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ABSTRACT

Straightforward derivations are provided for some identifiability

results for Time Series models with Errors in Variables.



Introduction

It is a pleasure to join in the Festschrift for Ted Hannan on the
occasion of his 65th birthday. One of Ted's most impressive contributions
to Time Series Analysis is his realization and exploitation of .the role .of
multivariable polynomials in the identifiability problem for multivariate
ARMA Time Series (see his 1969 article and his review article in 1979).
Another area of Time Series that revolves around identifiability is the
Error in Variables problem and Ted was an early worker here too (Hannan,

1963). This essay is concerned with such problems.

The Problem

‘Recent1y Maravall (1979) has provided a careful exposé of the
identifiability of some Time Series models with Errors in Variables (EIV).
The interesting results revealed by Maravall are that often identifiability
is not a problem as it is in the traditional static case. He shows that
the identifiability problem differs depending on whether or not the input
or exogenous sequence is serially uncorrelated or serially correlated.

In any case the results are expressed as simple counting rules.

However Maravall's argument is very Tong (developed over 120 pages) -
something that he lamented in the preface. In this essay a simple direct
development is given of the basic theorems of Maravall. The present discussion
clearly reveals the origin of the identifiability conditions. Actually the
results obtained include Maravall's in that the exogenous sequence need not
be modelled by an ARMA process for some of the results.

Soderstrom (1980) has independently given some identifiability results
for EIV problems but his model is different from the one used by Maravall.

He also models the input sequence as an ARMA process though. Further,



Soderstrom excluded the case that the input sequence is white noise (so
carefully discussed by Maravall). Otherwise the two sets of results are
more or less the same. The relationship will be discussed below. Recently
Anderson and Deistler (1982) have extended SOderstrdm's discussion but again
excluded the case of white noise input. |

Section 1 opens the discussion of the single input single output
(SISO) case, pointing out how the white noise input case is different.
In Section 2 the basic results of Maravall are derived in a direct and simple
way. In Section 3 SOderstrim's results are reviewed and extended to cover

the case of a white noise input.

1. SISO identifiability with EIV: first steps

We begin with a basic model for the observed output (y) and input (z)

and unobserved output (Y) and input (Z) as follows

Vi = Yt_-l‘l'z-:yt (1a)
Ay(L)Yt = By(L)Zt+vt (1b)
Zt = Zt + €t (1c)
AV(L)vt = B, (L)v¢ (1d)
here LY, = Y etc.; A (L) = pra“ Li tc.; the ¢'s and v are white noises
W t o t-1 T N 0 %w,- ¢ ¢ v

i

and uncorrelated among each other; A

Y0 =1T=A .= BvO' Also we denote
(a

v0

y]...aypy) by a, etc.

all roots of ZpAy(Z~]) =0 are < 1 in modulus (le)

Z, is stationary (1f)

t



To begin a study of the identifiability of model 1 (ie equations 1) we

naturally calculate the following covariances

E(ygy,) = Yy(T) = vy(1) 130 (2a)
E(zyz ) = v, (1) = v, (1) 130 (2b)
E(.‘/OZ_T) = sz(T) = YYZ(T) all t (2C)

The step that now follows naturally is to seek the parameters §y’ Py

by taking cross covariances in (1b) with Zt+T to find

Ay(L)sz(-T) =B (L)YZ(-T) all . (3a)

Now a problem is immediately apparent. Suppose Zt is a white noise

then clearly for -t > qy

sz("T) = Ay“—)sz('T) =0

and we can find gy by assembling and solving these equations in matrix form.
However we have trouble in finding Qy for the only equations apparently

available are for -t = O,+1,...,qy, namely
viz(-1) = b, 17(0) (4)

so that only ByT =b TYZ(O) can be found. So we are missing a scale factor.

y

For this reason it is clear (as Maravall found) that we need two types
of result. One when Zt is white the other when Zt is not.

Before continuing the discussion an important simplification with regard
to the identifiability of ARMA models is made. In the Appendix it is shown
that the p+q+1 parameters g,g,oz of an ARMA (p,q) model such as (1d) are
equivalent to the r+1 = p+g+l autocovariances YgsYse oYy (i.e. each set

may be obtained from the other). Thus identifiability of an ARMA model is

established if these autocovariances are found. This equivalence is more



than just a theoretical point. The author has recently discussed algorithms
for constructing the exact likelihood in both the scalar and multivariate
cases parameterised by autocovariances. See Solo (1982), Solo (1983a).

Now let us observe from (2b) that yz(l)...yz(r) are available for any
r. So that the whole covariance sequence of Zt is available once YZ(O) is
found. Then if appropriate,an ARMA model may be constructed for Zt (as
observed in the Appendix this includes the orders pz,qz). For these reasons
we are henceforth only concerned with the identifiability of yZ(O).

So far as Vi is concerned we similarly need only show how

YV(O)’ yv(l)...yv(rv) may be found. It will still prove convenient though

to state results in terms of a_,b ,02 .
“Vv’av?yy

The following results will be established in the next section. For other
results see Section 3.
Result 1C. If Zt is serially correlated then

2 . .
[a,: byJs [v7(0).0.;1, a, are always identified.

Result 1C'. If Zt is serially cbrre]ated then

[pv,oiv], Ogy are also identified iff

p, > max(0,q,-p +1)

Result TW. If Z, is a white noise a

t a. are always identified.

VA

Result TW'. If Zt is a white noise then

2 2 2 . ces
[bysocyTs [v;(0),05;1, [bys00, ] are also identified iff

min(py,qy) 3_max(0,1+qv-pv)

max(py,qy) 3_1+max(0,1+qv-pv)

Remark 1. Note in the above results that py, qy, p, can be obtained from

the covariances. However in Results 1C', W', q, must be known.



Remark 2. For our result IW' cf Maravall's Theorem 4; while for 1C' cf
his Theorem 7. Note though we do not require as does Maravall that Zt

be ARMA. Actually Maravall considered multiple but independent 1nputs
and so joined Theorems 4, 7 into Theorem 8 (see p. 121 and the Table p. 122).

These results are easily established by straightforward extensions of the

discussion given below.

Remark 3. The case of correlated inputs is much harder (Maravall only

found sufficient conditions) and will be discussed elsewhere.

2. SISO identifiability in EIV models: Details.

First we treat the correlated case.

Result 1C.

Assemble equations (3a) for v = 1,2,...,(ry+1) in matrix form and solve
(via (2b), (2c)) for (gy,py). This is straightforward unless Zt is MA with
95 < qy or ARMA with Py < qy for then the last rows in the matrix are null
or linearly dependent on previous ones. We deal with this in a moment.

Next put = = 0 in (3a) to yield an equation for YZ(O). In case

b ~=0putt=1¢etc. Finally from yZ(O) = YZ(O) + ogz we obtain OSZ'

y0

To cover the MA or ARMA case we have only to be a 1little more judicious.
First reduce the ARMA case to the MA. We can (cf Appendix) find AZ(L) with
A,(L)y;(-7) = 0 for © > q,. Thus introducing Z, = A,(L)Z, we find (3a)
becomes

Ay(L)YYi('T) = By(L)Yi('T) (3b)

and Z, is MA(g,). We find for 1 > g,

Ay<L)YYi('T) =0
which gives (via 2c) a set of equations for NS So introduce ?t = Ay(L)Yt
then (3b) becomes



vyz (=) = By (L)yz(-1). (3c)

This yields a set of ay + 2qz+1 equations for the qy+2 unknowns Qy’ YZ(O).

By writing out an example or two the reader can see that these equations have
a quadrilateril shape. So by solving from the top down and bottom up a set
of Tinear equations is obtained for Py’ YZ(O). The argument continues as

above for ozz.

We have a, left to find. Take covariances in (1b) to see

1]

v, (1)

v EtvglA, (L)Y_ -8, (L)Z_ 1}

E(veA, (L)Y_ )

p, P q, G
Yy c i Yor Y e Y oo
%y 0 ayiayij(1 j-7) Zo” g byiayjYYZ(1 j=t). (5a)

This set of equations involves YYZ(-) which is identified and yY(-) which
is identified except for yY(O). However for t > Py yY(O) does not appear
so we can calculate yv(py+qv)...yv(py+rv) and hence (cf Appendix A) determine

the autoregressive (AR) parameters a Result 1C is thus established.

v
Result 1C'.

Now to find the other parameters we first reduce Vi to the MA case.

Multiply through (1b) by AV(L) to see

A'(L)Yt = BJ'/(L)Zt + v% (6)

where Ay(L) = Ay(L)AV(L); py = deg(Ay(L)) =Py tp, ete.; vy s a MA(qV)

process. Now return to equation (5a) (with v, py, qy replaced respectively

'p!.q'): 111 N,
by yypy,qy) call it then (5a')

We need the autocovariance sequence of v From equation (6) it is

£
clearly available (via (2a)) once we know YY(O).



Now according to assumption yv.(T) =0 > 9y In order to
determine yY(O) from this assumption we must have it appear in (5a') for a lag

T > g, However it only appears when t < p We can thus use our assumption

v
to find YY(O) if and only if p& > q, i.e. py 3_max(0,1+qv-pv), Then we find
2 = v, (0)-vy(0). Result 1c'

(t) by taking covariances in (6) while Oy y

le

is thus established.

Now we turn to the white noise case.

Results W, TW'.

Previous argument has established TW. For TW' recall that from (3a)

we can only find byTYZ(O) -r=0,1,...,q and YZ(O) js still missing. It is

Y
equation (5a) that can rescue us again.

If we substitute (4) into (5a) we see

_ Py by v =Ty e Yy (s
v (1) = 5y’ g ayiayij(1-J=r)-yZ (0)z4 yYZ(-1)yYZ(1 -7). (5b)

Once more we reduce consideration to the case where vt is MA. Observe that

for t > p_, YY(O) does not appear in (5b) while (in view of (4)) if = > Ay

y
yZ(O) does not appear. Thus for t > max(py,qy) we can directly calculate

YV(T) and so find the AR parameters a We then multiply through (1b) by

v
A,(L) as before to obtain an equation Tike (b). We can then return to (5b)
(now called (5b') with VsP, 19, replaced by v',p&,q& as before.

According to assumption Yv.(r) =0 for 1 > q,- In order to determine
YY(O)’ yZ(O) from this assumption we must have them appear in (5b') for two
lags © > a- Now yY(O) only appears when t §_p§ and YZ(O) only appears when
T f_qi. We then have two possibilities

)

(1) YY(O) appears in the Tag g, equation (which requires clearly p& > q,

and y,(0) appears in the lag(q,*1) equation (which requires q > q,t1)



(ii) wvice versa
We can summarize this by saying we need

min(p,»q,) > max(0,1+q,-p,)

max(py,qy) 3_1+max(0,1+qv-pv)

: .2
Again we find ey = yy(O) - yY(O).
Result W' is thus established. (Since yY(O) and yZ(O) are both available

(5b) yields the remaining unknown covariances yv(r)).

3. The Transfer Function Model

The transfer function model used by S8derstrdm is as follows

Yi = T(L)Z, (7a)
Vi = Y% + v% (7b)
2, = Iy +egy (Tc)
A(L)vg = B (L)vgy (7c)
where v* is a white noise; T(L) = A;](L)By(L).
Z, is stationary (1f)
v; is stationary. (7d)

Let us first observe the connexion with the ARMAX model used by
Maravall. From (la) we see
IV -1
Yt = Yt + Ay (L)Vt'
Thus we can replace (la), (1b) by (7a), (7b) where

o _ a1
Vi = Ay (L)vt + Syt
Thus Maravall's scheme is included in SOderstrom's.

As before we learn from (7) that



Yy'z(T) = T(L)Yz(T) all ¢ (8&)
sz(r) = vy*z(1) all ¢ (8b)
v, (t) = v,(1) T $ 0. (8c)

Now in solving (8) for a,, Qy we meet exactly the same trouble as before if

y
Zt is a white noise. This point was not discussed by Soderstrdm or Anderson
and Deistler.

Note that if Zt is serially correlated we can as before obtain

[gy,gy], [oiz,vz(o)], g;. From (7a) we then get yY-(r) for all t and then

from (7b) yv-(T) = Yy(T)—YY°(T). Thus we have (cf S8derstrbm (1980).

. . 2
Result 2C. If Z, is serially correlated then [gy,gy], [o_75v,(0)1,
[g;,g;,oiv] are identified i.e. all the parameters are identified.

Now SOderstrom's results are extended by proving

Result 2W. If Z, is white noise then

t

2 . . 2 . . . .
[gy,gy], [o7v7(0)1s [aysbys00,] are identified iff

Py=Gy < Py-ay-
Since Zt is a white noise we have as before that byT = berZ(O) are
identified. We are led then to write (7b) as
yp =YLt vy (9a)
s vilr) = yyle) + yi(e) (9b)
where
yg = ALy, = ALA (L)y, (10a)
[ -1 * o
Vi = vz (0)AL(LIB (L)Y, (10b)

i Ay(L)B\',(L)vvt

<
1]
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so that the dashed quantities are MA processes. Now Yt is an ARMA process
in this case (since Zt is white) so that we can (as in the Appendix) identify
A(L) and hence (since Ay(L) is identified) A;(L). Thus Y;(T) can be found
from yy(T).

The idea is of course to use (9b) to get an equation for yZ(O). For
this we need at least one lag for which yQ(r) + 0 yet y&(r) = 0. Now (10b)
shows us that YZ(O) appears in (9b) for < Py * 4 However from (10c)

y

we see y;(f) vanishes for = > p +q . We clearly will have an equation for

Y
v, (0) iff

Py- * 9y > Py +q
Then since yZ(O) is identified, so is By(L) and hence via (7a) so is

y;(r). Thus yv(r) is found from (7b). Finally USZ = yZ(O)—yZ(O). Result

2W is thus verified.

Remark. If Zt is a white noise and YZ(O) cannot be identified we still have
valuable information. Indeed T(L) is known to within a scale factor (YZ(O)).
Further we canbound-yZ(O) since it is 5-Yz(0)' Of course independent
knowledge of czz resolves the problem completely. In any case all the

phase information (ie lagging) is available in T(L): this can of course

be extremely useful.
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Appendix. Parameterization of ARMA models by autocovariances

It is shown here how the parameters a, b, o2

of and ARMA (p,q) model
determine and are determined by the r+1 = p+q+] autocovariances v(0),y(1),...,y(r).
Obtaining the v's from a, b, 02 is simply the question of generating the
autocovariances of an ARMA process. The best algorithm for this is due to
Hwang (1978) and independently Wilson (1979). Thus only the reverse transfor-

mation is considered here.

Consider the ARMA model A(L)wt = B(L)vt and take cross covariances

with w,__ for = > q to see

I

Pasinn )

—

p —
<2
]

0 T >q
and y_ = y (t). We can write this in matrix form as
T w

ﬁp(a]...qp)' = (yq+1...yr+])

where H_ is the Hankel matrix (i.e. one whose cross diagonal entries are

p
equal)
Yq  Yg-1 - Yg-ptl
v
- q-1
Hp :
Yq_p+'l --------- Yq_2p+2

From this set of equations a is clearly obtained. Actually p can also be
found since it is defined by

p is the smallest index > Rank H =R Vi

pt+i
(see eg Solo, 1983a).

There are several ways to proceed now (cf Solo, 1983b) but a simple one

is to reduce consideration to the MA case. Since by definition Uy = A(L)mt

(q)

is a MA(q) process we can use YgoY1s- oYy tO determine yu(O)...yu

from the equations.
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_ PP .
YlT) =35 35 35857y 44, 3 3

Then from the (g+1) MA covariances yu(-) we can determine 02, b by spectral

factorization i.e. say the iterative procedure of Wilson (1969).
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