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Abstract

A heuristic (called GREEDY) for the Euclidean matching problem successively
matches the two closest ppints. We study the behavior of the length Gn of

the resulting matching as the number n of points goes to infinity, if the points
are random. We prove that if the points are independent two dimensional random
variables with a common d1str1but1on which has compact support, then G //_
approaches a constant almost sure]y o = N *:J

Pt s



I. Introduction

The main goal of this paper is to provide an asymptotic understanding of
the greedy matching algorithm as applied to a set of random observations. We
will first make this precise and then outline the motivations from computer
science and probability theory which lead us to this problem.

For an even integer n and a set {x],xz’f..,xn} of n points in the Euclidean
plane, a matching is a collection of n/2 disjoint pairs of points. By the
weight of a matching we will denote the sum of the Euclidean distances between
the element of the pairs in the matthing. An object of particular interest is

the minimal weight matching.

The best known algorithms for finding a minimal weight matching are
implementations of Edmonds' algorithm (see e.g. [6]), and these algorithms
have running times proportional to n3. Because of the relative slowness of the
Edmonds algorithm, substantial attention has been given to heuristic methods
for obtaining almost optimal matchings. As has been observed by Reingold
and Tarjan [8], such heuristics are useful in minimizing the time required to
plot a connected graph using a mechanical plotter. This application is also
discussed in Iri et al. [4]:

One pakticu1éﬁ1y éppéa]ing heukiétié is the So-cé11éd GREEDY a]gdrithm. Hefe
one successively matches the two closest unmatched pairs of points. Despite its
simplicity the GREEDY algorithm is surprisingly difficult to analyze both in

tgrms of its running time and in terms of the quality of the solution produced.

The fastest known implementation of GREEDY is due to Bentley and Saxe [3]

and the running time of their algorithm is 0 (n?’/2 1og n). To survey the

quality of the GREEDY matching, we let X = {x],xz,...,xn}, and we write



G, = G(X) and OPT, = OPT(X) for the weight of the GREEDY and the optimal
matchings respectively.

Reingold and Tarjan [8] have shqwn that

10521.5

noa
(].]) AT _<73'n .
and they prove also that this bound is achievable for certain configurations. For
the plotting application mentioned above, it is convenient to assume that the
points are contained in a bounded region, for example the unit square. In this

case Avis [1] has shown that
(1.2) G, < 1.074 /n + 0(log n).

For additional results on this problem, one can consult the survey paper
[2].

Because of the possibility of exploiting probabalistic algorithms in the
tradition of Karp's probabilistic algorithm for the traveling salesman probiem
(Karp [ 51), a class of stochastic processes called subadditive Euclidean
functions was introduced in Steele [ 9]. If Xi’ 1 5_{ < « gre jndependent,
identically distributed random variables with bounded support, then the theory
of subadditive Euclidean functionals establishes that

(1.3)  Opt{X LX) ~ C/R

1:%05
with probability one. The theory of subadditive Euclidean functionals does not

apply directly to the GREEDY matching, and the main accomplishment of this page

is to provide tools which do apply to GREEDY.



Our main resuit is the following

Theorem 1.1. For each integer d > 2 there is a positive absolute constant

Cd such that if X],Xz,... are iid random variables taking values ig.ﬂid, and

having bounded support, and if G denotes the Euclidean edge weight of the

matching attained by the GREEDY algorithm applied to {X

1° 2,. .Xn} then with

probability one

6, cdn(d'])/d § £ 179 dx

57—

Here, f is the density with respect to d dimensional Lebesgue measure of the

absolutely continuous part of the distribution of the X

If the root density is: not integrable the result reads more prec1se1y
Gn/n(d -1)7d “E e with probab111ty one.

The proof of this theorem is pretty much the same for each d > 2, so it will
just be given for the case d = 2. We remark in passing that while the asymptotic
behavior of the minimal weight matching edge weight for, say, iid uniform (0,1)
one dimensional random variables, is trivial to ascertain (it approaches 1/2
almost surely), this behavior is unknown for the GREEDY matching edge weight.

The arguments used by Steele in [9] to handle OPT {X1"'°’Xn} are based
on the theory of subadditive independent processes, while the arguments here are
not. Another difference between this paper and [9] is that in [9] the key in-

equalities hold for all collections of points, while here they hold only for

collections which are 1ikely to occur.



II. Preliminary Lemmas

In this section some nonprobabilistic results about the greedy
matching algorithm are proved.
Lemma 2.1. There is a c; such that for any n points {X;,Xs...,X,} C2[0,1]2,

there is a pair 1 <1 < Jj < n such that |x. - X :_C]n']/z-

Proof. If each X; were covered by non-intersecting discs of radius r each disc
would coverat least wr2/4 of the square. This implies nnr2/4 < 1 which

yields the Temma with ¢, = 2/Vx.

Lemma 2.2. There is a constant c, such that any k edges of a greedy matching

Qf-{x1’X2""Xn} c:[O.]]2 will have total weight at most cz/E .

Proof. If €15€5,85...8 are the edges of the greedy matching we note that

by Lemma 2'14ej|5-cl(n'2j)_]/2’ 1 <J < [n/2], where || denotes Tength. Hence
we have'
K k ,
Lle | < J cm V2 <ack!?,
m=1 ™ T p=1

which proves the lemma with c, < 2c;.

Lemma 2.3. For any &, the greedy matching of {x],xz,...xn}c:[OJJ]ZDQE_gg_most

c36'2 edges as great as §.

Proof. If there are t edges as large as § then the total length of these edges is at

least t8 which by Lemma 2.2 satisfies, 1§ 5_c211/2

2
C3 i "C2-

,i.e. T < c5/s%, ~and e get



Lemma 2.4. |6(x} Xys...X) - G(X1,x2,...xn+k)| < ¢k
- . e . : _(fi+k
roof. We will proceed algorithmically. First let €15€0s. 0.8 (with ¢ = 5 )

be the edge 1list of the complete graph on {xl’XZ""Xn+k} sorted by edge length.
An algorithm which simultaneously and inductively constructs the greedy
matchings A and B for {X]’XZ""xn+k} and {x1,x2,...xn} respectively is
the following:
for i =1 tot do
if e, has no endpoint in A, add e, to A,
if e, has no endpoint in B and no endpoint

in D= { 'xn+k}’ add ei»to B.

*ne1°%pt20 0
We have an induction hypothesis:
At iteration i, all non-double edges of AUB are either
(a) edges with an endpoint in D, or
(b) edges connécted by at Teast one alternating path of monotone decreasing
edges to a vertex in D.
The hypothesis is valid for i = 1, so consider edge 41"
point in D, condition (a) holds and the induction hypothesis still lives.

If € has an end-

If €41 is in both A and B, the induction is valid (because of Ch being a
double edge). We are left with two cases:
Case (1). Suppose e, 1€A but e:,1-% B, and e;,q7 has no endpoint in D.

Since ei+]€IB one endpoint of e must meet an edge already in B but which is

i+]
not in A. By the induction hypothesis, we have then found an alternating path
of AUB which is monotone and leads to D.

Case (2). This concerns the possibility that e;41€B but e, ¢ A and €
does not meed D. The induction step is identical to that of Case (1).

To complete the proof of the lemma, we note that



Y lel - ) lel <) |es| + ) max{|e]: e€C}
eeh e€eB e, meets D C /

where the dast sum .is the:.sum over all:of thé&.alternating..chains providéd by the:-
induction hypothesis. Since there are at most 2|D| such chains (because of having
to end in D) we can majorize the two sums by taking three times the sum of the
largest k = |D| edges in either A or B. By Lemma 2.2, this provides the required
bound.

2

We now need to consider how breaking the unit squares Q = [0,1]2 intom

equal subsquares Qi’ 1< 5_m2 changes a greedy matching. We let

-2
m
F = aQi - 8Q, i.e. F is the interior grating of the partition of Q given by'Tke_
i=1
Q.. In just the same way as we established Lemma 4, one can prove the following:

Lemma 2.5. We let A denote the greedy matching of {Xy.X,,...x .} = Q and

let B be the union of the m2 greeding matchings of {xi,xz;...xn} n Qi’ 1 <1 5_m2.

The union AUB consists of (a) double edges, i.e., edges belonging to both A

and B (b) edges which intersect F and (c) edges which are joined to F by a

monotone alternating path.

Lemma 2.6. Let ¢ denote the number of edges in- the greedy matching of Q

which have either (1) an endpoint within s§/2 of F or (2) length as great as 5.

We have the bound, 5

m
6(Q) - ] 6(Q,)] < cgr'/?
i=1



Proof. By Lemma 2.5 we have

m
|G(Q) - Z 6(Q.) | j_g max {|e| : ee P}

where the sum is over all alternating A, B paths P which connect an edge of a

Qi matching to F. The number of such paths is bounded by 2t since each path must
contain an edge of A which hits F, and each edge which hits F can be on at most
two alternating paths. Now, if M is the set of maximal edges, one representative

chosen for each P, then

) max {|e|: eePr = Y le|] +) J |e|
P NA

If na denotes the number of summands of the first sum and if nB(i) denotes

the - number of summamds of ) |e| then ny + ) nB(i) < 2t. We know by Lemma
e€M i
ec01
2.2 that
Y, |el <c,n 172 and Y el <e,(n Ginent,
— 2°A : — 2V 8B :
eeMNA eeM
ecy;

using Lemma 2.2 and scaling. So,by Cauchy's inequality, and the bound given by r,

we complete the proof of this lémmal-. * ‘

Remark: It's easy to see that if the Xi were i.i.d. uniform in Q, then

Er < 2nms + c/62. Proper choice of § will yield (ET)1/2 << (nm)]/3.



II1. Uniformly Distributed Case.

We now det Xi’ 1”;,1, be i.i.d. uniformly distrfbutedﬂiﬁjfo;1]2 = Q and
consider N an independent Poisson random variable with parameter A. We let
o(N = EG(X],XZ,...,XN) and note that, (1) is a smoothing of the sequence
g, = EG(XyXpse. X ) 1.e0

o) = 1 g (\n)e”

n=0
If Qi are defined as before then by scaling and by well known properties of

the Poisson process, G(Qi) = G({X1,X2,...Xn}r1Qi),1 < i 5_m2,are independent,
identically distributed random variables and EG(Qi) = ¢ (A/mz)m']. Moreover,
by Lemma 2.6,

AR 0(«/%)

ne—-13

(3.1) 6(Q) =

;
where t is the number of edges of the greedy matching of Q which are (1) with
any end point within §/2 of the boundary of some Qi or (2) have length at least
s, (for any s > 0). ’

Now, E(x'/?) < (E(z))/? and

E(t) < 2mxs + c3<s'2

because the area of Q which is within §/2 of 30, for some i is bounded by 2ms,
and because of the Lemma 3 bound on the number of long edges. Picking &

-1/3

proportional to {(mx) minimizes E(t) and gives

(3.2) E(r) = 0o((m)2/3)y.

Returning to the basic (3.1), and taking expectations gives



1/3m1/3

e(2) =mg (a/m’)+ 0(r )

or

2
(3.3) A _ o) 4oV n=,2,...
myx Vi

It will be easy to use (3.3) to show ¢(A)/ VA converges.
One route is to choose a < b such that for A > a the error term in (3.3) is

less than e > 0 and such that ¢(A)/ X < lim inf ¢(t)/ v/t + ¢ for x€ (a,b). Then

(3.4) @(m®a)/m/x < Tim inf q(t) /vE + 2

o

for all m and A€(a,b) . Since U (ma,mb) contains a right half line, this proves
m=1

Lemma 3.1.

Tim o@(A)/ /A =c¢ > 0.
Ao

(The strict positivity of c is easy to check by elementary considerations.)
We now consider the case where x» = n and where m is chosen as a function of
n; in particular, m = [an]/z] when o is a small number to be chosen later. With

these choices, we note G(Qi) are independent random variables, and more pointedly,

the random variables converge in distribution and LP,

(3.4) mG(Qi) —>H ,an— o,

where H is the length of the greedy matching of N points in [0.1]2 where N

is Poisson with mean ) = a_]. This convergence is an easy consequence of the

1

fact that the number of points in Qi is Poisson with mean n/h? ~ o and the

stability ‘lemma, Lemma 2.4.
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Next, let n, = EmG(Qi), Y. = mG(Qi) - > then note
4
£V 02 = Var H, EYi—> k = E(H - o) , and
4

2 w
(3.5) E < Y. > « n’k + 6 (g,>c4
i=1 -

because of the independence of the Yi (and because EYi = 0 so odd terms

e~

drop out).

We now begin our basic estimation. By Lemma 3.1, given any ¢ > 0 we can

. . : 2
8 m
choose an o such that we have [EG(Q) - ) EG(Qi)I f_en]/2 for all n > n(e).
i=1
Hence, we have
(3.6) P = P(n"?[6(Q) - EG(Q)] > e)
2
-172 W
< P(n I,Z] {G(Q;) - E6(Q1)}] > €/2)
1:
m2
+ P(n"2)5(0) - L8] 2 er2).

By inequality (3.5), Markov's inequality, and the definition of m = [an]/z]
we see the first probability is bounded by Ce'4a4 4,2 for some ¢ and n

sufficiently large.

- Next choosing s = n~1/3,-1/3 in Lemma 2.6 we see
me 2

= [G(Q) - _X] G(Qi)l Co (N £ N )
'I:

where N is the number of points within §/2 of F, and N' is the number of edges of
Tength exceeding s. Now by Lemma 2.3, N §_c33'2 = c3n2/3m2/3-,'and'1t iseasily
thecked that NI is Poisson with mean 2n1/3m]/3. Since (nm)2/3 ~ oan, we note elementary

bounds on the Poisson tail give
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3.7) 3 P(n"D_ > eM/4) <=,
n=1

provided o 5_(52/8)/(c§ §3). By these bounds on the two rightiihand summands =
(3.6) we see the probabilities Pn are summable.

Wbrre}ate‘the Poisson averaged - probabilities to the case of fixed n, it
will be useful to slightly vary our notation. Let Xi be i.i.d. uniform on
[O,]]2 and let N be Poisson with mean n. We have just proved that the
probabilities

G(X],Xz,...Xn)

P = P(| = -
n

o-
v
m
~—

are summable. Now by Lemma 2.4,

|G sXp e nsXy) = 6(XqsXps. o X )| < ¢y IN - 0|2, so thie bound

shows that also the probabilities

(X 2Xps .o X

n

G
P, = P(}

- ¢l > ¢)

are summable. Thus n'1/ZG(X],X2,...Xn) not only converges almost surely, but also

converges completely.

IV. General Extension

To aid intuition we first treat the case where the Xi are i.i.d. with
compact support in [0,1]2 and with density f. We can partition [0,1]2 into
squares of side 1/m and find a step function ¢ supported. on the partition for

which [|f - ¢ |dx < e. We recall Strassen's Lemma, ([10], 1965).

Lemma 4.T. Let v, ggg_uz be two Borel probability measures gﬂ_ﬂlz such that

lu](F) - “Z(F)I < 8 for all closed sets F. Then there are random variables

X and Y, taking values jg_ﬂ%z,-and defined on the same probability space, : .
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such:that P(X.# Y) <<s'and with the distribution-of X equal to u; and the

distribution of Y equal to Ho-

For f and gabove we can chose Y, i.1.d. such that Y. has. density ¢ and

P(X_i = Y'i) < €.

We let A = {i: Xi = Yi} and note by Lemma 2.4

|GOXqsXysnesX ) = GV 3Youn Y )] < [G(X: TEA) = G(XyuXouen X )]

+]6(Ys: T€A) = G(Y .Y,,..nY )]

< 2¢c IA IV2

1/2 1/2

Since this last term is a.s. maJor1zed by 2c4 , it suffices to show

G(Y o) v en'/? f¢]/zdx in order to prove G(X;,X,,...X ) ~ cnl/2 ff]/zdx,

1° 2’ te
To prove the former, note

v 1/2
2
_2 n m .
where © < c36 " + ) TX € {x;:[x - .U 3Q;|< 6/2}). By the main result of
i= i=1
Section III
1/2

n
e(vieoj)«.%&z]'uvieoj))

m-2

but, since P(YiEQj ) = hj, (hj the height of ¢ on Qj) we have,

G(Yier) n cnt/? é ¢L/2dx.
J

-1/3 4 good enough to show =

1/2 _ o1/2

Chosing 6 = n ) a.s., S0 we have proved.

Lemma 4.2 Lf_Xi are i.i.d. with density f and compact support then

1/2 1/2
6(XqsXysennX ) v O /0 f£1/ %dx,
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Now we treat the case where the distribution of Xi’ while still concentrated
in the unit square, may have a singular component, which we denote u. Let K,
a set of Lebesgue measure zero, be the support of u, and Tet g be the density,
with respect to Lebesgue measure, of the absolutely continuous part of the

distribution of Xi’ so that

P(X;€A) = A’ gdx + u(AK).

Let ¢ > 0. Let S]’SZ""’Sr be closed squares each of side length a, such that,

r
if 3Si denotes the square with the same center as Si and side length 3a, T = U Si’
i=1
P
and 3r = U3S$,we have
i=1

i) p(K - 1) <¢

1) olr < ¢

111) g < e.

&

Now let A = {X;: X;&Knr, i <n) and
B, = {X;: X;€ K, i <n),

It is easily proved using Lemma 4.2 that G(Bn)//ﬁ'——scf/a'dx a.s. as n —>=, We
note that every edge. in the greedy matching of {X1’X2""Xn} which has an end-
point in An must have the other endpoint in 3r, with at most r exceptions, one
for each of the squares Si' This is true since each point outside 3r is farther
from the points of KQF than the diameter of the Si’ so a point in 51 would be
matched with any other point in Si before being matched with a point outside 3T.
Let Dn be the collection of these at most r exceptions, and En denote all the
points in An - Dn together with the points that the points in An - Dn are matched

with.inthe greedy matching of {X1,...X2,...Xn}.
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Next, observe that the edges in the greedy matching of {X .,Xn} which

1’X2"‘
do not connect the points of En are precisely theedges in the greedy matching

of {X],...,X“} - En = Hn’ so that G({X1,...,Xn}) = G(Hn) + G(En).

To complete the proof we will show that G(En)//ﬁ is small and then that
G(Hn)/Vﬁ and G(Bn)//ﬁ are close together if n is large and ¢ is small.

Now all the edges of the greedy matching of En fall into one of the r
squares 357, 352,..., BSr. Further, if n. is the number of gdges'in 351, the

total length of these edgés is no more than 3aC2/ﬁ} using the argument of Lemma
: r

2.2. Now n; < 100n (the 100 is conservative) since the Si are disjoint, so
i=1

that each Xi in En is in at most 100 of the 351. Thus using Cauchy's inequality

we have

100n

r r
G(E,) 5_.2 3ac,/n; 5_.2 30c, ¥
i=1 i=1
= 3Oc2Va2r /n
= 30¢, e /n.

Finally, we note that the points in Bn which are not in Hn are those points
which are matched with points of An - Dn' By definition each of these points
falls in 3r, so by iii) we have cardinality (Bn - Hn) << en. The points in
Hn - Bn consist of the at most r points in Dn together with the points in K - T,
so by i), cardinality (Hn - Bn) << en. Now Lemma 2.4 gives

|G(H ) - G(B,)| <= |G(H ) - G(H UB ) + |G(B) - G(H UB )]

n
<< 2c2 ven ,
finishing the proof of Theorem 1.1 in the case of ¢ = 2. As has been mentioned,

the proof for higher dimensions is similar.
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