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Abstract

In this paper we shall cdnsider the additive 3 factor linear model such
as is used in Latin Square design settings. We seek optimal designs under
this model for comparing p test treatments each simultaneously with a control.
Conditions under which a design is A-optimal and under which a design is
E-optimal are derived and examples given of when these conditions are satisfied.
Since E-optimality is a criterion that involves the variances of contrasts
other than those of test treatments vs. the control, we show that many E-optimal
designs are also optimal under two criteria involving only the variances of

test treatments vs. the control contrasts.



1. Introduction: Consider an experimental situation where it is desired to

compare p > 2 test treatments to a control treatment. Let the pt+l treatments
be indexed 0,1,...,p with 0 denoting the control treatment and 1,2,...,p the
test treatments. Suppose the treatments can be applied in plots arranged in
R rows and C columns. Assume that only one treatment can be applied in each

plot. An observation Y.., 1is to be taken on the treatment in the plot located

ijk
in row j (1 < Jj <R) and column k (1 < k < C) where treatment i (0 < i < p)
is the treatment applied in this plot. If the row and column Tlocation of the
plot can possibly effect the value of Yijk’ we might consider modeling Yijk

by the additive linear model

(1.1) Y.
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p is the overall average response, o the effect of treatment i, Bj the effect
of row j, Yk the effect of column k, and Eijk the random error present in Yijk'
We assume the €43k are uncorrelated random variabies with mean O and variance

02. We also make the usual assumptions that

Model (1.1) is the usual model associated with Latin Square and Youden
designs. It arises in many agricultural, biological, and industrial settings.
Most of the design literature for model (1.1) applies to situations where one
is interested in estimating all possible contrasts among the L E EERRRLAG In
this paper, however, we shall focus attention on the case where one is only

interested in contrasts of test treatments with the control, i.e. contrasts of



the form aOaO - 1§]aiai with 1§]ai = ao, ao # 0. These treatment-control

contrasts are to be estimated by their best linear unbiased estimates (B.L.U.E.s).
An experimental design in this setting is a particular allotment of
treatments to the RC plots, one treatment per plot. Our goal is to find the
best, in some sense, design for estimating all test treatment-control contrasts.
To that end we introduce the following notation. For given values of p, R, and
C let D(p,RsC) denote the set of all possible designs for (1.1). For deD(p,R,C)
let rij(d) denote the number of times treatment i occurs in plots in row j, let

sik(d) denote the number of times treatment i occurs in plots in column k, let

r.(d) =

C
i rigld) = L sp(d)

I~ 2o

J=1

which is the total number of times treatment i occurs in design d, let

R
Ahi(d) = jZ] rhj(d) rij(d)
C
and “hi(d) = kZ] shk(d) Sik(d)'

Whenever it is clear which design d is being referred to we shall drop the
(d) to simplify notation.

For estimating all possible treatment contrasts it is well known (see for
example Kiefer (1958)), that the information matrix N(d), for deD(p,R,C) is

the p+1 x p+l matrix whose i,j-th entry nij is



= 2 e i_s
ri = kii/C - “ii/R + ri/RC if i=]

(1.2) "ij =

-Aij/C - “ij/C + rirj/RC if i#J

where 0 < i, j < p. The row and column sums of N(d) are known to be 0.
Paralleling the argument in the appendix of Bechhofer and Tamhane (1981) one
can show the information matrix M(d) for estimating all test treatment-control

contrasts is the pxp matrix whose i, j-th entry, mij’ is

I

2 L
i~ Aqi/C - /R + ry/RC if i=j

(1.3) mis =

“Ap5/C = mgy/RF Ty /RC A A4

where 1 < i, j < p. M(d) is a nonnegative definite matrix and is nonsingular
if and only if all the p contrasts ag=0qs ao-uz,...,ao-ap are estimable. If
M(d) is nonsingular, M'](d) is proportional to the variance-covariance matrix
of the B.L.U.E. of the px1 vector (ao—u1, ao-az,...,ao-ap)', where primes on
vectors indicate the transpose.

We are now in a position to state explicitly what we mean by a design
de D(p,R,C) being "best" for estimating all test treatment-control contrasts.
Following the work of Kiefer (see, for example, Kiefer 1958, 1959, 1971, 1974,
and 1975) a design d€ D(p,R,C) is best or ¢-optimal if it minimizes ¢ (M(d)) over
D(p,R,C) for some real valued function ¢. Restricting ourselves to nonsingular
designs, some common examples are ¢0(M(d)) = det M_](d) (so called D-optimality),

¢](M(d)) = tr M'](d) (so called A-optimality), and ¢_(M(d)) = the maximum



eigenvalue of M'1(d) (so called E-optimality). In the present context of

test treatment-control comparisons A-optimality has an appealing statistical

A ~

interpretation, namely an A-optimal design minimizes E Var (uO'ai) over
i=1

D(p,R,C), where &1 is the B.L.U.E. of o - D- and E-optimality are criteria
involving the eigenvalues of M'](d) which contains information about all

test treatment-control contrasts as well as information about test treatment
contrasts arising from contrasts in the ap=as - Thus D- and E-optimality

may not be interpretable in terms of variances involving only test treatment-
control contrasts. We shall see in section 3, however, that many E-optimal
designs are optimal in meaningful ways involving only variances of test
treatment-control contrasts. D-optimality still lacks a reasonable interpretation

and so will not be considered further.

2. A-optimal designs. In this section we shall find conditions under which

a design will be A-optimal over D(p,R,C). The plan of attack is to find a
lower bound on the value of tr M'](d) for nonsingular d€D(p,R,C) and then to
find conditions under which this bound is attained.

To begin with, suppose de€ D(p,R,C) is an arbitrary design. Let & be the
set of all permutations of test treatments 1,...,p. For o€ &, od will denote
the design resulting from d by the permutation o of the treatments in d. For
example, if o is the simple permutation that interchanges treatments 1 and 2
leaving all other test treatments fixed, than od is the design resulting from
d by changing treatment 2 to 1 and treatment 1 to 2 in any plots containing

treatments 1 and 2. ATl other plots are left unchanged. We define



M(d) = ) M(od)/p! = ) «'M(d)n/p!
c€ S TED

where II is the set of all pxp permutation matrices.

Lemma 2.1. If deD(p,R,C) then M(d) has eigenvalues m](d), m2(d) = ... = mp(d)
with
R ¢ 2
my(d) = ry/p - jz}roj/Cp - kZ]Sok/Rp + ro/RCP
R C
m,(d) = E {r.-) r2 /C - ) s?k/R +r?/RC}/(P-1)
i=1 ' j=1 " k=1 " !

- my(d)/(p-1)

pf. The following relationships are easily verified from the definitions of

Fis the rij’ the Sik? the Xhi and the Hpi -

Y
1Z]r1j =C - rg;

E Mhi = ) g "hi"ig T g "h ) ij
i=1 i=1 j=1 Joog=1 M s
i#h ith ith
R
= jZ1 "hj {C-roj-rhj}
) 2
= Cr 4T r.
h =1 hj 0j i=1 hj



S = b0 )
Xpe = r.. = r {C-r..}
21701 42p 32 001 520377 00
R
2
=Cr, - ) ro.
0 3= 03
Similar relationships hold for E Sik> E “hi’ and E . Simply replace
'i:] y| 1=]
1#h

r1j by sij’ Mo by Hpio R by C, and C by R in-the above formulas.

In addition since the j-th column sum of N(d), as given in (1.2), is 0
¢ 2
2oi/C * ugs/R - rgry/RC =y - Z rJQ/C 2Z]sjﬁ/R

+ r?/RC - E 0 /C - U /R - rsr /RC}
i=1

1#J
Utilizing these relationships it is straightforward to calculate M(d) from

M(d), as given in (1.3), and to show that M(d) = aIp + bJp b with Ip being

the pxp identity matrix, J the pxp matrix all of whose entries are +1, and

P-P

a = E'f? - z rZ /C - g sZ /R + r2/RC

+ jg]{xij/c + “1j/R - rirj/RC}/(P-1)}/P
j#i

J#i



A matrix of the form aIp - bJp b is known to have eigenvalues a with
multiplicity p-1 and a-bp with multiplicity 1. This fact, the values for a
and b above, and the relations listed at the outset of this proof can be

used to verify that the eigenvalues of M(d) are as given.

Lemma 2.2. For dé€D(p,R,C)
tr 7 (d) = 1/my (d) + (p-1)/my()

where m](d) and m2(d) are as in lemma 2.1.

pf. This follows immediately from lemma 2.1.
We shall temporarily allow the Pis Tis and Sik for T <i<p,1<J<R,
and 1 < k < C to be arbitrary nonnegative real numbers. We continue to

require r,, the r,., and the s,  to be nonnegative integers satisfying
0 0j Ok

0 < 7p; < C for all j and O < Sk < R for all k. 1In addition we require
R C

Ori = RC and jZ]rij = kZ]sik =r, for 0.<1 <p.

1 O~TO

.i

Lemma 2.3. For fixed values of s the rOj’ the Sok > and the rys mz(d)
is maximized when rss =r;/Rand s; =r,/Cforall 1<1<p,1<]Jc<R,
and 1 < k < C.

pf. This follows immediately from the value of m2(d) given in lemma 2.1 and

the fact that

P 2
)
'|=

X; subject to E X; = A is minimized when X; = A/p for all 1.
1 i=]
Lemma 2.4. For fixed values of ro, the rOj’ and the SOk’ mz(d) is maximized

when r, = (RC—rO)/p for 1 < i < p and the rij and s, are as in lemma 2.3.



pf. For fixed values of rgs the roj° the sq, > and the r Temma 2.3 gives us

that the maximum value of mz(d) is

my(d) = (RC - r, E </RC)/ (p-1)

-(rg - 1 z rOJ/C} - { 2 s k/R} + ro/RC)/p(p-1)

which is maximized over the r; when r = (RC - r )/p. The Temma follows.

In what follows, [+] denotes the greatest integer function.

lL.emma 2.5. For fixed ro with the rss the rij

l<Jj=<Rand1 <k=<Cas in lemmas 2.3 and 2.4, 1/my(d) + (p-1)/m,(d)

and the s, for 1 <1 <p,

is minimized when the r0j° 1 <J <R, are either [rO/R] or [rO/R] + 1
and the SOk > 1 <k <C, are either [rO/C] or [ro/C] + 1.
C

R
2 2 . .
pf. Let Q = jz]roj/c + ) sok/R. For fixed ro With the Pis Ty

o ij? and s1.k

as in Temmas 2.3 and 2.4 it is easy to show that

(2.1) 1/m (d) + (p-1)/my(d) = p/(ry + ra/RC - Q)

+

p(p-1)2/{p(RC—rO—(RC-rO)z/pRC) -r - rg/RC + Q}

p/(r0+rS/RC - Q)

~+

P(p-1)/1(p-1)(RC-ry) - 2r3/RC + Q)



Differentiating this last expression with respect to Q and putting the result
over a common denominator yields a ratio whose denominator is positive and

whose numerator is, as a function of Q,
h(Q) = pi(p-1)(RC-ry)-2re/Re+Q)” - p(p-1)2(rtri/Re-32

This is a quadratic in Q with the coefficient of Q2 negative. Since 0 5-r0j <G,
R C

0 < sp <Rs 0 <ry<RC, and jz]roj = kZ]SOk = ry it follows that 0 < Q < 2RC.

= 0 and Q = 2RC only if r, = RC. With these observations

0 0
it is easy to check that h(0) = p(p-1)2R%c% > 0 and h(2RC) = 0. Since h(Q)

Also Q = 0 only if r

is a quadratic in Q with negative coefficient of 02 we must have h(Q) > 0

for 0 < Q < 2RC. This implies 1/m](d) + (p-])/mz(d) is increasing in Q and
hence is minimized, for fixed o> when Q is as small as possible. For fixed
ros Q is minimized when the rOj and Sok? which must be integers, are as given

in the lemma.

Lemma 2.6. For de D{p,R,C)

tr M"q(d) p/{rg + rS/RC - G(ro)}

+ p(p-])z/{(p-l)(RC-ro) - ZrS/RC + G(ro)}

z(ro)

where
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6(rg) = {ry + (2rg-R) [ry/R] - R[rO/R]Z}/C

+'{rb + (ZrO-C) [TO/C] - C[ro/c]z}/R

pf. This follows from lemmas 2.2-2.5 in a straightforward manner.

Theorem 2.1. If deD(p,R,C) is a completely symmetric design, i.e. if
M(d) = M(d), satisfying
(i) ry= «e. = rp = (RC-rO)/p

(1) ri/Rfor 1<j<R, 1<iz<p

r..
1J

(#11) s; = r/CforT<k<C1<iz<p

(iv) the roj are ejther [rO/R] or [rO/R] +1for1<j<R
(v) the sg, are either [ro/Cl or [rg/Cl + 1 for 1 <k =¢C

(vi) o is the nonnegative integer minimizing 2(x), where 2(x) is as

given in lemma 2.6
then d is A-optimal over D(p,R,C).

pf.  This follows easily from lemmas 2.1-2.6 and the fact that by convexity
tr W(d) > tr 71 (a). |

Application of this theorem involves finding the minimizing ro in (vi),
perhaps by computer search, then computing the roj° Sok> Ty and finally the
ri; and Sik according to (i) - (v) in theorem 2.1, and lastly verifying that
there exists de D(p,R,C,) with these design parameters. Unfortunately,

more often than not, no such d exists. Some cases where such a d does exist

are given in the following corollary.
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Corollary 2.1. For any integer m > 1, suppose d* is the design obtained from

a m+m2 by m'+m2 Latin Square by changing treatment labels m2+1, m2

m2+m to zeroes. Then d* is A-optimal over D(mz, m2+m, m2+m).

+2,...,

pf. In formula (2.1) for tr M~ ](d) if one allows the ry. and sy to be

0J
possibly nonintegral and argue as in lemmas 2.5 and 2.6, one can show when

p=m2 and R=C=m2+m

2

0/(m2+m)2

Q = 2r

and

mz/{ro—rg/(m2+m)2} + m2(m2-1)/({m2+m}2-ro)

+
-3
=
]
—
—
o,
~—
1]

mz{(m+m2)2 + ro(mz-l)}/ro({m2+m}2-ro)

Differentiating with respect to o> setting equal to zero, and solving, one

can show tr M~ ](d) is minimized when ro = m3 + m2.

From this fact it is straightforward to verify that the conditions of

. _ .3, 2 _ - =
theorem 2.1 require rg = mHmo, all roj = M all Sok = M> all rij 1,

all Sik = 1, all ry = m2+m, and that M(d) = M(d) for d to be A-optimal over

2 2 2 )

D(m~, m™+m, m“+m d* as stated in the corollary satisfies these conditions,

and so is A-optimal.

2 2 2 2

For p = m™+a (or m“-a), R = C = m“+m+a (or m“+m-a), and small a, a design

obtain from a RxR Latin Square by changing m of the treatment labels to zero

is also likely to be A-optimal. This, however, must be checked in each case
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3+m2+ma (or m3+m2-ma) does indeed minimize z(ro)

by verifying that rg=m
in lemma 2.6. For example one can check that such a design is A-optimal
over D(2,3,3) usingm =1, a = 1. Likewise such a design is A-optimal over
D(3,4,4) usingm=1, a = 2.

For many combinations of p, R, and C theorem 2.1 fails to yield a d in
D{p,R,C) which is A-optimal. However it does nggest that if there is a d
in D(p,R,C) which almost satisfies the conditions of theorem 2.1, it is likely
to be nearly A-optimal. Thus theorem 2.1 may be used to suggest "good designs"
under the A-optimality criterion. Te find the structure of an A-optimal
design in situations where no d exists satisfying theorem 2.1, a more sensitive

calculation is needed that allows M(d) not to be completely symmetric. Such

calculations are still being investigated.

3. E-optimal designs. Since the investigation of A-optimality in section 2

does not give A-optimal designs for all p, R, and C combinations, we turn
our attention to finding E-optimal designs. Here we shall have more success
and at the end of this section show that certain E-optimal designs are

optimal under criteria involving only variances of treatment-control contrasts.

We begin by recalling that d€D(p,R,C) is E-optimal if it minimizes the
maximum ejgenvalue of M'](d). Equivalently, d is E-optimal if it maximizes the
minimum eigenvalue of M(d). We now state and prove a series of lemmas. Notation

is as in sections 1 and 2.

Lemma 3.1. For my(d) as in Temma 2.1, its maximum value occurs for deD(p,R,C)
such that
(1) rg - RLrg/R] of the rys are [rg/R] + 1, the remainder being
[ry/R]
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(i1) ro - C[rO/C] of the Sok are [rO/C] + 1, the remainder
being [PO/C].

(iii) o is the integer between 1 and RC which maximizes the function

x/p + xz/RCp
{x-R[x/R] + [x/R] (2x-R[x/R])}/Cp
{x-C[x/C] + [x/C] (2x-C[x/C])}/Rp

f(x)

pf. For fixed ro» lemma 2.1 displays m](d) as a quadratic in the r0j and
Sok with negative coefficients. Since the r0j and Sok must be nonnegative
R C

integers subject to the linear restriction roj = Y

SN, = P, it is well
j k=1 0k 0

1
known that m1(d) will be maximized when the rOj are as equal as possible and
the Sgk are as equal as possible. This, in turn, means the rOj must
satisfy (i) above and the Sok (i1) above. Substituting these values into
the formula for m](d) and rearranging terms yields f(ro), fas in (iii)
above. The Temma follows.
We note that if one replaces [x/R] by x/R, or any value between [x/R]
and x/R, in the formula for f(x) given in (iii) of lemma 3.1, f(x) increases
in value. This is easi]y checked using calculus. Similarly if [x/C] is
replaced by x/C, or any value in between, in f(x), f(x) increases in value.
This fact can be used to show f(x) < x/p - xz/RCp. The right hand side of
- this inequality is maximized by x = RC/2. When RC is even, one can show
f(x) = x/p - x2/RCp at x = RC/2. Thus x = RC/2 maximizes f(x) over all integers
x when RC 1is even. In particular, if R and C are both even the maximum value

of m](d) will then be achieved when all the rOj = 0/2 and all the SOk = R/2.
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If, say, R is even and C is odd the maximum value of m](d) is achieved when

half of the rOj = (C-1)/2, half of the rOj = (C+1)/2, and all the S

When RC is odd one can show f(x) achieves its maximum (over integeré X)

K- R/2.

at x = (RC-1)/2 and x = (RC+1)/2. Both give the maximum.

Lemma 3.2. For dé€D(p,R,C), the minimum eigenvalue of M(d) is j_m?, where

mf is the maximum value of m1(d) given by lemma 3.1.

pf. ¢(M(d)) = minimum eigenvalue of M(d) is a concave function over the set
of pxp non-negative definite matrices and hence ¢ (M(d)) < ¢ (M(d) j_m](d) < m¥.

These lemmas give us the following theorem.

Theorem 3.1. If de€D(p,R,C) is such that the minimum eigenvalue of M(d) is

mf, as given in lemma 2.3, then d is E-optimal over D(p,R,C).

pf. This follows from Temmas 3.1 and 3.2 and the fact that the maximum of
the smallest eigenvalue of M(d) equals the minimum of the largest eigenvalue
of M1 (d).

A useful special case of this theorem is the following.

Corollary 3.1. Suppose d€D(p,R,C) is a completely symmetric design (i.e.

M(d) = M(d)) and the *03 and sg, satisfy conditions (i) - (iii) of Temma 3.1.

In addition suppose

c
il
ne~1o

T
L 1(RA1J CuTJ r1rJ)
i

M. I D1

J
i

is non-negative. Then d is E-optimal.
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pf. It is straightforward to use lemma 2.1 and some of the relationships
contained in its proof to show mz(d) - m](d) = U/RC(p-1). If U > O then
m](d) is the minimum eigenvalue of M(d). In addition, m1(d) = m* by Temma 3.7.

By theorem 3.1 d is E-optimal over D(p,R,C).

Corollary 3.2. Let d*€D(p,2p,2p) be the design whose i-th row, for i < p,

has p+1-i zeroes followed by the integers 1,2,...,p in order, and then i-1

zeroes. For i > p, the i-th row is the integers i-p, i-p+l,...,p, followed

by p zeroes, and then the integers p+l-i,...,i-p. In other words, the rows

of d* are just cyclic permutations of p zeroes followed by the integers 1,2,...,p.

d* is E-optimal.

pf. It is straightforward to verify that the conditions of corollary 3.1
are satisfied.

A de D(p,R,C) will be said to be a balanced treatment block (B.T.B)

design with regard to rows if Aoy T---T xOp and Mo T M3 ="'=Ap-1,p' d will
be said to be a B.T.B. design with regard to columns if ! =...=u0p and
Hyo T B3 =...=up_] b* For more information on balanced treatment block

designs in an incomplete blocks design setting see Bechhofer and Tamhane
(1981) and Notz and Tamhane (1983). The previous corollary can be generalized

as follows.

Corollary 3.3. Suppose d€ D(p,R,C) is such that the rOj and Sok satisfy

conditions (i) - (iii) of lemma 3.1. Further suppose d is a B.T.B. design
both with regard to rows and columns, that ™ =...=rp, and U in corollary

3.1 is non-negative. Then d is E-optimal.
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pf. If d is a B.T.B. design with respect to rows and columns and satisfies
ry =...= rp then (1.2) and the fact that the row sums of N(d) are 0 implies

N(d) and hence M(d) is completely symmetric. The result now follows from

corollary 3.1.
If we denote a design d by an R C matrix whose i, j-th entry is
the integer representing the treatment in the plot in row i and column j,

we have the following example.

Example. The following design is E-optimal over D(3,2,6)

This is easily verified since U = 6(2:2+6-0-2-2) = 0, the r; all equal 2,
d is a B.T.B. design with respect to rows and columns and conditions (i) - (iii)
of Temma 3.1 are satisfied.
E-optimal designs which are B.T.B. designs with regard to rows and
columns, have Py Se..= rp, have U > 0, and satisfy conditions (i) - (iii) of lemma 3.1
shall be called balanced treatment E-optimal (B.T.E.) designs. Such designs

have some additional optimality properties.

Theorem 3.2. If d*eD(p,R,C) is a B.T.E. design then it minimizes the
variance of the B.L.U.E. of any test treatment-control contrast proportional
to oy - E o./p over D(p,R,C,).

i=1 1
pf. It is well known that ¢ (M) = M'1 is convex over the set of pxp positive
definite matrices with the ordering M]>M2 if and only if M]—M2 is nonnegative
definite. Since M'](d), de D(p,R,C), is the information matrix for the vector

of contrasts (ao—a],...,ao-ap)', it follows that the variance of the B.L.U.E.
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of any contrast proportional to ag = E ai/p is proportional to lfM'](d)l_,
i=1 '

where 1 is the px1 vector all of whose entries are +1. Now using the convexity
of M and the fact that 1 is invariant under permutations of coordinates,

one gets for any d€ D(p,R,C)

where m](d) is as in lemma 2.1. Note that the last equality comes from the
fact that the eigenvalue l/m](d) of ﬁ"'](d) has eigenvector 1, a consequence
of the completely symmetric structure of ﬁ"'](d).

Since d* is B.T.E., by Corollary 3.1 the maximum eigenvalue of M'](d*) is

1/m](d*). Furthermore, lemma 3.1 gives 1/m](d) 3_1/m](d*) and hence

1M1 > p/my (4)

|v

p/my (d*)
= 171 (d%)1

The theorem now follows.
The next theorem shows that a B.T.E. design is minimax with respect to

the variances of the B.L.U.E.s of all test treatment-control contrasts.

Theorem 3.3. If d*€D(p,R,C) is a B.T.E. design then it minimizes over

D(p,R,C) the maximum possible variance of the B.L.U.E.s of all test treatment-
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control contrasts aoao - E 2,04 where E

- e —_ ]
L 1 a; = a # 0 and a3 = (a1,...,ap)

1

is a px1 unit vector.

pf. Let. G be the set of all px] unit vectors the sum of whose coordinates

. . ->
is nonzero. Clearly there is a one-to-one correspondence between a = (a],...,ap)'

'€ G and test treatment-control contrasts a o, - E a.a. where. E a, =a, 70
070 o4 =1 1 0

and (a],...,ap)' is a px1 unit vector. In fact, for any d€ D(p,R,C), the

variance of the B.L.U.E. of ageqg - 1§]a1u1’ where 1E]ai = a, # 0 and

3= (a],...,ap)' is a unit vector, is proportional to 3'M'1(d)3. Hence the
maximum possible variance of the B.L.U.E.s of such test treatment-control

contrasts for any de D(p,R,C) is proportional to

sup 3'M ()3 > (1//p)'MV(d) (1/vp)
2eaq

> 1 Nayasp

1M (ax)1/p

| v

1/m](d*)

using theorem 3.2. Since 1/m](d*) is the maximum eigenvalue of M'](d*) and
hence = sup 3'M’1(d*)3, the theorem follows.
dea
Theorems 3.2 and 3.3 indicate that B.T.E. designs are optimal in
meaningful ways with regard to test treatment-control contrasts. These
theorems provide a Tink that makes E-optimality meaningful for treatment-

control contrast design problems.
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