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ABSTRACT

If the covariance matrices I and §2 of two multivariate populations are
not identical, insight into the differences between §] and §2 can often be
gained by analyzing the linear combinations with extreme ratios of variances,
i.e. those defined by the eigenvectors associated with the extreme roots of
§E]§2T This paper gives a descriptive method, similar to variable selection
procedures in regression, for screening and simplifying these linear combinations.

A hypothesis of redundancy of variables is defined, and a statistic for testing

this hypothesis is derived. The method is illustrated by an eXamp]e.
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redundancy of variables; patterned matrices; union-intersection test;
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1. INTRODUCTION

Methods for comparing two or more covariance matrices are usually given
rather little attention in applied statistical analysis. Most often, tests
to compare covariance matrices are performed only to check assumptions for
other multivariate methods such as MANOVA or linear discriminant analysis.

The main purpose of this paper is to demonstrate that comparing two covariance

matrices by analyzing certain linear combinations can be an interesting method

itself, givfng much more information than just the mere decision about equality
or inequality.

In the one sample case, various hypotheses about a single covariance
matrix such as sphericity, proportionality to a given matrix, zero correlation
etc. (Morrison 1976, chapter 7; Srivastava and Carter 1983, chapter 12), and
certain patterns (Anderson 1970, Szatrowski 1976) Have been treated. The one-
sample idea of elements of a matrix having a certain pattern can be extended
to the idea that e]ement§ of different covariance matrices might somehow be
related. Though there is an extensive knowledge about criteria for testing
equality of covariance matrices (see e.g. Muirhead 1982, chapter 8), it seems
that rather little work has been done on fe]ationships between covariance
matrices other than equality. Pillai et al (1969) and Rao (1983) treat
- proportionality of two covariance matrices. Flury (1983c) gives a test for
equality of the principa] component structure in k groups. The present paper
treats sti]]Ianother kjnd of re]atiqnéhip between‘two covariance matrices §]
and §2: the hypothesis that certain eigenvectors of §;]§2 do not depend on
some variables (i.e. have some zero coefficiehts).

A "natﬁra]" approach to this idea is as follows: many classical methods

of multivariate ana]ysisv(ng. linear discriminant function, multiple correlation,



canonical correlation) can be derived by applying Roy's (1957) union-intersection
(UI) principle to linear combinations of the variables. In the case of two
pxp covariance matrices I and %os the UI-method is based on the fact that

%, = I, exactly if min a't,a/a'zya = max a'r,a/a'z,a = 1. Let now S, and
21 22 2 ] 2 1 21
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S, denote sample covariance matrices, then Roy's test (1957, chapter 6) is

based on the maximization and minimization of
F(a) = a'S,a/a'S;a ' (1.1)

over aEHRp, which leads to the problem of finding the extremé characteristic

roots of S]],SZ With 2 and zp denoting the largest and smallest eigenvalue
-1

of S] 52’ Roy's test statistic is the pair (2],2 ), the so called "largest

and smallest roots criterion". The hypothesis H Iy = I,

is too large or &_ is too small. For‘n1S] and n,S2 being independently

is rejected if 2]

p
‘distributed as Wishart with n, degrees of freedom and identical parameter

matrix 21-='22 = %, tables of Pillai (1967) or charts of Heck (1960), also

published in Kres (1975) can be used. Alternative test criteria are available,

~

but in this context it seems natural to use the criterion (2], p)

Let now X(]) and X(z) denote two 1ndependent p- d1mens1ona1 random

vectors with positive definite symmetric (p.d.s ) ‘covariance matr1ces Z] and

~

22. By the spectra1‘decomposition theorem (Basilevsky 1983, p. 235; see also

section 2.1 of this paper), 2_122 has p real positive eigenvalues A2, 3,..3_xp.

Let the associated eigenvectors Byse--sB be normalized such that B 2181 =1

(i=1,...,p). Define the variables V(]) and V(z) by V(J) = B'X( ). Then the
(1) (

pairs of variables (V 12)) have the ratios of variances



- f 2.1 2, (i=15....p). (1.2)
1

Furthermore, the pairs (Vgl), ng)) are mutually uncorrelated, and A; is the

largest ratio of variances that can be obtained from linear combinations B'X(])

and s'x( ) uncorretated with (v{1), v{2)) to (v{1), v{2)) (Flury 1983p). Al
information about differences in variability between the two random vectors
can thus be cqndensed in the p ratios ki.

Now, for the §ake of analyzing differences in variability, we are only
interested in those Ai which are far from 1, and discard those Vi which do not
contrtbute much to the difference between El and §2,’i.e. which have a variance
ratto close to 1. (Similarly, in canonical correlation analysis, we are most
interested in canonicé] variables with high correlation).v In practical situations

1

it can often be observed that the extreme roots 2] and zp of S; S, differ

2
markedly from 1, while all other rooté are close to 1. We will therefore
concentrate on the linear combinations V%J) = B]X(J) and VéJ) = §p¥(3) the
ones assoc1ated with the extreme ratios of variances. For terminological
'simplicity, we will call B and Bp the largest and sma]]est eigenvectors of
E; §2,vre$pective1y. ‘The main aim of this paper is to g1ve descr1pt1ve and
confirmatory methods of simplifying these linear combinations with extreme
ratios of variances, similar to methods used fbr scfeening regression and
disCrimihant functions. | |

To motivate the methods to be.presented in this paper,'let us ask the
- following two questions:. 1. Why should anyone. {from a practical point of view)

be interested in the eigenvectors 51 and sp apart from the associated roots A]



and Ap? 2. Given that someone is interested in B] (say), why shou]d he
want to simplify it?
To answer question 1, Tet us outline three potential applications.

Application 1: Suppose an educational experiment is conducted as follows:

Two groups of students are being taught in the same p subjects. In group 1,
each student is given extra lessons in the subJects in which he/she exce]s

In group 2, extra lessons are given to each student in the subject in which
he/she shows poor achievement. ' This procedure can be expected to make the
outcomes (test marks at the end of the experimental pekiod) more homogeneous
~in group 2 than in group 1. We would therefore expect to find less variability
~in group 2 than in group 1 and could, hopefully, summarize this by the smallest
'eigénvector‘of §;]§2. Analyzing andbinterpreting the coefficients of this
eigehvector could then.identify variables or combinations of variables which
are main]y»responsib]e for the differences in variability.

Application 2: Forging'bank notes. Suppose a forger tries to produce notes

which are as similar to real notes as possible. Since he has some basic
~knowledge of'statistics, he doesn't compare his production with just a single
real note; but rather takes a sample of real notes and measures p variables

on this sample and on his own notes. First of a]I, he will probably compare
the two mean vectors to make sure that the mean of his. production does not
deviate from the mean of thejreé1 notes. However, since he is a fairly

- sophisticated forger, he is also concerned about differences in variability,

and he would certainly not 1ike his notes to have too much variability, compared
with the real notes. If §] and §2 denote the covariance matrices of the real
and forged samples, respectively, he will therefore be interested in the largest

eigenvector of S{TSZ, which shows him the "worst" aspect of his production.



If the associatedveigenva1ue 2] is much larger than 1, the forger will try to
interpret the largest eigenvector in order to identify the combination of
variables which caused too much variability. On the other hand, if zp <1,
the forger can also please himself by studying the linear combination with
respect to which he did a terrific job.

Application 3: Quality control. The basic idea of the above bank note

exampie applies of course to situations in quality control, whenever two
identical machines produce certain items, and the correct production is being
supervised by taking samp1es of items from both machines. Apart from mean
differences, bad adjustment or failure of a machinercould again lead to
differences in variability, and by studying the largest and/or smallest
eigenvector of §{]§2 we would hopefully get seme'hints about the cause of the
trouble. Alternatively, if §] comes from a very large "perfect" production,
we can treat §] as a population matrix § and supervise the production of a
single machine by analyzing the largest eigenvector ef Z"]S. This one-
sample procedure will be briefly discussed in section 5.
Now to question 2. The reasons for simplifying the extreme eigenvectors

are the same as the reasons for screening regression- and d1scr1m1nant functions.

In the presence of (poss1b1y high) corre]at1ons between the var1ab1es, some
.coeff1c1ents of the extreme eigenvectors may have very 1arge var1ab111ty In
_‘order to get a more stab]e ]1near function it may therefore be reasonable to
put some coeff1c1ents equal to zero (i.e. discard the associated variables),

as long as the largest (smallest) ratio of variances doesn't change much.



For the regression analog, Breiman and Freedman (1983) have recently
given a very sophisticated reason for not including too many variables in a
regression equation, even if the population regression parameters of the
omitted variables are not zero. The transfer of their argument to the method
of this paper is of course on intuitive grounds, but nevertheless the general
idea of rejecting variables which don't contribute much seems a reasonable
principle.

A descriptive (exploratory) method of simplifying the linear combinations
with extreme ratios of variances will be given in section 3. Section 4 treats
the same problem in the framework of testing hypotheses about the eigenvectors

-1
of I;72,.



2. SOME ALGEBRA OF EIGENVECTORS, AND
HYPOTHESES ABOUT RELATIONSHIPS
BETWEEN TWO COVARIANCE MATRICES

2.1. Simultaneous decomposition of two p.d.s. matrices
In this and the following sections we will use the simultaneous spectral
decomposition of two p.d.s. matrices % and T of dimension pxp. The following

theorem is repeated here because of its importance.

Theorem 1: Let § and 1 denote p.d.s. matrices of dimension pxp. Then

(i) There exists a real diagonal matrix A and a real nonsingular matrix

Q such that Q'QE ép and %'lﬁ = @.

1

(i1) The columns of B (R ,...,gp) are eigenvectors of $°'T, and the

diagonal elements of A are the associated eigenvalues, i.e.

S-]

N

1B = Ba.
av

v

(1i1) The colums of A' = (a;,....a ) = (B')”' are eigenvectors of J3™',
n Al A Ay

“p
and the diagonal elements of A are the associated eigenvalues, i.e.
7‘]|_|
O A
3 ’ E‘l p ]
(iv) 8 = )} a;at and T = ] X.a.ai, where
: i=1 i=1
fQ'ébdiag(X],...,xp) - (spectral.decomposition).
(v) s'r= E AsbibiS = BAA.
‘ NN 1vivvin afavav

i=1
For a proof of (i), (ii) and (iv), see e.g. Basilevsky (1983, Theorem 5.19).

(iii) and (v) follow then easily. Theorem 1 holds also if T is symmetric
but not necessari]y positive definite. However, we will need it only for the
positive definite case, which ensures that all Aj are strictly positive.

Note that A = B' ifS =1,
n N ny ’\Jp



2.2. FEigenvectors with zero coefficients

In order to give conditions under which some coefficients of an eigen-

vector of %']I are zero, we partition the matrices S and T as

A1 212 In iz
f%: 5 I= s (2'])
R21 m22 To1 I22

where %11 and T,, are pxp, and §22>and 122 are {p-q)x(p-q). Let » denote
'I .

an eigenvalue of §' Tand p = (gi,’gé)' an associated eigenvector. Then
the’équation'IQ = A3b can be written in partitioned form as
TiRe * LigR2 = by * 2%k (2.2)
Toiky * Taokp = Ranby * MRoR2r (2.3)

This leads to .

Théorem'Z: Let 3 and T be defined as in the aLoVe text. Then
LR R | . q
(i) If I<.> = A§;<t)> for some A § 0, b %0 ¢ R, then T1b =231k
o 2
and To1b = A351k-
.. _ ’ e q
(ii1) If 1]1R* = A*E]]R* and 12]R* "_A*§21R* fo some A* 3 0, b* 30 € R,

b*, D
‘then T (N ) = >\*S<»m >.- i
R . E A .
AN 0
b4 N b

(iii) Let A denote a simple characteristic root of 5-11 and (m]> e

Bo

associated eigenvector. If 111% = Aé]]% and 1212 = A§2]Q for some

v

a $ 0, then R1 =a (up to multiplication with a scalar % 0), and QZ = 0.

Proof: (i) and (ii) follow immediately from (2.2) and (2.3). (iii) follows

from (ii) and the simplicity of a.
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Thus, if an eigenvector of Sv T-contains zeros in the last p-q positions,

it can be found from the submatrices SH and T]], but Il]g* = A*é]]Q* is only

b* b*

a necessary condition for 1;(“’) = A*§<m >, even if A* is a characteristic
0 0
n

root of §'1l. However, things get somewhat simpler for the eigenvectors

associated with the extreme roots.

_1T and s211
ny

Lemma 1: Let A%p) and ng) denote the largest eigenvalues of § SAMEARE

respectively. Then A%p) 3_A§Q).
. s = 1 1)t p
Prooff With a (g], %2) € RV,
A(p) = max a'Ta/a'Sa > max a'Ta/a’
1 LV Y A VR Vi by N

p v P
gelR o 3

Theorem 3: Let x denote the largest characteristic root of §

]l Then
b* b*
(i) If Tiib* = A31h* for some b* 1 0€ RrRY, then T (0 ) S <0 )
b v

]
R2

b* = A§11Q* for some Q* #0¢ qu, then b

Y %]

(11) Suppose A is simple and Q = ( ) is the associated eigenvector.

= b* and QZ = 0.

Proof: (ii) follows immediately from (i) and the simplicity of r. To

show (i), assume that b*is normalized such that p*'S. b*=1 and consider

* ' b*
T~
) m (4 ) MR Tkt X T2
"\ s (b 1+2p*'S - x + x'S
N, n, -

for X-€ IRp'q. The vector of first derivatives of f with regard to the

the function

oxX | Iox

elements of x, evaluated at x = Q, is
n, n, V)



1

of

xleg = 2R - 2Rk (2.5)
vl
If Toh* i A3010*, there exists % € RrP-9, X0 0, such that f(xo) >x = f(0).

By Lemma 1 this is impossible. Therefore IZ]R = *§2]R , and (1) fo]]ows now
from Theorem 2.
In statistical applications we will often have coefficients of eigenvectors

which are close to zero, but not exactly zero. Intuitively we would expect

that ignoring such a coefficient or replacing it by zero should not affect
the associated ratio of variances too much. This is confirmed by the

following theorem.

Theorem 4: Let S and T be defined and partitioned as above, and let q = p-1,

i.ef §22 S99 and T22 t22 are scalars. Let R denote an eigenvector of

é']l and » the associated eigenvalue, and let b be normalized such that
0
1 - - v =
b'Sh = 1. Let Rx =b +(x> » where x € IR, and let f(x) mxIRx/beb . Then,

in a neighborhood of zero,
£(x) = A + (t,AS, )% +o(xd). (2.6)
_ 22 "V22 : )

Proof: Expand f(x) in a Téy]or series about zero.

- Thus, if the p-th coefficieht‘bp of eigenvector b is close to zero,

neglecting bb wi]l‘change'the ratio of the two quadratic forms from

f(O)-= A to approximate1y f(-bp)}m A + (tzz-ASZZ)bs.

~ Lemma 1 and Theorem 3 can of course be formdihted-analogously.for the

-1

smaT]est_eigenvalue of 5 T and its associated eigenvector(s).
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2.3. Statistical hypotheses about eigenvectors

If two covariance matrices Z1 and I, are not identical, three different
kinds of questions might be interesting to ask.

1. Any eigenvector of Eiléz associated with a root » = 1 gives no information
about differences in variability. It might therefore be interesting to
know how many (and which) eigenvalues are different from 1. Rao (1983)
has treated a similar problem in the context of "familial correlations”,
but his approach applies as well to the comparison of covariance matrices.
If p-k eigenvalues of g;]gz are unity, then the simultaneous spectral

decomposition of Zy and 7, (cf. Theoremll) can be written as

%= Elﬁi L Epgﬁ (2.7)
K2 T MB1B1 Tt BByt BraBrer oot BBy
-k
=Ly + L say, (2.8)

where the Aj are not necessarily greater than 1, and r is a symmetric matrix
of rank k. For more details the reader is referred to Rao (1983, paragraph 5).
If we are merely interested in finding a subset of variables Which would be
sufficient to reject the null hypothesis Z1.° Lp» then simultaneous confidence
intervals, based on the largest and smallest roots' criterion, might be a

and c_ from the null distribution of the

useful tool. Given quantiles <4 D

criterion such that
Plog 22y 205 2 17y = Zp) = 1= (2.9)

(where 21 and zp are the sample extreme roots); we can construct any linear

a
vl
variances F(g);= Q'§23/3'§1% with ¢, and cye The acceptance region for Ho is

the set {a g IRg:. vaj_g'§22/g'§]%_i cy}s and it might be interesting to
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identify vectors ae IRP which afe in a sense "simpler" than the extreme

-1

eigenvectors of §] §2, but which are still outside the acceptance region.

The next two sections of this paper will be devoted to the problem of

simplifying the linear combinations associated with the extreme ratios of
variances by discarding redundant variables. Some motivation for this has
been given in Section 1. More generally, we may wish to know whether some

variables have zero coefficients in several eigenvectors of %;]gz simultaneously.

Let %1""’%p denote the eigenvectors of %;]EZ and partition them into the
first q and the last p-q coefficients, i.e. write Qj = (Ej1’ sz) ,» where Qj]
has dimension q. Let v denote a subset of m integers between 1 and p. Then

we define the hypothesis of simultaneous redundancy of (the last) p-q variables

for m eigenvectors as

H,(p,q): Bip=Q foralljev. ‘ (2.10)

0f course Hv(p,q) makes only sense if m, the number of elements in v, does not
exceed q.

Strictly speaking Hv(p,q) is only defined if A 3 A for all pairs
(i,3) such that i € v, j ¢ v. Otherwise, if A = Aj for some i € v, j ¢ v,
the associated eigenvectors are not uniquely defined. However, it might still
make sense to try to simplify by taking a linear combination of é]] eigen-
vectors associated with the multiple root such that as many coefficients as
possible vanish. |

As a numerical example to illustrate this, let

1 -.5 -.5 : 4 -2 -2
,Q] =[-.5 .75 .5 and %2 =r-2 2.25 .25

-5 .5 .75 -2 .25 .25

The eigenvalues of %;]éz are X] = Ay = 4, X3 = 1. Suppose we wish to find
an eigenvector associated with the largest root which has as many zeros as

possible. Then taking By = (1, 0, 0)' would be a good choice.
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3. EXPLORATORY ANALYSIS OF THE EXTREME
EIGENVECTORS: FISHING FOR REDUCED
SETS OF VARIABLES

Quite often in applied multivariate analysis (as well as in multiple
regression) it is unknown in advance which variables should be discarded or
which coefficients of a linear equation should be tested. Subset selection
procedures such as "best subset" regression, stepwise regression and backward
elimination are widely used. In this section we are going to propose a
similar procedure for analyzing the extreme eigenvectors of §;]§2.

The basic idea behind thfs procedure is taken from theorem 3: If
coefficients of the largest (smallest) eigenvector are zero, the eigenvector
can as well be found from the reduced set of variables, and if we suspect that
a coefficient deviates from zero only by sampling error, the associated variable
should be discarded. By theorem 4, annihilating a small coefficient b
(without altering the other coefficients) will change the associated ratio
of variances by an amount proportional to b2, but by maximizing again over
the (p-1)-dimensional subset the actual loss is most often smaller than this.
It makes therefore sense to judge the influence of a variable on the linear
combination with largest (smallest) ratio of variances by the change in the
ratio of variancés which occurs when the variable is omitted. If the variables
are correlated, it can also happen that even variables with "large" coefficients
can be eliminated without affecting the largest (smallest) ratio of variances
much. In such cases, the elimination will be associated with major changes 1in
the coefficients of other variables. |

A]thougﬁ the partia] statistics to be defined could as well be used in

other selection procedures, we will illustrate it for simplicity by a backward
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e1iminatjon method. In any case, an overall test of significance for
HO: §T = §2 should precede the analysis of the extreme eigenvectors in
order to prevent ourselves from the ridfcu]ous results which may occur in
"blind" subset sé]ection. (Freedman 1983, Rencher and Pun 1980). Analyzing
the largest (smallest) eigenvector will in most cases only make sense if the
largest (smallest) root of §;1§2 is actually larger (smaller) than 1. Roy's
Targest and smallest roots® criterion is therefore a natural candidate for
the overall test of_HO: Iy =1, (a]though other tests may have better power
in some situations; see Pillai and Chu (1979) and references therein).

Let now Pl""’Pp denote the characteristic vectors of S']SZ, where §]

~ -~

and S, are p.d.s. sample covariance matrices, and 2y 2 .. z_zp the associated

characteristic roots. Write

(p) _ ..

Ymax - P]¥
- (3.1)
P} _ '

Ymin Pp¥

for the two linear combinations with extreme ratios of variances 24 and zp

respectively. (In order to avoid too many indices, we do not distinguish

notationally between the variables in the first group and those in the second
: c1n £(P) (p)

group). We will also write Frax and Foto instead of %4 and e Let us now

. . s . (p-1),.
introduce partial statistics for the analysis of Ymax' Denote by Fmax (i)

the largest ratio of variances that can be obtained without using Xi. By

(p-1) _ (p) . , : ,
theorem 3, Fmax f_Fmax » With equality exactly if variable Xi has a zero

coeffipient in Yégi (or the coefficient can be chosen to be zero if the largest

root is not simple). The ratio
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(p) () (3.2)

PeF(1) = F{P-1) (i) (P)
- measures the Partial Change of the F-ratio due to elimination of X;. Clearly,
0 < PCF(i) 5_] holds. In addition, it is useful to compute LPCF(i) = log PCF(i)
- the reason for this will be given a little later.

Let us now illustrate the use of these partial statistics in a backward
elimination procedure. The first step of the analysis of Ymax consists of a

. s (p)
table of coefficients of Ymax

PCF(i) and LPCF(i) for all variables. In the second step, eliminate variable

together with the partial statistics Fég;l)(i),

X; if |LPCF(i)| < |LPCF(§)| for j=1,...,p. (Normally this variable will be
unique). Replace p by p-1 and compute again, as in step 1, a list of coefficients

of Yma and partial statistics.

X
This procedure can be continued until a specified stopping criterion is
satisfied or until (in step p) only one variable remains.

For the analysis of Y (based on the "smallest root version" of lemma 1

min
and theorem 3) we define Fégaj)(i) as the smallest ratio of variances that can
be obtained without variable X, and put PCF(i) = Fé?;])(i)/Féga,
LPCF(i) = log PCF(i). Clearly, 1 < LPCF(i) < =, and the variable to be
eliminated is again X, if |LPCF(i)| < |LPCF(j)| for j=1,...,p.
The reasons for computing LPCF(i) can now be given as follows:
- The elimination rule can be formulated identically for Ymax and Ymin in
terms of |LPCF|.
+ The values of |LPCF| are in the "familiar" range from zero to infinity,
with a va]ﬁe close to Zero indicating that tﬁe corresponding variabie

can be eliminated without much loss of information.
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- The values of ILPCFl'do not depend on the numbering of the groups, i.e.

|[LPCF(i)| is the same whether we analyze Yoax based on S{ls2 or Y

-1
2 .1

criterion for the ana]yées of both Ymax and Ymin: e.g., stop the procedure

min

based on S, 'S It is therefore convenient to use the same stopping

if min |[LPCF(i)| > c for a given constant c.
i<p

Numerical example: Flury and Riedwyl (1983) measured the following six

variables on 100 real and 100 forged swiss bank notes:

LENGTH = length of the bank note

LEFT = width of the bank note, measured on the left side
RIGHT - = width of the bank note, measured on the right side
BOTTOM = width of the lower margin |

TOP = width of the upper margin

DIAGONAL‘ = length of the print diagonal.

The two sample covariance matrices are given in table 1. Under HO: Iy = Zos

assuming multivariate ndrma]ity in both groups,
p(.43_§_smal1est root 5_1argest‘root < 2.31) = .95 ' (3.3)

approximately. (These quantiles are taken from an unpublished simulation study).

Table 1c gives the eigenvalues and associated eigénvectors of S;]SZ. Since

both Fmax and Fmin exceed the respective limits, it may be worthwhile to

analyze Ymax as well as Y We give here a detailed stepwise analysis of Ymin

min’

to illustrate the elimination procedure.
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Step 1: all six variables (Fé?% = .284)

variable coefficient PCF LPCF &)
LENGTH -.396 1.034 .033 .293
LEFT -1.174 1.092 .088 .310
RIGHT - -.374 1.014 .014 .288
BOTTOM -.512 1.515 416 .430
TOP 842 1.539 .431 .437
DIAGONAL .587 1.216 195 .345

The first three variables have rather small values of LPCF, and the elimination
of each of them wouldn't affect Fmin much. The first candidate is RIGHT, whose
elimination increases Fmin by mere 1.4 percent (PCF(RIGHT) = 1.014). Thus we

get

. P (5) .
Step 2: elimination of RIGHT (Fmin = ,288)

variable coefficient PCF LPCF Fé?g
LENGTH -.347 1.026 .026 .295
LEFT -1.522 1.423 .353 .410
BOTTOM - -.498 1.519 .418 .437
TOP -.849 1.536 - .429 .442
DIAGONAL .525 1.214 | .194 .350

Compared with step 1, variable LEFT has now more weight (LPCF(LEFT) = .353

instead of .088), and the coefficient of LEFT has changed more than all other
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coefficients, which remain essentially constant. A similar effect occurs if
we eliminate LEFT instead of RIGHT. This means that we can remove either
LEFT or RIGHT without much loss of information, but not both of them. The

next variable to be eliminated is now LENGTH.

Step 3: elimination of LENGTH (F{4) = 205)

. min
variable coefficient - PCF LPCF Fé?&
LEFT 1.734 1.826 .602 .539
BOTTOM : - .462 1.500 f406 .443
TOP ‘ .845 1.512 413 - 446
DIAGONAL . | -.491 ' 1.188 172 .351

This table is very similar to the one of step 2, except perhaps for the fact
that LEFT has again gained some weight. A1l LPCF-values are now rather large

(the minimum increase of F by eliminating one more variable is 18.8 percent),

min
which might be taken as a criterion for stopping the procedure. What happens

if we proceed nevertheless? Well, let's see.

Step 4: elimination of DIAGONAL (Fé?% = ,351)

variable coefficient PCF LPCF Fé?%
LEFT ' 2.097 2.143 .762 752
" BOTTOM .359 1.283 . 249 .450

TOP - .794. 1.348 .299 473
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. PR (2) _
Step 5: elimination qf BOTTOM (Fmin = .450)

variable coefficient " PCF ~ LPCF Fé}%
LEFT 2.511 2.134 .758 .960
TOP - .397 1.090 .086 .491

Finally, in step 6, we are left with variable LEFT and its univariate ratio
of variances, |

In step 4 we can see that BOTTOM and TOP have lost some of their importance.
Thi$ can again be taken as a hint that the elimination of DIAGONAL was not
justified. The same effect occurs even more distinctly in step 5, after the |
elimination of BOTTOM: variable TOP, which is highly correlated with BOTTOM
in both- groups, loses its importance almost entirely. The importance of
BOTTOM and TOP for Ymin lies therefore. in theif joint contribution - which
shows another advantage of the e]imination procedure, for a forward selection
algorithm would not discover the joint importancebof two variables.

If we decide (arbitrarily) that eliminating a single variable should not
increase Fmin by more than 10 percent, we have to stop after step 3, thus getting

Yé?g = 1.73 LEFT + .46 BOTTOM + .84 TOP - .49 DIAGONAL

as a reduced solution. - The associated F(4)

min is- .295, which is not much larger

than Fé?z. Fukthermore, Yé?z is still c]ear]y-in the rejection region for

HO: Z] = I,. Since no other eigenvector of 5—152 is in the rejection region,

it is reasonable to summarize the "too small variability" of the forged notes,

(4)

compared with the real ones, in the single linear combination Ymin’
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What is the.interpretation of Yé?i? -Since}we do not know muoh ahout.how
~ bank notes are produced, it is not obvious. However, the importanoe of LEFT
(or RIGHT) BOTTOM and TOP suggests that the forger s mechanism for cutting
the notes and putting the pr1nt on the paper is very precise. After all, 1t
is rather surpr151ng (and speaks for the quality of the forger S work) that
there is a linear comb1nat1on with sma11er var1ab111ty in the forged notes
than in the real notes!

'Finalty, some remarks.
1. In the above examp]e,‘the six,univariate:ratios of variances are:
~ LENGTH .83, LEFT .49, RIGHT .70, BOTTOM 3.10, TOP .96, DIAGONAL 1.56.
Companing these»ratiOS'with-the steowise analysts of Y min® we-see that
- variables with a un1var1ate F-ratio smaller than 1 may be redundant for Y min
(e.g. LENGTH, RIGHT) On the other hand there may be variables playing an
: important ro]e in Ym1n’ but hav1ng a univariate F- ratio larger than 1 (BOTTOM
DIAGONAL). This shows. that a: prev1ous select1on of variables based on
univariate F-ratios might be badly m1s]ead1ng.
- 2. The example shoWs a]so.that the partial statistfo'lLPCFI behaves much
like partial statistics used in regression or discriminant ana]ysis. Actually,
similar phenomena as. those descr1bed in the above ana]ys1s of Y jn occur
:qu1te often in these two methods, espec1a11y when some variables are nearly
collinear. |
3. If, say, the two largest eigenvalues of 5;152 are close, there may be
different or even disjoint subsets of less than p variables with approximately

the same Fmax' Automatic elimination according to the principle of rejecting

the variable with smallest |LPCF| will of course only find a hierarchical
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sequence of subsets, but nevertheless the partial statistics introduced here
can be used in a search for alternative solutions.

4. It might be argued that Ymin and Yma should be analyzed simultaneously.

X
However, this would make things much more complicated as soon as different

variables are removed from Yma and Ymi respectively. Furthermore, under

X n

normal theory assumptions, these linear combinations are asymptotically
independent, and in an exploratory context it is therefore reasonable to
analyze Ymax and Ymin separately.

5. The method proposed in this section is clearly a fishing trip (Selvin

and Stuart 1966). Many users of multiple regression are not aware of the fact
that the null distribution of the smallest partial F-statistic is not an
F-distribution, and that test statistics should therefore be used with utmost
care, if at all, in an exploratory context - a "drawback to be concerned about"
(Draper and Smith 1981, p. 311). To avoid a similar confusion in the method
of this paper I recommend therefore strongly not to use the asymptotic chi
square statistic (section 4.3) for the stepwise procedure, but rather the
statistics PCF and LPCF.

6. Instead of setting coefficients equal to zero, we might also wish to:
_simp]ify Ymin and Ymax in the sense of equating some coefficients or forcing
them to be in a ceftain relationship. Suppose, e.g., that we wish to try

a so]utfon where the COéfficiénts of variables X] and X2 are in the ratio a/b.
This cah easily be done by computing the extreme eigenvectors using variables

aX] + sz, X3,...,X If simp]ificationlis done by rounding coefficients to

p*
a fixed number of decimal places, it might be possible to give bounds for the

maximum change in the ratio of variances induced by the rounding. Bibby (1980)



23

has obtained such bounds for the principal component case.

7. The partial statistics defined in this section can of course readily be

generalized to measure the influence of two or more variables on Yma

(Y

X

min) simultaneously.
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4. TESTING FOR REDUNDANCY OF VARIABLES

4.1. Notation and terminologx

In order to establish notation, we indicate here brief]y_the matrix
techniques to be used in the following two subsections.} The notation used
here parallels e1ose1y the notation of Tyler (1981).

Let M denote a real pxp-matrix which is symmetric in the‘metriC’of a

Iv
.

p.d.s. matrix g, i.e._{M is symmetric. -The p eigenvalues 3! > A of‘M

P

“are real; they form the spectral set of M. The eigenvectors B (i =1,...,p)

- g ij
» Kronecker delta. We will always assume in the sequel that the eigenvectors

of M can be chosen and normalized such that E!FB' = ¢§.., where Gij is the

'satisfy this condition, even if there are multiple eigenvalues. The projection
operator associated with the i-th eigenvalue is denoted by P = 1Q;m By the
spectra] decompos1t1on theorem these p projection matrices add to the

1dent1ty matrix, i.e. P] + .+ P m , and M E

mp i=1
The Moore-Penrose inverse of M denoted by M+, is a uniquely defined
generalized inverse and can be written as M = 7 A;]Ri. Note that
. Ai#O
P. =P..
Y| vl

We will also use the "vec"-transformation (which transforms a rxs-matrix
to a rsxl-vector by stacking its columns), the'Kkonecker matfix product
(denoted by the symbol "®"), and the commutation matrix of order p2><p2
: (denoted by I(p p))

The reader who is unfamiliar with the above matrix techniques will find
the fo]]owing references useful: Nerring (1970); Rao.(1973, Chapter 1); Searle
(1982, Chapter 11A); Mardia, Kent and Bibby (1979, Appendix A); Muirhead (1982,
p. 17, 73ff, 90); Magnus and Neudecker (1979); Neudecker (1969); Basilevsky

(1983, Chapters 5 and 6), Rao and Mitra (1971).
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However, the test statistic Rv(p,q) derived in section 4.3 is written
in terms of the usual, more familiar matrix operations. The reader who is
not interested in the technical details of the proof can understand and

compute it with a basic knowledge ofrmatrix algebra,

4.2. Tyler's asymptotic test on eigenvectors

Tyler (1981) has considered the following rather general situation:
Let M’be a pxp-matrix symmetric in the metric of the p.d.s. matrix L, with

eigenvalues Ay >...> A _. Let w denote a subset of m integers from {1,2,...,p}
'l—_—p

(1 <m<p). Let A denote a fixed pkr-matrix with rank(ﬁ) = r. Under the

assumption ?;;]xi—xj|'> 0, the following two hypotheses on M are treated:
. | Iy
. qu r < m, the hypofhesis
| HO: The columns of Q lie in the subspace generated by the set
of eigenvectors of M associated with the m roots A for i € w.

- For r > m, the hypothesis

H6:"Thé eigenvectors of M associated with the roots Ay for i e w Tie in

the subspace generated by the columns of Q.
Putting M = §;]%2 and A = gq » our hypothesis of redundancy HV(P;Q) can

W

be written in the form Hy -

Tyler's test is based on a sequenCé of estimates Mn of M such that
van(mn—M)‘converges in distribution to a multivariate normal distribution,
where a is an increasing sequence of real numbers. Moreover, we need a
sequence gﬁ of p.d.s. matfices converging to r in.probabiiity, such that Mn
is Symmétric in the metric of gn’ Denote the eigenvectors of M by
gi'(f = 1,...5p), and the}associated eigenprojections by Ri = Ei@%r'

Ana]ogously,:dehote the eigenvectors of mn by Ri and let Ei Rigign‘
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~

Tyler's test is based on the asymptotic distribution of Ew = 3 Ri' He
iew
shows that, under fairly general conditions (which hold in our case), the

random vector

Xn = vec[an({p- )Q] (4.17)

converges in distribution to Normal (9, io(é))’ where

yo(A) = (A'®Ip),§w;g/w(A®I ), (4.2)
G L, A0 )'e;® B, (4.3)
iew jéw

and v is thg asymptotic covariance matrix of vec[an(Mn-M)].
Suppose that we have a sequence of p.d.s. estimates Rn of x, converging
to y in probability. Then an estimate of wO(Q) which is consistent under H0
n . v

is obtained by defining

,‘{’,O(é) (A'®«I,p)r§w nmw(A®I ), (4.4)
whére
- ] ,
.= ) (24-2 )P ® P' (4.5)
W 'iGW Jé '| .

and %; are the eigenvalues of Mn‘

'The test statistic pkoposed by Tyler is
= A2 b A + _p
Tn(.é) = an{vec[({p-gw)ﬁ]} [3o(A)] veCE({p RaIAL. (4.6)

Under HO’ Tn is aéymptotical]y distributedvas chi square With r(p-m) degrees
of fkeedom. Mdreover, Tn(Q) islinvariant under the transformation A ~ AB
for any nonsingular rxr-matrix B. | |

The prob]eh of testing Hs can be approaéhed as follows: Let g denote a

fixed px(p-r)-matrix whose coTumns are orthogonal to those of Q, i.e. A-§'= 0.
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Then Ha can be rephrased as (see also Theorem 1 (iii) of this paper)
HOS The columns of Q lie in the subspace generated by the set of eigen-

vectors or M' associated with the p-m roots Ay for ig w.

4.3. Derivation of the test of redundancy

Qur hypothesig Hv(p,q) of simultaneous redundancy of p-q variables for the m

eigenvectors gi (i€v) of g;] %, can now be formulated in the form H6 of

N
v

‘ , Iq :
Tyler's approach by putting A = (ﬁb > , Wwhere Q is a (p-q) xq - matrix of

Ol
zeros. Putting B = <}’ > » this is equivalent to
. Ap-q

HO: The columns of B lie in the subspace generated by the eigenvectors
. _ -1 '
% (T€v) of M' =32, 2.7 .
For convenience we will from now on write w for the complement of v, that is, w

contains the p-m indices not in v. We are now going to derive the test for HO

in terms of the eigenvectors,gi of §2 é{] and then relate the resulting test

s . -1
statistic to the eigenvectors Ri of §] §2.

Assume now that §] and §2 are independent sample covariance matrices from

normal samples of size N +1 and n, + 1, i.e.

n,S. n Wp(ni, s

iS5 ;) (=12). | @

Then, for Ny > o, /"i §i converges in distribution to a random matrix with

mean z.. The asymptotic covariance matrix of vec (/ﬁ;§i) is (Muirhead 1982,

p. 113)

qu + i(p,p)) ‘( 2:®r:) (i =1,2). (4.8)

ﬂ‘Put n=n + n, and suppose that N and n, go to infinity such that the Timits
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ky = lim n/n, (i =1,2) (4.9)

1
n.»> o
1T

are bounded away from O and » . By expanding éz%{l in a Taylor series about

-1 . .
M= Lol - we get the approximation

iy a1 .
MGty =M v A LS, - 30 5 - NSy - 29) )
_ -1 -1
=N, S n - Ky Ms Elt o (4.10)

As n goes to ihfinity, this converges in distribution to a normal matrix

N= vk N - KN, (4.17)
with meah’zero, where N, and N, are the asymptotic distributions of vnh, MS 2_]
v M| N2 o 1 vl A1
and v/n, 52 Q;] » respectively. The covariance matrix of vec(Q) is
y = k] cov(vec(ﬁi)) + ké cov(vec(%z))
= ke Mg + .k 2"1M®z
1481 2 281 ~v T R2
otk (211 ® M)I (1.® 1.)
Atk Upsp) “np T A2
+ M 4.1
k(]®I)I(pp)(® Z,): (4.12)

Let the eigenVéctors %1 of M be norma11zed such that a' 5] & = 1(i =1,...,p).

Notlng that M is symmetr1c in the metric of 22 'y the e1genpr03ect1ons are

= aarpzl (=1, .,p) (4.13)

Ri aind A 2

Using the orthogonality of the Ri’ we get
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'y hitg -1 ,
C'(z, ® Mz.)C = P.® ! .
mw(f\fl ¥ '\12)'\:w Y jév ()‘i;)‘j‘)z N2 A %2 RJ (4.14)
and
2 .
C'(z']M®z )c =y ¥ ———M——— Vb ® 5 p (4.15)
WAL TR ey ey (xi-xj)z ve MY '
~and therefore
ol = é 1H +k2l B S P.B®pp!
v woJ )2 2 i fz\;zfuj
J
= (Ip ® 22 (é w®f}\]) R (4.16)
where
G, =B 5.\ NEALY g ) B (4.17)
=B 3 Q.o z . . .
Ny o R2 Ciéw ()\]’_Aj)z il

| G. has rank p-q. (Note that the last two terms of (4.12) vanish thanks to the

. . + PP \
commutat1on property of I(p]p)) Using the fact that Ri = gi (i=1,...,p), we
get therefore

]®22‘p' .  (4.18)

Ly ®)1* - L g ey

Replacing %i; %J

we get a consistent estimate @O(B) and its Moore-Penrose inverse
n

and Aj by the corresponding sample quantities éi’ a. and %"

y®1" = 55 ;' es; b | (4.19)

Using lemma 2.2.3(iii) 1in Muirhead (1982) and the fact that gw = iéw a.i.gz

1 "] - o .
’Ep - JéVQMJ@\JJ%Z - '{p _RV ylE]dS
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4 o ) . )

T,(B) = nlvec(p B)]' [vg(B)1" vec(P B)

=n ) trace (é"]B‘ﬁ'g_]ﬁ B)

j€v v v AWR2 VR

- 1o e=14

= njév trace (gj B'S, Rjﬁ) (4.20)
where the last equality follows from R;Qélgjgv = §5 R3 for j€v. Noting

~-15 - . .
that 5,'P; = gzlgjgj§2 (3 =1,...,p), we see from Theorem 1 that
-1 _ ,-1/2 .

'%2 '?lj = Zj fl?;j (J - ],ootﬁp) ] (4-2])
where bj is the j-th eigenvector of §;1§2, normalized such that QjQ]Qj = 1. Thus
we get

2
kil + k,2.2.
- . 27173 R~ T nt
T(B)=n J biB[R'( ] —J b.b1)p]™'B'b.  (4.22)
n jev VY e (e, - ¢5) ALY

We are now going to use the special structure of B to simplify (4.22), and, to
mark the fact that Tn(B) is a statistic for testing the Redundancy of p-q variables

for the eigenvectors Qi(iev), we will call it Rv(p,q) from now on. Partition Ri

b.
b. = '\‘1] ) | .
b . ( bes > (4.23)

in q and‘p-q components, then

as

22+ Kotk

13 2705 pr oy, (4.24)
e (L - zj)z RizRiz) " Rj2

k

R (p,q) =n ) b
v jev "2

Rv(p,q) is asymptotically distributed as chi square with m(p-q) degrees of

freedom under HO‘

If the redundancy ofbonly one variable is to be tested, (4.24) simplifies
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to
2
k.25 + k,£.2
R,(Ps1) = n .é[bgp/% L 2; b5 (4.25)
Jev i€w _
(g5 - 2;5)

where bhp is the p-th (last) coefficient of bh. Furthermore, if only one
eigenvector, say the first one, is under consideration, we get

: 2
P kil7 + k,L ﬂ
Rp(p1) =mb y p 12142

(‘e] - ‘e.')

(4.26)

with one degree of freedom. This can be used to test the significance of the
partial statistics defined in section 3.

Note that (4.24) thru (4.26) depend on the correct normalization of the
eigenvectors Ri‘ They must be normalized such that R%§1Ri =c (i=1,...,p)
for Some c > 0. The most convenient way of doing this is of course to use the

standard convention b!S.b. = 1.
v , vid] Vi

4.4. Remarks and App]icafions

1. Non-normality. Itviwaé11 known that tests on variances depend, even
asymptotically, much more on the usual normality assumptions than tests on means.
Considerable attention has been given to the case of samples from elliptical
| distributions (Muirhead 1982, p. 32-40, 329-331, 352, and references therein).
Tyler (1981) has specialized his test statistic T to hypotheses in principal
-.component ana1y51s and canon1ca1 corre]at1on ana]ys1s, us1ng samples from an
:elllpt1ca] d1str1but1on w1th f1n1te fourth moments ‘Analogously, the test
statistic Rv(p,q) can be generalized to the elliptical situation: Let €1 and
Ko denote the kurtosis parameters of two elliptical popu]atiohs, defined such

that 3Ki is the kurtosis of any marginal distribution  (Muirhead 1982, p. 41).
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It can be shown that the only change in Rv(p,q) is that the constants ki = n/ni
have to be replaced by k¥ = ki(]+Ki)‘ If k3 =x, =« (say), then the correct

statistic can be written as

RE(P,a) = (1 + <) 'R (p,a) - (4.27)

The asymptotic null distribution is still chi square with m(p-q) degrees of
freedom. In practice, K9 and ko Can be replaced by consistent estimators.
This does not affect the validity of the asymptotic chi square approximation,
but it does affect the rate of convergence. Under the multivariate normal
model we have k =0, ‘and no correction is necessary.
Formula (4.27) shows that testing H0 from an elliptical samp]e of size n
and kurtos1s parameter « is essentially the same as testing H0 from a normal
- sample of size n(1 + K) If k is negative (e.g. the un1form d1str1but1on within
an e]11pso1d has parameter k = -.6), then the use of the norma] theory procedure
leads to a conservat1ve test. In practice, however one is rather concerned about
heavy ta1]ed d1str1but1ons which have positive values of «. In such Cases, :
the norma]‘theory test rejects H0 too_readl]y, thus exceeding the‘nomina] a - level.
While the above correction for kurtosis works fine in theory, its application
- has some flaws First, cons1stent estimators of K can be defined (Sr1vastava and
Carter 1983 p. 66), but the1r convergence to k. may be very s]ow, espec1a1]y if « is
“large. Second the e]11pt1ca1 mode] might not ho]d and skewness m1ght further
affect the correctness of the asymptotic approximation.
If the assumption of elliptical populations is unreasonable, a feasible
alternative approach might be to sample from distributions with the same co-
variance matrices gl'and Zos but which are normal or at least close to normal,

so that the normal theory procedure can be applied. This can be achieved for
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instance by replacing pairs of observations by their sum or difference times
1/V2 , thus reducing the sample size by a factor 2. By the multivariate central
Timit theorem, the new data will be closer to normality, and the sample covariance
matrices closer to wishartness. Taking the sum or difference of two observations

reduces « by a factor 2.

More'genera11y, integers ry > 1 (i = 1,2) can be chosen and groups of r;
observations can be used to get n? = ni/ri new observations which are_c]oser to -
normality than the original data. Instead of acturally carrying out the compu-
tations for the reduced samples, we can also approximate the result by simply
replacing n, by n? = ni/ri and using n* = nf + ng, k? = n*/n$ to replace n and
ki in (4.24). If rp=r,=r, this amounts to the same as dividing Rv(p,q) by
a factor r. Thus the effect is very similar to the effect of the correction
for kurtosis. This procedure results in a loss of power if the underlying
distributions are actually normal or elliptical with small «. However, it
has two advantages: First, if the distributions are not elliptical, inference on
eigenvectors Ean still be done. Second, taking differences (or as an
'approximatiOn, dividing Rv(p,q) by 2) removes ahy effect of skewness!

: 'SimiTar‘methods can of course be applied to the»overa]] tests for identity
of covarfancé matrices.‘ For these tests; some work on the effect of non-

normality'has been done (Davis 1982; Pillai and Sudjana 1975).

If one is completely unwilling to rely on parametric theory, it would pro-

bably be worthwhile to try a bootstrap method (Efron 1982).
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2. Multiple eigenvalues. The validity of the asymptotic distribution of

Rv(p,q) depends on the assumption that d(v,w) = ?;C lxi - Ajl > 0, and, as

: i€w
Tyler (1981, p. 732) remarks, the sample size n necessary to insure that the
chi square approximation is "good" is in general inversely related to the above
quantity. In practice, of course, we never know whether d(v,w) is zero or not,
but we may notice that some eigenvalues of §;]§2 are very close. Suppose for
simplicity, that we wish to analyze the largest eigenvector R], but the roots
K] and ﬂz are close. Then.it might be reasonable to test the redundancy of
some variables for E] and 22 simultaneously. Otherwise, as can be seen from
(4.24), the matrix éz will be blown up, and the test statistic will tend to be

small. This reflects, of course, the fact that if A] and Az are close, the

associated sample eigenvectors R] and 22 have a relatively large variablility.

3. Properties of Rv(p,q). It is obvious from (4.24) that changing the signs

of eigenvectors Ri does not affect Rv(p,q). It is less obvious, but can easily
by shown, that Rv(p,q) doeé not depend on the numbering of the groups, that is,
whether we analyze éil Z, or gé]%]. Note that the eigenvectors of these two

' matrices are identical (up to scaling constants), while the eigenvalues are the

inverses.

4. Estimation of covariance matrices under Hd. If q variables are found to

be sufficient for the eigenvectors B with i€v, then Theorem 2 tells us that

these g7 can be estimated from the reduced set of q variables. However, we might
also wish to estimate 21 and P subject to the constraint that some eigenvectors -
do not depend on some variables. Although a maximum 1ikelihood solution of this

~ problem has been found for p = 2 in the Wishart case (Flury 1983a), a general
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solution seems rather difficult to obtain.

5. Alternative approach. In view of Theorem 3, an alternative approach to

(
the testing problem might be based on the joint distribution of Efp)and,@?).

However, the noncentral distribution of the latent roots of §{]§2 is fairly
complicated (Pillai and Sugiyama 1969), and this approach seems intractable

at this time.

6. Application. In the bank note example, let us test whether the largest
eigenvector depends on the variables LEFT and RIGHT. The largest eigenvalue
, E] seems far enough from the second root to justify the analysis of X alone.
The test statistic (4.24) is R](6,2) = 5.62) with 2 degrees of freedom. Assuming
that the multivariate normal model holds. approximately, we can accept H0 at an
o - level of 5 percent. The linear cohbination with maximum ratio of variances,
estimated from the four remaining variables, is  1.34 LENGTH - 2.05 BOTTOM -
1.35 TOP - 1.28 DIAGONAL.

For those who cannot fish without leering at test statistics, we give here

a list of a11‘R6(6,1) - values to test the redundancy of single variables in
6)
in
.50, BOTTOM 41.73, TOP 38.89, DIAGONAL 12.10. These chi squares, based on one

the linear combination Yé used in section 3: LENGTH 1.41, LEFT 3.32, RIGHT

degree of freedom each, are obviously in good accordance with the descriptive

partial statistics.
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5. THE ONE SAMPLE CASE

As already mentioned in the introduction, it might also be interesting
in some cases to analyze the extreme characteristic vectors of z']z, where
Lo
covariance matrix of a population from which a sample is taken.

is a fixed hypothetical p.d.s. covariance matrix, and & is the (unknown)

If we are interested in zero coefficients, we can use the fact that
there exists a unique upper triangular matrix 9 such that 9'§0§ = Ip
(Choleski factorization, see e.g. Schwarz, Rutishauser and Stiefel 1973, p. 27).
It is easy to show that §6]§and1g = 9'§E have the same eigenvalues and that
every eigenvector B4 of ~6]§ borresponds to an eigenvector Yy = 9-7§i of ye
Let By = (§%], §%2)' and y; = (Y%l’ X%z)' be partitioned in q and p-q
coefficients. Since 9 and 9'] are upper triangular, it follows that Yip = 0

if and only if Big = 9. For the purpose of findfng zero coefficients in the
eigenvectors of §a]§ we can therefore look for zero coefficients in the eigen-
vectors of ? (assuming of course that the{variab]es are properly ordered
such as to put the "zero candidates" in the last positions). The results of
this section will therefore be given in terms of a p-dimensional random vector
 ¥ and its p.d.s. covariance matrix‘?. It will técit]y be assumed in the sequel
that all eigenvectors of p.d.s. mafrices are norha]ized in the usual way.

Let us first apply the results of section 2 to the one matrix case. By
putting § = Ep in theorem 1 we get the familiar spectral decomposition theorem
for a p.d.s. matrix I. Theorem 2 can be simplified due to §]] =1 and 512 = 0.

~q -
However, theorem 2 has two alternative versions (one of them to be given in

~

rectangular brackets) which are somehow more "statistical". Note that by "does
not depend on Y2" we mean that the coefficients associated with the random variables

in v, are zero.
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Theorem 2*: Let the p-dimensional normal random vector Y = (Y!, Yé) be

~

] 1]
11 112
partitioned in q and p-q components, and let ¢ = denote its
| Y21 V22

p.d.s. covariance matrix. Let X].Z denote a random vector having the
conditional distribution of !] given YZ'

(i) Let U = 9'! denote a principal component of Y. If U does

not depend on YZ’ then U is a principal component of !], and
the multiple correlation between U and Y2 is zero [and,
simultaneously, U is a principal component of Y] 2]

(ii) If U* is a principal component of X] and the multiple
correlation between U* and YZ is zero [and U* is
simultaneously a principal component of Yl.Z]’ then
U* is a principal component of X.

The "translations" of theorems 2 (iii) and 3 into statistical terms are
analogous and need not be given here. All proofs are straightforward. In
the proof of 2* (ii) note that ?]2?52%2] b* = 0 implies Ypqb* = 0 since
V22 is p.d.s. Theorem 2* is potentially useful for estimation purposes, but
we are not going to pursue this line in fhe present paper. The one-matrix
analog of tﬁeorem 4 follows by putting 522 = 1.
| The method of section 3 needs only Tlittle (dbvious) modification to
apply to the one sample case. As in the tWo sample case, the largest and
smallest roots' criterion'(or some other test for Hop: T = 0) should be
app]1ed to the data prior to any analysis of the extreme e1genvectors The
null d1str1but1on of the extreme roots of Wishart matrices has been tabulated

by Harumara and Thompson (1968) and by Pillai and Chang (1970).
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An asymptotic chi square statistic for testing Hv(p,q) in the one
sample case can be derived from the results of section 4 as follows:
write the statistic (4.24) as

2
nzlj/n]'l'ki Qj

R,(psq) =n, §7 b: (7
v 2 s'ev ~32 Vi (sai-szj)2

12 12) ~32 (5.1)
and let n, go to infinity, holding n, constant. Then, writing n instead of

n,, we get the one-sample statistic

2.8,
RE(pag) =n ] bl (] —Id_p byl (5.2)
v jew ~Jj2 i'ew (Q 2 )2 12 12 ~32
Here, n is the number of degrees of freedom of a Wishart matrix S, and

= (bhl’ 62)' are the eigenvectors of z']S, normalized such that
bhzobh 1, %, are the associated eigenvalues, and Ly is the hypothetical
covariance matrix. If we are working with the transformed matrix T = C'SC

~

instead (where 9 § C = Ip C upper triangular), then it is easy to show that
the same statistic (5.2) can be used, where 9 denotes now the h-th eigenvector
of T normalized such that thh 1. (Remember, however, that 9 depends on
the order of the variables - the ones to be tested for redundancy must be
moved to the last p-q positions before switching from § to I).

The asymptotic (n»») null distribution of R¥ (p,q) is again chi square
with m(p-q) degrees of freedom, where’m is the number of elements in v. This
result can also be established from Tyler's application of his asymptotic

theory to principal component analysis (Tyler 1981, formula 7.4). Stin

another way of proving this result is based on the asymptotic distribution of
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the eigenvectbrs of a Wishart matrix § (Anderson 1963, p. 130), using Wald's
method (Wald 1943, Moore 1977) and the fact that the eigenvalues of S are
consistent estimates of the population eigenvalues.

For recent developments in the one sample case see Tyler (1983).
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6. CONCLUSIONS

The comparison of covariance matrices has been a stepchild of applied
multivariate analysis. Although most textbooks on multivariate methods give
considerable attention to the analysis of multivariate structure in the one
sample case (Principal component analysis, factor analysis), the comparison}
of the multivariate variability of several groups has most often been treated
 on the crude level of equality versus inequality. I hope to have shown in
this paper thaf comparing two covariénce matrices by analyzing the linear
combinations‘with extreme ratios of variances is a very interesting method
itself, giving much more insight into‘differences between multivariate scatters
than just an overall test of equality.

An interesting related approach (in the one sample problem) has recently
been proposed by Krzanowski (1984). While the descriptive method in section 3
of this paper is based on the idea that changes in a coefficient of a linear
~combination are reflectéd.by changeé in the associated ratio of variances,
Krzanowski's approach is Jjust reverseﬁ the key idea is to compute the maximum
chahges in the coeffiéients of a principal component that are associated with
a given small change in the variance of the component. This method could

probably be generalized to the two sample case.
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Table 1: Covariance matrices of real and forged Swiss bank notes

a) real notes (n] = 100)

RIGHT

LENGTH LEFT BOTTOM TOP DIAGONAL
- 0.1502 0.0580 0.0573 0.0571 0.0145 0.0055 LENGTH
0.0580 0.1326 0.0859 0.0567 0.0491 -0.0431 LEFT
§ = 0.0573 0.0859 0.1236 0.0582 0.0306 -0.0238 RIGHT
0.0571 0.0567 0.0582 0.4132 -0.2635 -0.0002 BOTTOM
0.0145 0.0491 0.0306 -0.2635 0.4212 -0.0753 TOP
0.0055 -0.0431 -0.0238 -0.0002 -0.0753 0.1998 DIAGONAL
b) forged notes ("2 = 100)
LENGTH LEFT = RIGHT BOTTOM TOP DIAGONAL
0.1240 0.0315 0.0240 -0.1006 0.0194 0.0116 LENGTH
0.0315 0.0650 0.0468 -0.0240 -0.0119 -0.0050 LEFT
0.0240 0.0468 0.0889 -0.0186 0.0001 0.0342 RIGHT
§ -0.1006 -0.0240 -0.0186 1.2813 -0.4902 0.2385 BOTTOM
0.0194 -0.0119 0.0001 -0.4902 0.4045 -0.0221 TOP
- 0.0116 -0.0050 0.0342 0.2358 -0.0221 0.3112 DIAGONAL
c) eigenvalues and eigenvectors of éiléz
eigenvalues:
Fmax = 6.?225 1.6745 1.0516 0.9003 0.5455 0.2839 = Fmin
~ efgenvectors: . v
| -0.975]» -0.0718 -].4129 : 1.9840, -1.3421 -0.3961 LENGTH
- '0.7054 0.0426 -1.0120 1.3528 3.3632 -1.1742 LEFT
- .0.4192 1.4190 1.9213 -1.6155 -2.5544 -0.3740 RIGHT
- =2.2562 -0.4762 -0.3505 -0.0446 -0.2471 -0.5121 BOTTOM
-1.5528  0.4905 -1.3088 -0.7537 0.0319 -0.8418 TOP -
-1.0667 1.9275 0.1204 0.5800 0.6345 0.5866 DIAGONAL



