other hand
the great advantage of the significance test is that it summarizes the data
in one number. It is here suggested that this Tast property can also be
supplied by a confidence interval on a noncentrality parameter. The advan-
tage is that the above two problems are resolved: furthermore the user is
forced to think hard at an early stage about what is a practical difference.
It becomes necessary however to find a scale on which the size of the non-
centrality parameter caﬁ be interpreted. This is not so simple. Various

examples are discussed.

Key words: Significance, hypothesis test, noncentrality parameter, statistical
inference '



1. INTRODUCTION

Though all of the triad of popular classical methods of drawing con-
clusions from data - the pure significance test (PST), the point estimate,
the confidence interval (CI) - have come under criticism from many angles
(see e.g. the issue of Synthese in honour of Birnbaum (1977)) the PST has
problems even within the classical setting.

Perhaps‘the major reason for the popularity of the PST is its ability to
summarize the data the evidence for an hypothesis in a single number, a |
P-value. (The evidential procedure PST is to be distinguished from its
behavioral or decision‘theory counterpart the hypothesis test see e.g.
Kempthorne (1976) who draws a careful distinction and-Cox and Hinkiey (1974)
and Birnbaum‘(]977)).

. The c]assical criticism of the PST concerns two points. Firstly, if
the sample size (n) is 1afge enough any hypothesis will be found wanting.
This isvsimp1y'becaqse rounding-errors wf]i@be detected or tiny mode]]ing
errors'wiil be found. On the other hand for small n acceptance may allow large prac-
tical differences. This is the practical significance versus statistical
significance confusion. Secondly the PST gives no measure of the magnitude
of the discrepancy from the null hypothesis. This contributes to the above
confusion. Actually this point is not quite true as will be seen later.
Still.as presently used the PST gives only a qua]itative measure of dis-
crepancy. |

In this article an alternative to the PST is suggested. That is a CI
on a relevant concentrality parameter (NCP). This idea retains the attractive-
ness of data summary in a single number (well an inferva]) while reso]ving the

weaknesses above. The NCP does measure discrepancy and provided a scale to
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refer to can be found,the user of aCl ona NCP is.forced to specify practical
differences before drawing a conclusion. (if not before collecting the data!l)
Before continuing, some words of caution and clarification are in order.

In what follows, various uses of PST's (and so CI's on. NCP's) are
discussed: viz preliminary inference; diagnostic tests. By no means is it
suggested that CI's on NCP's replace more detailed inferential activity. Merely
it is suggested that whenever, at some intermediate stage of inference, a
PST would be useful then the CI on a NCP will be more so.

Next, the ensuing discussion is developed in a classical setting.

However the point being made here applies equally well to a Bayesian ap-

proach. That is, calculation of the posterior distribution of a NCP (or

a Bayesian credible region) is being advocated. A detailed development

will need however the provision of appropriate prior distributions for NCP's.

The author is not aware of much work here (see Gelfand, 1983) though Arnold Zellner

has indicated that some of the calculations should be straightforward encugh.

Finally by using a CI we run directly into the contentious problem of
how to choose the size o. For the present discussion, traditional values
of .01, .05 will be used. Another interesting choice is the 100% CI's of
Robbins (1971). These entail e.g. in the Gaussian case replacing say 1.96/v/n

by (2 In In n)]/2 (1'+ €, )/ where-en decreases with n' , starting at
say .5 to agree with 1.96 at low values of n. :

In the next Section uses of PST's and CI's on NCP's are reviewed. In Section
3 some discussion is given of simple t and F examples. The xz and related
issues is discussed in Section 4. Section 5 is concerned with Cp. In Sec-
tion 6 Score tests or Lagrange multiplier tests are investigated. Section
7 looks at a problem of testing for éanonica] correlations. In Section 8

some connexions with exact slope are discussed. Conclusions are offered in

Section 9.



IT. Uses of PST's and NCP's

Cox(1977) discusses a number of uses of PST's. He observes that there are
various types of null hypothesis. The 'plausible’ hypothesis is one that will
help interpretation a 7ot e.g. no interaction in a 2-way table or parallel
regression lines in an analysis of covariance.
Another type of hypothesis is the 'dividing hypothesis' which serves to
mark reference points e.g. all means are equal in an analysis of variance. Finally
there is the scientific hypothesis, or the basic question:e.qg. which.drug is best?
The first two types of hypotheses particularly can be usefully investigated
with PST's. Another major area of use for PST's is in model criticism or ‘
diagnostic checking e.g. normal probability plots or goodness of fit tests.
Examples of all these types will be discussed and it will be shown how a
CI on.a NCP_may be used in each case.
B We will meet two types of situations. In the first case the NCP will have
a direct physical interpretation e.g. as a root mean square treatment effect
measured in standard deviation units. Then there is]itt]e'trQub]e-in using the NCP.
B The other case is'hardef. Here there will be no immediate interpretation and
some hard Work will be needed to. find one. This will usually be true of

diagnostic testing. Here it will‘be:seen there are many unanswered questions.



III. The‘Noncentral t and F
(a) The t

Suppose we have a random sample X],...Xn " N(u,oz)“éhd wish to test
Hy ¢ u = up. The standard test statistic is t = (7'- ug) /s t,_1 where
as usual s is the sample standard deviation.

Now in the case of a scalar parameter we can easily replace the scalar PST
by a scalar CI ona = 3 - ug namely (Kttn_],]_a/2 s/vn) and -so avoid the two
weaknesses of the PST. Still it seems useful to start off slowly by showing
how the NCP can be used in this case,

When Hy is untrue t has a noncentral distribution (NCD) t ~ too1(e,)
where ¢, is the NCP and ¢ = vh s where
§ = Mo = (u - uo)/o will be called the standardized NCP and is really the

type of NCP -that has been ‘referred to in-the earlier discussion.

Here we see that § has a direct interpretation: it measures the discrepancy
between the hypothesized mean “b and the actual value u on the o-scale. The
user of the CI finds it necessary to think .about what values of § are of practical

consequence. A (biased) estimate of § is clearly § = (X - uo)/s = t//n

Now since constructing a CI on a NCP is perhaps unusual, let us simply
recall that to construct a CI for a parameter 6, all we need in principle is a
statistic T(X) whose distribution depends only on.g. Wecan then, in the manner
illustrated so nicely by Kendall and Stuart (1979, Sections 20.1, 20.9) construct
horizontally in the (6,T(X)) plane a confidence region. We use the region verti-
cally to get a CI for . (It is a great pity that the eloquent picture (Fig. 20.2)
of the'binomia] CI given:by Kendall and Stuart. is not to be found in any other

textbook known to the author,)



A simple example will make things entirely clear. Suppose n = 17, X = 17,
5 =3, ug =15 = 6= (X - uy)/s = .66 =t = 6/¥il = 2.749. The Biometrika tables
(Table 24) give CI'sfor ¢, we find a 95% CI as (¢, ¢0,) = (.539,4.891) = (6_,64)
= (.131, ]-186).3Here'¢¥’_have the form ¢+’; = tie+’_. ‘It is not too surprising
then that the "pseudo-intervai" (zitn—1,1-a/2 s/#ﬁ)/s = (.45, 3.55)/3 = (.15, 1.18)

gives a similar result. As a footnote we might prefer, with Mosteller

and Tukey (1977 p ) to use (?xiz]_a/2 s/V/n-2 )/s = (g,a ) = (.16, 1.14)

In any case we have in the 95% CI (.131, 1.186) a concrete statement of

magnitude that forces the user to consider its practical .meaning.

(b) The F
The generic scheme here is, of course, the linear model

where all vectors are n-vectors, €N N(ngzl). Consider

‘Hy = u€Wy = span (§4"‘§k)

while in actuality u€W = span (EJ"'En) where the ¢'s and £'s afe n—vectors;

The F-statistic for testing H0 is

nn Vi =gl (1 - g7
F= = /(m-k)
K-l &
Y-u m
where 5% = [y - ﬁjlz/(n-k) and ﬁ_= projection of Y onto Wy etc.
m

Now we do have a genuine case of a vector parameter while our interest is in a
preliminary scalar summary.
When H0 is untrue F has a noncentral distribution

Fo Fn-k,n-m(w)

2,2
v =l -l



we introduce now a standardized NCP
§ = Vy/(n=

clearly § is a root mean square deviation between p and ug on the ¢ scale, but
this interpretation is not clear enough to help too much in general.

In the analysis of variance (AOV) setting we do have a clear meaning though:
8§ is a root mean square t;eatment effect (per treatment) measured on the g-scale.
This is something the user can interpret; t is important to
understand here that the particular alternative u is not required to be
specified rather s is asked for directly. Of course § does depend on the type
of alternative but it is suggested that abdirect "feeling" for s can be aimed
at. If necessary this can be done by contemplating different types of alternative
and seeing what & values result. Some further comments are offered later. An
example is given below. .

In the Regression case we can say é2 is an average signal to noise ratio per
parameter. Here the meaning is less clear and some experience is R
needed to develop a "feel" for "how Targe is large" - this is the scale problem

referred to earlier. Some rough (order of magnitude) arguments are now offered.

Consider the scalar regression
Yk = BX, * § k=1,2,...n

and suppose 2? xi/n —> di while Ek are i.i.d. zeru mean variance 02. Then the

SNR is 62 = 822? Xi 02. So the ‘average SNR per observation is
2
_ 8 2 n 2

On the other hand, consider the R2 which is

2 _ -2 .n 2 2

R® = 8% 2] xe/s! Y2 5% = a/(142) a.s.

by the strong law of large numbers. It is sometimes suggested (particularly in



Social Science application) that the smallest R2 of interest is ~ 1/3. This
corresponds to A= 5. We have other pairs (pz,A) of
(.5, 1), (.75, 3), (.95, 19)
Since the NCP is a monotonic function of p2 the reader may prefer to use p2.
Clearly there is some latitude here. In a multiple regression we use partial
RZ and corresponding partial A. This is further discussed in Section 5.
We now offer a simple AQV example. The natural estimate of ¢ is ¢ = /F

however it is biased since

E(F(9) = J0oM (Y4 1)
Thus /F:f' would seem to be better. Of course at this stage we could Took for
Stein-type estimates (see e.g. Gelfand (1983) and reférences) but this is avoided
Hére_to keep things simple.

Unfortuhaté]y the author is unaware o% tables of the.percehtagekpoiﬁts of
~ the nthenfraléF that could be used to give CI's. Instead‘then,the approximation
»fééhnidue df Pafﬁaik>(1949) will be used. We consider simple one-way AOV
~ given in John (1971, p. 47).
The‘daia shown in Table 1 are coded values of octane rating.of 5 petrols

with 4 cars for each pefroT.

TABLE 1 CODED OCTANE NUMBERS John (1971), p. 47)
PETROL OCTANE NUMBER median  mean

A 1.7 1.2 .9 6 1.05 1.1

B 1.7 19 .9 .9 1.3 1.35

c 2.4 1.2 1.6 1.0 1.4 1.55

D 1.8 2.2 2.0 1.4 1.9 1.85
E 3.1 2.9 2.4 2.4 2.65 2.70



_ . B e . o« —xf-t .2 2 . - — . _ -
Here n = not, ny = 4, t =55 ¢ \IZ] Ai/(t-1)0 3 A'i My - and HO. My =

T<i<t;ys z% Ai/t‘- The column of means shows a trend (hidden variable?)
suggesting uy T at ib =45 = (i - E%J_) b =g = t(¥;]) b = 1.55b.

Thus in this case § can be interpreted as a slope. This little calculation
shows the type of varied interpretation § will admit.
In Table 2 is given a modified AOV table. The author prefers to use percent
sum of squares rather than listing meaningless targe sums of squares. Also
shown are a standard deviétion (SD) for treatment differences and a simple point

estimate of the NCP.

TABLE 2 Modified AQV Table
SOURCE % SS df MS SD NCP = vF
Treatment 64 4 1.53 . 2.6
Error 36 15 226 .15
Total 100 19

The standard preliminary approach is to reason F = 6.78 = p < .005, so
evidence is against HO' The present approach is to quofe instead the 95% CI
on s namely (.94, 3.6) (see Appendix A for the calculation)

Once again the user is forced to consider what magnitude of § is of
consequence here and even whether there is enough data to pin & down sufficiently.'

To be clear, this CI is not supposed to give. a final inferential.
analysis of these data, but merely replace the first step PST with something more
concrete. Finally the above idea can be extended of course to more complicated

AOV designs.



IV. Non-central x2

Suppose N]...Nr ~ multinomial (N,p) : N = z{ Ni and consider testing

0=P; = pib i=1...r. The standard x2 statistic is
= N5 2 .

When'HO is untrue there are two types of noncentral distribution available,

both asymptotic

(1) Local Alternative. Py - Pyg = O(N"]/Z) = '<:1./N1/2
X2 = xzr_] (¢) (to order N'1)
_ el 2 _ r 2
¢ = Neylpy - Pyg)/pgg =y /Py

2

where XE(¢) is a noncentral x“ with NCP ¢. This result is due to

Cochran (1952)and Patnaik (1949).

(ii) General Alternative (Broffit and Randles (1977))

(
/N(SZ - 52) = N(0, tz) H(to order N']/z)

2 r pi “\2 r P
t™ = 4%, p. (-—f— - c>- : C=1ZI,p; —
174 p1.O 15 p1.0

]
P: - D,
and 8 =\/Z;(—1‘p—6‘1—0‘> Pio
1!

Notes. 1. s is a root mean square weighted percent deviation of actual p from
2 2

hypothesized Py- Also ¢ = N§© and §° = X2/N with E(éz) —>1 + 62 so § is biased.
2. The order of accuracy of the limit results is not very good, so
higher order terms would be useful if not mandatory for constructing CI's.
We now consider the use of these NCD's in contingency tables and goodness

of fit tests.
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{a) Contingency Tables

It is immediately clear that our percent interpretation of s though concrete
will not work with general contingency tab1es; This is because the equivalent
meaning of § as a measure of association is flawed (see Fleiss, 1981).

The author has not yet found a way around this, but two ideas suggest .
themselves. The first would be to define a generalized odds ratio. Bearing in
mind that CI's and NCP's are never a rep]écement for full statistical inference
the alternative is of course fitting a fully developed loglinear model. The

other idea is to use one of a number of distance measures such as
1/2

2 .
P; - P; '

_ _tor (M i0) o
metric x = &y = [z] e ] M (p; + Pyg)/2

This is a metric on the space of probability vectors p and so does measure a
discrepancy. The problem is of course the development of an intuitive feeling

for the size of 8 (for local alternatives Sy = §) as well as relating it to the

odds ratio. For these reasons we seem presently restricted to one-way tables.

This last idea is worth emphasizing. In this article NCP's have been uéed as
measures of discrepancy between null and alternative. This is because they arise
naturally in test construction and so are equated naturally with specific PST's.
In general however there is nothing special about using the Tikelihood rati§ pro-
cedure Fo generate such discrepancy measures. Many other measures, suited perhaps
to interpretation (as above) or the type of alternative envisioned may be contem-

p]ated._ This is an area where much work could be done.

A simple example is now given.
The data are taken from Plackett (1974), Table 2.1). Table 3 shows the

data, proportions and percent deviations‘from Pib 5'}?-v
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TABLE 3 Monthly cases of lymphatic
leukemia, England 1946-1960
J F M A M J - J A S 0 N D
40 34 | 30 44 39 58 - 51 55 36 48 33 38 Ni
.079 .067 .059 .087 .077 .114 .101 .109 .07 .095 .065 -.075 P

_ j ,
-5 -19.6 -29.2 4.4 -7.6 36.8 21.2 30.8 -14.8 14 -22 -10 IOO(ﬁi-piO)
| /Pig
' o 1

The null hypothesis is no monthly variation H0 ST VE

With r=12=df = r-1=11; N =506 X2 =21.3 23 = /X’ = .205; T = ,748.

Now to find a CI for § we must use the percentage points of the noncentral
distribution (NCD) - which one? Wg use both. Recall that the lower value of the
CI' is set by the uppér percentage point of the NCD and Proffit and Rand]es'
-observe that for‘high power the ND is best. We use the ND for.the lower CI
value and fhe NC-x2 for the uppgr.CI yalue:

(a) The Tower value is & - 1.96 ¢.//N = .14

(b) «The upper vaiue»comes from Biometrika table 24.which givés percentage

points of NCxZ in terms :of ¢ we find (x,df) = (4.62,11) =7/, = 5.62

=5, = .250.

Thus the 95% CI is (s-, §+) = (.14, .25)  This shows a concrete percent

deviation of about 20%.

(b) Goodness of Fit Test

Suppose we have X]...anw g( %) ahd desire to test HO: X ~ f(x|o)
If we group the X values we can do this with x2 so that we have HO: P; =\pi(6)
i =1...r where

C.

pi(e) = | 141 f(x|6) dx = cell probability and (ci, Ci+1) are group boundaries.
C.
i
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Purely for convenience (see later) we choose here to use Y2 to measure goodness of
fit. v

2

Yo =2 Nz{ ﬁi log (ﬁi/pi(ﬁ)) : ﬁi = N./N and N{ = number of X-values in

group i. While g is the solution to the minimum Y2 problem i.e.
£y P, d log p,/dd = 0
1 Pi 9 p;/d8

Again we find two NCD's.

(a) Local Alternative. (this is a conjecture) pi-pi(eo) = ci/¢N'

2 _ 2 2
Yo = Xpopo1(8) a NCx
where m = dim(g) and

¢ 2Nz;wi1og(n1/pi(eo))

and m; are the true cell probabilities
(b) General Alternative (Moore, 1983)

A2 2 .2
AN (§y - §y) = N(0,7“)

5y = 2, log(n,/p. (s,))

22 _ 2

5y Y°/N and

t% = 1602 7n, (log(ny/p; (09))2 - (27w, Tog(m. /p. (87)))%)
171 10913/P4 8 175 1094m3/P;800)) 7}

8y 2 =zy(n;/p;(8y)) dpy/dey = 0
Now_forblocal alternatives Y2 g_Xz so we can still think of 8, as a percent.
But now we have a question of scaling. What is a Targe value of Gy, or a small
value? This is rather more subtle than the earlier examples of direct inter-
pretation and needs some further consideration. | _
If the grouping is very fine we see that 65 ~ 2f g(x) ]n(g(x)/f(xleol)) dx

The idea is to evaluate this expression for various types of g and f.
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As an example consider (for fixed » for the moment) a goodness of fit for
a Gamma transformed to approximate Gaussianity 1i.e. we suppose Z ~ r(p,x) and
consider a fit of X = Z = (2-1)/x to N(u,o?)
. _ ' _ 2
First we calculate 8 = (uo,c0 ) 3

d log fe(X)

g(x) ——+—~—— dx =0

Hernandez and Johnson (1980) show that Y cg =trUe(u,oz). They then calculate that

ai(x) = %-109(2n+1) - 2 log r(p) + p(v(p)-1) - ru(p)

Nof —

+ %—109 {[r(p)r(2x+p) - rz(x+p)]/x2}

and note that sy(x) becomes flatter near its minimum as p increases.

It is now suggested that an appropriate set of values of 5y to scale to are
those such that aﬁ(x) = min. These have bgen calculated by Hernandez and
Johnson (1980) and are reproduced below gy nin has been expressed as a percent

for present usé). The results do not depend on g,

TABLE 4 ~ SCALING FOR = &
p A 8,
— Zopt ymin
3 312 T.98%
2 .30 3.11%
B 265 7.49%
5 .208 15.56%

Now in the Gamma, p controls the peakiness of the distribution (while g is
a scale factor). So clearly fit problems emerge for p too small. From the
graphs in Hernandez and Johnson (1980) we only see major discrepancies in the

transformed and fitted distributions for p <1 i.e > 7.5%. Thi§

. Gymin
conclusion is about correct also for other ‘peaky" distributions looked at by
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these authors.

A scale is thus established. If 6y is beyond about 7%% then we do not
have a good fit with respect to peakiness.

Clearly for other types of deviation we may calculate other ranges of s
values. There is of course much work to be done here. Also it seems reasonable
to choose the goodness of fit statistic to match the deviation of interest. It
may be remarked that the NCD of the Kolmogorov Smirnoff test is not very tractable
(Raghavachari, 1973) which is one reason the preceding argument was developed
through XZ_

The point being made here is that while NCP's are extremely USeful, the
scaling problem means that some very detailed analyses are needed showing how
particular alternatives give rise to particular NCP values. 1In this way we can

develop a feeling for order of magnitude of NCP's.
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V - Model order estimation

We consider briefly the problem of variable selection in regression.
A number of criteria have become popular in the last decade. For simplicity
only Mallows' Cy is considered, (Mallows, 1973). It is suggested here that
a CI can be constructed for MSEp to aid the consideration of models nearby
the minimum Cp model. ‘The CI is constructed for that p which minimises Cp.
Consider then a linear regression Y=y + ¢ , Hy:= 1 e span ( Epees By ) = Wy
Wwhen Hy is false we have RSS, / ozm'xn-k ( ¢, ) where RSS, = []Y - ;kllz and
¢k =y - ullz/cz = Bk/o2 while y, =P, u and P, projects onto W . The NCP -
can be interpreted through M

k
MSEékl = mean squared error of prediction.

= wse(k) 7 o < iy /0P = + 4y where
Thus a CI on Ok from the NCX2 yields a CI on Mk. An unbiassed estimator
of M is Cy ='RSSk/_o2 + 2k - n. Mallows idea is to plot C, versus k to Suggest
candidate models. These would include those with Ck near the minimum value. Also
points on the Ck versus k plot not near the 45° line suggest evidence of bias.
The advantage of a CI on the NCP or Mk here is that the magnitude of biases is ac-
counted for. It seems reasonable then to calculate a CI based on the Cy value
which is minimum.
First note that usually an estimate of 02 is provided by an overfit on say
m regressors. Then Ck is biassed, however an unbiassed estimate Ek can be based

on the F distribution

(RSS, -RSS_ )/ (m-k)
RSSm / (n-m)

n Fn-k,n-m ( P )

- ' ¢
e E(R) =DM g+ Tk
n-m=2 m-k

_( n- m‘ ) F (m-k) + 2k-m.,

o
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We can use Patnaik's (1549) approximation to give a CI for o - We then investi-
gate those other models whose Ck values fall inside the CI. The behaviour of
such a technique is clearly complicated and deserves a full investigation. An
example is briefly sketched. -
We take the cement data of Hald ( 1960) analysed by Draper and Smith (1981).
The y variable is heat liberated in a cement setting experiment; the x's are
concentrations of various chemicals. Also n=13 and an intercept (variable ¢) and
4 other variables are used. A Cp plot is given in Figure 6.3 of Draper and Smith.
The minimum € is at (0,1.2) with Cy = 2.7 = RSS3/8§ = C3+13-2x3 = 9.7. RSS4 has 10 df
and x = /9.7 = 3.2. Biometrika Table 24 =.a 95% CI (MSElﬁ‘), MSEI(,”’ = (0,17). Thus

the models plotted in the Figure may all be entertained. The use of Patnaik's

approximation gives (MSEé-), MSEé+)) = (0,11). The conclusion is the same.

From Draper and Smith (1981).
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VI. DIAGNOSTIC TESTS

Recently it has become clear that Score tests (Rao, 1973) or lagrange
multiplier tests (LM) tests (Silvey, 1959) provide a general tool for deriving
diagnostic or model criticism tests. This has been made explicit in the
econometric literature (Breusch and Pagan, 1980) and a growing realization
has come in the statistics literature (see e.g. Pregibon (1981), Atkinson (1982)).

The basic idea is as follows. Set down anhypothesis for a particular
model departure and derive the LM test (its great adVantage is that it only
requires model fitting under the null). Often the test statistic (see below)
is a partial R2 in a regression of residuals from the model(under the null)on
a "constructed variable". Thus with the test there goes a natural plot of these
residuals against the constructed variable. ‘.

It further seems that most (if not é]l!) popular ad-hoc diagnostic tests
~are in fact inLM tests. For examples see the above references. An interesting
_ additional example is Tukey's 1 degree of freedom test for nonadditivity in a
twobway table and its genera]fsations (see Milliken and Graybill (]970’ and
" Scheffe (1959, p. 144)). A brief review of the LM methodoiogy is now given.

Suppose X;,,,X ~ 1id "f(X|8) and we wish to test Hg: h(e) = 0; ¢ is an
r-vector, b_fs a p-vector. Denote by 8 the unrestricted maximum 1ikelihood
estimator (mle) and é_the restricted one. The score test or LM test is based
on Taylor series approximations to the likelihood ratio test. If

L(e) = z? log f(Xilg) then

LR = L(8) - L(8) ~ (aL/38)T 3 V(aL/2g) = LM
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where §_= E(82L/agagT)|§,

Under the null hypofﬁesis usually LM.fo Xﬁ-p (see Aitcheson and Silvey
(1958)). .

Often L(®) has a special form that helps to simplify the LM. Thus if

2

L(8) oxzhed(0)/0

= a1/30 = o725MG de,/ds = 2'e/o

J ~ E?dek/dégek/déy; = ZfE/GZ
= M= éféféfé)-]éfé/; = (n-r)R? (1)

where §2 is the coefficient of determination for the regression of ék on
-2 =de,/do and Z' = (g, Z,...2.) |
Furthermore, often h(6) takes a simple form h(e) = [I OJ[QiQé]' - 850

so that

3L/26 3L/ 2, zje
aL/aé2 0 Zoe
2

= WM=e'z (z32- zizz(zzz.z)']zé.z_ﬂ']zig/?f

= 2'2) )z} p7y 5) 7 pel0? = (n-r)RE - (@
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where éﬁ o is the residual from the regression of»éq on 22: while R? o is

the partial R2 for regressing-é_(which is orthogonal to 22) on éq 2

Again asymptotically (n-r)R2 n x2 ; although since now we find
1.2 r-p

ourselves in a regression setting we might prefer to use (under HO)
52
n-r Ri.2 ~ F
r-p ol r-p,n-r
1-Ry 2

In fact in some cases this is accurate (see Milliken and Graybill, 1970).
Incidentally the two schemes (1), (2) for generating LM may have
advantages depending on the situation. 1In Aov, regression on z, often
involves just taking means; then (2) is useful. In ordinary regression (1)
is appropriate. Note that (2) is very close to two-stage regression. It is

as if we had regressed a y on Z, to give e and now we regress e on Zy o-

Silvey.(1959,:p.'399) has: indicated that for local alternatives the asymptotic
.noncentral distribution of LM is noncentral x2- His argument is based on the

corresponding result for the likelihood ratio test. A direct argument is sketched

in Appendix B. The result is
2
LM = xr_p(¢)

= v_ 12 = 2 -
(n-r)s (n-r‘)R].2 = {(n-r) lim R] 5

It is suggested that for diagnostic tests, lTocal alternatives may be reasonable.

We now turn to interpretation for 52 or R$ 2- The standard meaning for

-~

Ry, is that it is the percentage change in RSS (=residual sum of squares) due

to the addition of the constructed variable zy = de/de].
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2 2
v RSSZ-RSS]2 ) 1-R2—(1-R]2) _ R

R = = =
1.2 RSS 2 2
2 ]"RZ ]_Rz

where RS = percent of SS explained by ié; R%Z = percent explained by E], 22.
Another way to put this is that the percent loss in not adding Z; is
-5 -
RY.2/ (1-Ry o).

We can re express this in terms of MSEP. Relabel r = Pios P = Py- The
percent loss in MSE in not using 2] is

e = (MSE2 - MSE]Z)/MSE]Z

The natural estimate of this is

o - )
My plz) P12
= [(RSSZ = RSS]Z)/OZ + Z(pl = p'lz)]/(RSS]Z/UZ + 2p]2 - n)
-..2 .
R 2(b,-py, ) 2 2py,=n
1.2 17P127 & A2 2 12
=] L + / (op/0" + —=—)
1R, P A

where 8?2 = RSS]2 /("'p12)° For small Rf.z and large n this is approximately
A e &2 _—
e = Lnpp)Ry o+ 2()-b )]/,

We see the percent change has two parts. An increase in prediction variance

of (on average) (p']-p]z)/p]2 offset by a reduction in bias 2 of (on average)

[(n-|:)]2)R]2.2 + (p]-p]z)]. Only if this offsets the loss suffiéiently do we
modify the model. |

As a simple example conﬁider the use of’the Box-Tidwell procedure hy Cook
and Weisberg (1982, p. 66, p. 83) to analyse some data on volume vy, diémeter
(D), height (H) of 31 trees. They consider transforming both height and
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diameter (one expects of course V o« HDZ). We consider height here. They
2

tive (p. 83) t = .405/1.762 = F, , = t° = .053 = LM. So

e = (.053 + 2(-1))/5 = -393%.
(regressors are intercept, D, H, D log D, H log H)'
From this point of view_clearlx H should remain Qntransformed. However the
Nfo distribution gives a very wide CI for «. Frém the Biometrika tables we
find (starting with /053 = .23) (¢, ¢,) = (0,4) =(c_, e,) = (-40%, + 40%).
These numbers Took large, allowing a +40% loss yet it seems pointless to trans-
form. The logical‘conclusion to draw here (to deal with the large numbers) is
that since the bias:dgpends on'n we should Took at percent 105s per free obser-
vation. .Thenﬁ&?/(nspTz)z [§$_2_+ ZCpi - plz)/ﬁ]/ﬁré."Thus’cl-on-pérceﬁt-]oss
per observation is (-40, +40)/(31 -.5) = (-1.54, + 1.54)%. This presents the

conclusion not to transform more clearly (c.f. earlier comments about partial

signal to noise ratio for regression in Section 3)
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VII. CANONICAL CORRELATIONS

Suppose (prl,i’ qu],i) i=1,...,n are independent and jointly

Gaussian and consider

HO: Rank (x

-YX) = k: Zyy = cov(Y,X)
we can restate this hypothesis as

Ho: ppay = 0 =eou= o

-1 -1 1
where p. are singular values of gyanggxzand ry is a positive definite
symmetric square root of §y = var(Y) etc.

There are 3 standard test statistics

. - _oP 2
Wilks ]ambdq W R Tog(1 ri)
. 2 2 _.p 2 2
Hotellings T0 T0 = Ziy ri/(l-ri)
. . - P 2
Pillai's V V=2l 15
1 1
. -’2‘ -‘2‘ * .
where r, are singular values of §y §yx§x where §y is the sample estimate

of tc.
gy etc

There are, as before, two types of NCD. Many workers have Contributed
to the development of these results but a compact collection and latest
development has been given by Fujikoshi. To keep things simple only results
-fdr TS are quoted
(a) Local Alternative: Fujikoshi (1980)

2
i
(m=v) Tg = x$(¢) (to order n'])

2
i

ps = c?/n, i=k+l...p

_1.op 2_1.p 2
¢ = 7N TPy T 7 Ijey S
)

m = n-g-p-1 + ZE+1pi

v is given by Fujikoshi; it is always < < n.
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It should be noted that many accounts of multivariate tests omit the

correction term ZE+10;2: it can make an enormous difference.
(b) General Alternative: Fujikoshi (1977)
(12 - 3P 0%/(1-02))/x = N(0,1)  (to order n°E)
- P 2 2
Remark 1. Fujikoshi provides higher order terms for both (a), (b) which

are actually very easy to use if tedious to state. Their use seems mandatory

since the order of approximation can be improved to n'2 and n'3/2 respectively.

Remark 2.. It has been emphasized by Muirhead (1982) that these results are
sensitive'UJthe Gaussianity assumption. A simple correction is to model
the distribution as elliptically contoured (ie a mixture of multivariate
Gaussians mixed on a scalar scale parameter ¢). Then if 3K is the kurtosis
of any marg1na1 d1str1but1on the above results hold 1f we replace 12 by
(14K)7% in (b) and ¢ by (1+K)™V,W by W(1+K)"! in (a) etc.

Much as before an interpretation of the NCP's comes from prediction.
Cons1der the problem

Find gpxq of Rank k 2 E||Y GX|| = min. This has
y X '

min = p + 5P, ol £/1- p2) = p+t0 (cf Brillinger,1975).

So that tO/p measures a percent loss in prediction variance on using
only k linearly independent rows of X to predict Y. With this in mind and

guided by the development of C_, Fujikoshi and Veitch (1979) have provided

p!
a C, function for choice of k namely

-~

C, = mT5, - 2(p-k)(a-k).
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In view of the above NCD's it seems advisable to modify the formula.
In any case the same suggestion is offered here as in the regression case.
Plot Ek for @ minimum and then for that value construct a CI using both NCD's,

then investigate those models whose Ck values fall inside the CI.
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VITI. CONNEXION TO EXACT SLOPE

It was observed early in the article that the P-value, Pn(l) is a qua]i-v
tative measure of departure between H0 and actuality H. There is in fact a
direct connexion between the P-value and the NCP which is implicit in the work
of Bahadur (1971).

Let Fn(t) be the distribution of a test statistic Tn(ﬁ)- Under HO’ Fn(t)

is a central distribution; under H it is the NCD. Bahadur shows that if

(under H)

(a) n']/zTn(z) —> b(8) = § say

i.e. there is a well defined standardised NCR

(b) There is a large deviation limit for the NCD
i.e. under H n']/21og(1 - Fn(h]/zt)) — - f(t) say

Then
n"Mog P (X) —F(b(8)) = C(0)
where C(g) is called the exact slope.
For our purposes it is more useful to write
n"Tog P (X) —>(s) (A)
Thus we see there is a monotonic function f (.) linking the P-value to the
NCP s.
We could use this connexion to find a CI on s by means of the asymptotic

results conveniently provided by Lambert and Hall(1982) namely (in the present

setting)

n/2(n"og PaX) + £(6))/5 = N(O,1) i V(T - 6)/o =:(0,1)

where T =6f'(§); 6 =c(08) (Since from (A) n']

log P, (X) ~ f(T,) this is intuitively
reasonab]e from the delta method). This is clearly no advantage here in the

width of CI over the earlier CI's presented.
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IX. CONCLUSION AND SUMMARY

In this article it has been suggested that a CI on a scalar noncentrality
parameter (NCP) has the same advantage as the PST of providing data summéry in a
single number yet avoids two weaknesses of PST's. One, of failing to make clear
the difference between prqctica] and statistical significance and second (and
related) the fact that a PST is 6n1y a qualitative measure of discrepancy between
null and actuality.

 The use of the proposed technique has been 111ustrated in a number of
examples. In some cases the NCP has a direct physical interpretation so its use
is more or less easy. In other cases the interpretation is much more subtle and
some detailed calculations are needed to establish a meaning for the scalar
NCP: an example of this was given for goodness of fit tests. In this respect
there is a Tot of work to be done. This type of situation typically occurs in
diagnostic uses of PST's.

The technique was also applied to model selection with Cp. It was suggested
that candidate models be those whose Cp values fall inside,the CI on the minimum
Cp value. An analysis of this procedure needs to be done.

Finally there are the noncentral distributions (NCD) themselves. It seems
that mostly asymptotic results must be used; however if higher order terms are avail-
able these can be quite aqcurate.. Still,some further results are needed,

although 1imit NCD's for multivariate tests seems complete.

Acknowledgement. To George Tiao and Arnold Zellner for discussion,
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Appendix A. Use of noncentral F to find a CI

According to the approximation given by Patnaik (see Kendall and Stuart 24.33)

the percentage points of the noncentral F are obtained from

v{t+¢
17- (%)
(0) F) (4 - F
Visvp - 1 V1,2
(=) G B O B A L )
(o) Fop i) = S R o
. Vg,v
(V]+¢)2
where + denotes an upper percentage point; v = 3;173___

To find a CI on ¢ we solve these equations separately by trial and error e.q.
below.we find the (¢+)'poigt for a 95% CI.

(1) Hald data e.g. F = (2.7-6+5)/2 = .85; v, = 2, v, = 8

Trial (1) 4= 8= v= (28)%/(2+16) = 55 v 6 = F{*)
= 2(5.6 x .85-1) = 7.5 which is close enough = MSE(+)

5.6 = ¢ = v](F(+)F-1)

k+¢k = 3+8=11.

(2) Octane example

(¢,) F=6.78 v, =4, v, = 15

Trial (1)
6 =12 = v = (4+12)%/(4+28) = 9.14 = g
+ )
= FgSZQ =3.77 = ¢ = v](F+F-]) = 98.2
Trial (2): ¢, = 70-=v = (4+70)2/(4+140) = 38
\ .
2Flg g =2.18=¢ = v](F+F_])v= 55
Trial (3): o, = 60 =v = (4+60)%/(4+120) = 33
= FTS 33 = 2.31 = ¢ = 58.6 = ¢ 59 which is close enough
~ 5 =/378 = 3.84



28

* APPENDIX B

\

Heuristics for the asymptotic distribution of LM under a local alternative.

We have L(g) = 2, "Mog f(x,|e)
so that if 90 is the true value, then under some reqgularity conditions the

standard result
= 2 } ' = 1
J = -E(3 L730490) = E(aL/aeoaL/aeo)

should follow. So that, if H is any fixed matrix

=Ty =172, -1 )
var (H'J™'H) H'J aL/agO I

Also we similarly expect

n"1 =S
) V2 g Yat/0 = 7 = N0, )
The problem

max L(e) > h(e) =0
0

has solution

3L/36 + Hr = 0
where H = Bh'/aé and § is the maximising value.
Consider the joint Taylor series about go
0= 3L/38, + (0 - 0.) + i + 0 (n" /2
0 S L LS

- WS =172
hy = h(6y) =H'(e - 95) + 0,(n"7%)
Again under suitable regularity conditions these should be readily established.

Also we can expect ﬂ = H = Bﬂ'/a_e_o. N
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From this we deduce (neglecting terms Op(n']/z))

-9 MaL/ey = 5 -y + ITH
e

>

= -firg YaL/agy = H'0TTHR - MR

&’3'

s |M= X'E'i-'ﬂi= (2"'2)' (_2_+ )

where
3= (A tiy-1/2 ﬁ'J_]BL/BQO =Z.
=T <1724, 12 50 i1av-1/2 5
= (7' g = 0l (g )TV fon

1
(o]
1]

so if we suppose a local alternative constraint

-5 a-1/2
hy = g n

Then we find
‘ 2
LM = x_(¢)
6 = ho'H(H'g T YR
ho T g H) Hh,
as claimed;
It seems clear that the type of regularity conditions used by Aitcheson
and Silvey (1958) and Silvey (1959) will justify the present claim. Inciden-

tally the line of argument just given is rather shorter than the corresponding

null result derived in the above two articiés.
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