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ABSTRACT

We provide a sufficient condition for a data-based histogram density
estimator to be consistent in the sense that the mean absolute deviation of
the estimator and the density function converges to zero for any density

function as the sample size increases to infinity.
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The purpose of this paper is to provide a sufficient condition under
which a data-based histogram density estimator is consistent with respect
to mean absolute deviation loss.

Suppose we want to estimate the unknown density function f of a
sequence of 1i.i.d. IRd valued observations X]’XZ""’Xn"' . We could

proceed in this way: First choose a sequence of partitions T ={An K 1 <k <N

then use fn(x) as an estimator for f(x) where:

q
n,k .
) —nﬂ'&;—k—) if XEAn,.k and 0 < )\(An,k) < w , (])
f (x) = ?
n 0 otherwise,

Nk = #{1 : XiEAn K i=1,2,...,n} 1is the number of sample points which
do

fall in the n-cell An,k and ) is Lebesgue measure on @ = IR". The choices
of {m,} might or might not depend on the observations (X1’X2""’Xn)' We
call {fn} a histogram density estimator for f with respect to the partition
| {nn‘}. A histogram density estimator is called data-based or fixed celled
depending on whether the choice of {nn} is or is not based on the observations.

Some examples of data-based histogram estimators are Van Ryzin's un-
symmetric histogram estimator (see Van Ryzin [8] p. 495-496), Scott's data-
based histogram estimator (see Scott [7] p. 608) and the Abou-Jaoude random
partition estimator (see Abou-Jaoude [2] p. 300-301).

The main reason that we want to study a data-based density estimator
(data-based means the smoothing factors, which are the lengths or the volumes
in the histogram estimator case, depend on the observations) comes from our
belief that in order to accurately estimate a density function, the obser-

vations should primarily affect the estimation only locally. With a suitable

data-based density estimator, one might get a fairly good estimator for f



even if the sample size is just moderately large.

Abou-dJaoude [1], [2] studied the properties of histogram estimators
(data-based or fixed celled), and especially the convergence properties of
the risk when the absolute deviation is ued as the loss function and the
sample size approaches 1nf1n1ty.] The mean absolute deviation, which we
consider a reasonable "global measure" to indicate how good a density
estimator is, enjoys at least the following good properties: first, it is
invariant if we change the way we measure data, and second, if the estimator
converges to the true density function pointwise almost everywhere and the
risk is uniformly bounded, then the mean absolute deviation converges to
zero as the sample size increases to infim‘ty.2

In the following, we only consider the case that each cell Aok is a

rectangle. We need the notations (2) - (5) to state our main result,

Theorem 1.
ba0x) =8 ifxen (2)
z, (x) =‘& 0 f(t) a(dt) (3)
a4, (x) =z, (x)/x(a,(x)). (4)
B (e) = {x: diameter of A(a,(x)) > e} (5)
1

Abou-Jaoude[2] showed f[fn-fl—>0 in probability. But this result is
equivalent to E'[]fn-f[ + 0.

In fact, it is easy to show that is fn -+ T in AxP measure, and E ffn > 1,
then E [ Ifn—fl ~ 0.



An(x) is the n-cell which contains the point x, zn(x) is the mass contained
in the (random) n-cell An(x), qn(x) is the average mass at the point y over
the cell An(x), and Bn(s) is the union of those n-cells having diameter greater
or equals to . Of course, Bn(e) contains the union of infinite length

(or volume) n-cells.

Theorem 1:

If a (data-based) histogram density estimator'{fn} satisfies conditions

(A) and (B), then {fn} is consistent for f: i.e.

EL](fn,f) =Ef ]fn(x) - f(x)[r(dx) —0 as n —w . (6)
Q

(A) For any ¢ > 0, there exists a fixed compact set K = K€ such that

[ f(x) A(dx) < e, (7)
Q KE

the diameters of An(x) in all directions approach zero almost surely

for all xeK, (8)

and

The expected mass contained in the random set Bn(e) converges to zero

as the sample size n approaches infinity for any fixed ¢ > 0, i.e.

EJf f(x)x(dx) =0 as n— =, (9)

(B) there are at most s{n,K) n-cells intersecting K, where

op (n) ford =1,
s(n,K) = (10)

Op (n]/z) for d > 1.



Heuristically speaking, the condition (A) guarantees that the expected
total mass of the estimator, E ffn, converges to 1, the condition (A) (9)
guarantees that the bias due to using qn(x) to approximate f(x), flqn - fl,
approaches 0, and the conditions (A) (8) and (B) (10) imply the variation
of |fn - qpls [ var(|f - q.[) is small.

We need Lemmas 1 and 2 to prove Theorem 1.

Lemma 1:

Suppose XO,X],XZ,...,Xm are i1.i.d. random variables. If k < m, then

there exists a universal constant C such that

k
E sup § [N -m p;| < C /mk, (11)

m i=1

where the supremum runs over all possible partitions with k components,

N, =N.(m) = #{J: 1 < J <m, Xj belongs to the ith component of =}, and

=)
il
=)
—
3
p—
]

P(XO belongs to the ith components of =« ).

This is a result due to Chen, Davis and Rubin, [3].

Lemma 2:

Suppose X]’XZ""’Xm are i.i.d. random vectors with continuous c.d.f.

Then the empiric process, /E(Fm—F), converges to a process with a.s. continuous

path if m > «,

This result should be well-known, but we have been unable to locate a
good reference. We indicate a possible way to reach this conclusion: apply
Rubin's Lemma [6], then follow the steps of Gastwirth and Rubin [5] usina

the moment of order 2d + 2.



Proof of Theorem 1:
First, observe that for B, = Bn(m) and any choice of K:,

E J|f -f]

<E fB [f-fl +E [Tl *EJ |f]

* *
n QmKntn QmKntn

tE] Ifm9,] +Ef

la -f|
* n
anuBn

*
Kntn

Hi

Qi (n) + Qy(n) + Q3(n) + Qu(n) + Qg(n), say, (12)

For any given positive number ¢, K = K€ is the compact set mentioned
in condition (B), If we let K; be the union of those n-cells that intersect

the compact set K, i.e. K: = K;(w) = {x : A (X,0)N K# ¢}, then as

n
shown in (I) - (V) below, each -Qi.(n) eventually 1is Tess then or equal
to some constant multiple of . Therefore E f]fn - f| > 0.

v

*
Define the integer setan(K) and Jn as following:

J;(K) = {k: An,k'ﬂ K# ¢}, (13)
LAVIE ]
Jn = {k: A(An’k) = o}, (14)
(1)
Q](n) =E [ f < e for sufficient large n, by condition (7).
By
(11)

_ fn
*
QmKn

O
N
—
=
e
1]
m
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LEgi: Xeank, 1<i<m

> f(x) a{dx), by the Law of Large Numbers.
QK

]
nNo
—
=
~—
A

< ¢ for sufficiently large n.

Since Q ~ K; v Bn<: Q ~ K, we have:

f f<e.

QK

Fon)

w
——
>
o
| A

Let z.n j denote the mass contained in the n-cell An i i.e.

For d = 1, we apply Lemma 2 and condition (10),

1 vqn J Zn J
Q,(n) = E J N oy e By cwa e
n T4 Aa. .) ala, ;)
Jedp(K) a5 n,J n,J
.
=E— ) lg, 5 -n 2z .
n Jed*(K) nsJ nJ



Q4(n) < ¢ for sufficient large n.

For d > 1, according to Lemma 3, - /ﬁ’(Fn(x) - F(x)) converges to

an a.s. continuous stochastic process Z(x). Let
G (x) = F (x) - F(x). (16)

Since a continuous function on a compact set K is uniformly continuous for

any €, ¢ > 0, there exists a § > 0 and an integer n, such that

0

P( /ﬁ'|Gn(x) - Gn(y)| < e 21-d for all XsY such that |x-y|<§)<1 - ¢

if n>n, (17)
Now, suppose the compact set K is covered by M non-overlaping rectangles
one of whose sides is less than §, E],...,Em.
Let

. i i _ _
Ei {x a7< Xy S'akZ’ k=1, 2, ..., d} . (18)
2 2 k1+ + kd ; ;
FE) = T T (D) Fo((ag s s ag, ) (19)
k]—1 kd—1 1 d

and



2 2 \TRETER PR i
FE,) - T F((al. e al ). (20)
Jq=1 A 1 d
1 d
Then
2 2 It Hy i i
FED) - FE) = 1 .o T (1) Gy((als onsags ) . (21)
J]—] jd=] 1 d

od-1

Since there are pairs of points, each having one positive and one

negative coefficient, differering in a specific coordinate, we may use (17)

to show that with probability > 1 - ¢, all [F (E;) - F(E))] <n" /% c. Hence
if M= O(n]/z) and the rectangles get small (notice condition (7)), the

total L] distance due to the rectang]es which intersect K goes to 0 with

probability greater than 1 - . Since ¢ is arbitrary, we have the conclusion:

Q4(n) < ¢ for sufficient large n.

(V)

For n > 0, let K(p) be the closed u neighborhood of K. It is obvious that
A(K(p)) <= for all u > 0. If we use a(g) to- denote the diameter

of £ , then by condition (9),

Hy = [ P(d(a (x)) > &) a(dx) < 2 for n sufficient large.  (22)
K :

But this means

2

P{x: xEEK: N K, An(x)rlK(e) = ¢} < ¢~ for n sufficient large. (23)

Hence



Qg (n)<E f . la, - fl +E [ Ja - f (24)
K¥ v~ B K
n
< E la,| + Ef f+E[ |q-f|.
- fK*f\,B vK D * B o K n
n n
The first term of (24)
EJ gl < [ f+1 [ f x Pixt xeKfn K, 8 (x)NK(e) # ¢}
K*~vB K M K € K
n n
<s;'l'ﬁ €2
— €
< 2¢ for n large enough. (25)
The second term of (24),
E [ f< [ f<e (26)

K¥ v~ B K 7oAk
n n
The third term of (24) converges to zero by condition (9) and A(K) < .

E IK la, - fl < e for sufficient large n. (27)

Combining (24) - (27), we have

Q5(n) < ¢ +2¢ + e for n sufficient large, g.e.d.

Scott [6] proposed the data-based density estimator for 1-dimensional

density function f: choose partitions T = {An K 1 <k <=} satisfying

-1/3

A(An,k) = hn = 3.49 5, N for all k , n. (28)



where Sh denotes the sample standard deviation of {X], v Xn}. It is

a simple corollary of the Theorem 1 and a result of Chen and Rubin [ 3]

10

that the Scott's data-based histogram estimator is consistent if E|X]|5/5 <o,

More generally, we have the following result:

Corollary 1: Lf_fh'iS'a'Scott-type data-based histogram estimator,

~ there exists an a, 0 < a <1 and a constant C such that

x(An k) =h = Cs_n for all k, n, (29)

2
....... Tow
1l

< oo,

Proof:

Applying the result of Chen and Rubin [4], Corollary 9, the condition

2
T : .
E[Xq] o equivalent to h, > 0 a.s. as n~>w. It is very
easy to verify conditions (7) - (10). q.e.d.

Finally, we want to point out that:

Suppose we divide (-w,) in intervals of increasing lenath in both
directions. For example, (0,11, (1,2], (2,4], (4.,8],...,
(-1,01, (-2,-1]1, (-4,-2],..., and use Scott's method in each interval

1/3

which has at least n observationists, and 0 in the other intervals.

Corollary 2: The above histogram estimator is consisten for any density.

This example shows some of the advantages of data-based estimators.

Proof: Verify conditions (A) and (B) of Theorem 1.
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