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Abstract

The problem of estimating k(>1) 1inear combinations of the component means in
the multiparameter exponential family with possibly dependent coordinates is
treated for squared-error loss. It is shown that if the natural parameter space
is the whole of HQP, the UMVUE is always admissible if k < 2. Also, sufficient
conditions for admissibility of an arbitrary generalized Bayes estimate are
obtained. If the natural parameter space is not the entire RrP (e.g. in the
gamma case), inadmissibility results are proved to indicate that the admissi-
bility pattern of the "natural" estimate may be different even when k = 1.
Finally, the problem of estimating a vector of smooth parametric functions more
general than the means is considered and admissible generalized Bayes estimates
are obtained; in particular, a result of Ghosh and Meeden (1977) follows as a

corollary.



1. Introduction

Let X = (X1,X2,...,Xp) be a random variable in RP with possibly dependent
coordinates and suppose X has a density (with respect to some o-finite measure
)

pon R given by

X) = ei (1.7).

Thus, the distribution of the random vector X is in the Multiparameter Exponential

family. Here ¢ =(e],62,...,e ) stands for the vector of natural parameters, and

P
6e(H) = {o: [e du(x) < =}, It is well known that (H) is convex in IR

and in the interior of (H),

wi(e) = E(X:) = =2 w(e), 1 <1 <p. (1.2)

A great deal of research has been done on estimating the mean-vector

wi(e) = (u](e),--.,up(Q)) under a sum of squared-error losses
2
(a; - u;(e)) (1.3)

or various weighted quadratic losses, both for particular distributions in the
exponential family as also for the exponential family as a whole. Since the pio-
neering:work of Stein (1956) in the multinormal, the Stein-effect has been shown

to be present in a variety of probability structures (without any resemblance to
the normal) with an infinite sample space (the fact that an infinite sample space
is crucial for the Stein-effect was shown in Guttman (1982)){ Apart from various
inadmissibility results, the literature now contains useful techniques to construct

explicit improvements on the inadmissible "standard estimates and elegant results



on methods to meaningfully incorporate available prior information in constructing
improved estimators; see, for example, Stein (1973), Hudson (1978), Berger (1980),
Hwang (1982), Berger (1982a, 1982b, 1982c), Ghosh, Hwang and Tsui (1983),
Berger and DasGupta (1985) etc.

This paper, in part, deals with the problem of estimating, under a sum of

squared error losses, any k coordinates or in general, any k linear combinations

of all the component means. The first serious attempt to handle a problem of

this kind was made by Cohen (1965), who characterized all linear admissible

’ P
estimates Z ¢;%; of a single linear combination ) v30; in the multivariate
i=1

normal distribution (the result in Cohen (1965) can be somewhat extended to
distributions for which the covariance structure is independent of the unknown
parameter 0). Forp = 2, simi]ar resu]ts were obtained in Makani (1972, 1977)
for independent binomials and independent Po1ssons Blyth (1974) proved that for

p 1ndependeﬁt binomia]s,ig] §$-1s admissible for. E P4 for any p > 1. If the vector ¢
is a location parameter for the random vector X, this problem was\treated in fgirly
complete Qenera]ity by Berger (1976a, 1976b, 1976c), who showed that the best
invariant estimator of a single Tinear combination of ei's is often admissible -

up to p = 3 and inadmissible for p > 4. It is important to keep in mind that

the assumptions of Berger (1976b) do not hold for multivariate normal and hence

the inadmissibility result for p > 4 excludes the normal distribution (as can also
be seen from Cohen (1965)). Question arises if the best unbiased estimate of

any linear combination of the means is admissible under a squared-error loss
structure in the general exponential family, and if so, whether this result can be
extended to estimating any two Tlinear combinations of the means (that the

standard estimate of three or more linear combinations cannot be admissible in
general is well known). In Section 2, it has been shown that if (H) = D%p, the

UMVUE of any two linear combinations:is admidsible in the general exponential family



(1.1). Then we have also obtained other more general generalized Bayes estimates
which are also admissible for the same parametric functions. The technique used
is Blyth's (1951) and resembles a method of carrying out Blyth's technique as
given in Brown and Hwang (1982). The results in Section 2 can be regarded as a
generalization of a special case of Cohen (1965) and a two-fold generalization
of Blyth (1974).

Next, it has been shown that if (H) is not the whole of H{P, the admissi-
bility status of the "natural" estimate of even a single.linear combination of.
the means can be quite different; specifically, we have proved inadmissibility
results for estimating one linear combination of the scale-parameters of several
independent gamma distributions; a general inadmissibility theorem has been
proved, using a technique found by Hwang (1982) and then used by DasGupta (1984),
which shows the inadmissibility of many non-linear estimates arising naturally
~ from Berger (1980); moreover, we have established, for all p > 1, the inadmis-
sibility of many linear estimates including one which may be called a "natural"
linear estimaté. It turns out that the improved estimates have an empikica]
Bayesian interpretation and they also lead to new improved estimators of the
vector of gamma scale (and natural) parameters under a wide variety of losses;
these problems have been considered in Das Gupta (1984). Presumably, qualita-
tively similar inadmissibility results in the context of estimating one (or more)
Tinear conbination of the means can also be obtained in other distributions
with (H) = RP, notably the Negative Binomial.

In Section 4, instead of estimating one or more linear functions
of the means, we have treated the problem of estimating any p smooth scalar
functions yT(e),...,yp(e) under a squared-error loss; the goal is to obtain a

sufficient condition (Tike Brown and Hwang's (1982) for the mean-vector) for the



“admissibility = of a generalized Bayes estimate. From the theorem proved in

this section, a result of Ghosh and Meeden (1977) follows as a corollary; it's
also a generalization of the main theorem in Brown and Hwang (1982) to parametric
functions more general than the mean. Certain new results following as
corollaries from this theorem roughly mean that if the parametric function

y(8) is "near the mean-vector vy(e)", then the non-informative prior generalized
Bayes estimate of 1(9) continues to be admissible for small enough p (p < 2 if
(H) = RP, p=14f (H) = RE); finally in closing, we have made some concluding
remarks.

2. Admissibility for (H) = R'.

Consider the problem of estimating Lvyi(e), where Rank (L = k, 1<k<p,

kxp)
under the usual squared-error loss. The notations introduced below are much

the same as in Section II of Brown and Hwang (1982).

For a given function h (perhaps vector-valued), define

I(h) = fhife) f (x)dg, (2.1)
whenever the integral exiZts. Let G be any prior distribution on (H); assume
G has a density (Lebesgue) g which is almost everywhere (Lebesgue) differenti-
able. If 69(5) = (6;(5);44J, ag(g)) denotes the generalized Bayes estimate of
Lvm(g) with respect to G, then under mild conditions on g, (see Brown and

Hwang (1982),
_ Ix(ng) .
(Sg(i() = Lé +VI_(—9_7_— (a.e. dp) (2.2)

X

If Ghas a compact support (compact in (H)), the steps leading to (2.2) are
easily verified. Note that (2.2) is frequently valid even when G does not have
a compact support. A special case of interest is when g=1(i.e., G is Lebesgue

measure), in which case §_ reduces to LX, the UMVUE of Lvy(s). In what follows,

g



we obtain sufficient conditions for the admissibility of 59(5)'f0r esti- .
mating LVy(e). The analysis will be based on Stein's (1955) sufficient condi-

tion for admissibility (see also Blyth (1951)), stated below in the form given
in Berger (1976a, page 345).

Lemma 2.1 Suppose 9y = ghﬁ is a sequence of finite priors such that

(1) [ R(8,8, )g,(8)dg < = for every n > 1

In

(i1) h (

A(8)—> 1 ae. as n—> =
(i) hn(Q) > e for every n > 1 and for some ¢ > 0 on a set

Sc{H) with [ g(g)dg >0
. - S

(iv) &, = J{R(e55, ) - R(8,6.)3 g (0)ds —>0 as n —>= .

9 v

Then Gg(g) is admissible.

Remark: If the sequence of functions hn each vanishes outside a compact set,
condition (i) is automatically satisfied. For giveh functions {hn,n > 11,

each having a compact support and each almost everywhere differentiable, the
generalized Bayes estimate of Lvy(9) against the prior density gn(e) = g(e)hﬁ(e)
is given as

5. (X) = Lx + =%

g, (2.3)

Then, as in Brown and Hwang (1982),

7= 11eg(x) - 8y 0 [1% 1 (g,) dulx)

gn J

<At B (2.4)



(Lve) 1 (v 2 2
where A = 2 Ill——"T_T—' xi g Vg)_]] I(g,) du(x) (2.5)
o2
and 8= 2 f|| 21 x( ) 112 1 (g )du(x) (2.6)
xn

If An’ Bn —3 0 for suitable choice of hn's, it will then follow

Vn-——>0asn—>m.

Now note that
gh Lvh

|2 " _
B, = 8f]| x( : (g : 121 (g) du(x)  (uriting gh,Lvh = /gh x /g Lvh_
5_8fIX gIILvhnll) du(x) and then applying Schwartz's
inequality)
= 8fg(s)| |Lvh _(6)]| do (by Fubini's Theorem) (2.7)

Hence, B, —> 0 if (2.7) goes to zero as n —>w. Next, in order to show that
An —>0, note that the integrand in An converges to 0 almost everywhere if hn
converges a.e.to 1. Moreover, proceeding as in Brown and Hwang (1982), it is

uniform]y (in n) bounded above by Ixille%Ll—l . Hence, An —> 0 as n — by

2
the Bounded Convergence Theorem provided fIx<nliLz§ll—> du(x) < ». Again,

by Fubini's Theorem,

2\ 2
fIX(LU%?lLL——> du(x) = UL g (2.8)

Now, in view of Lemma 2.1, (2.7), and (2.8), dg(X) will be admissible if for

~

suitable functions hn of compact support satisfying (ii) and (iii) of Lemma 2.1,

(1) fg(o)|[Lvh (6)[|? do—> 0 as n —> =



2
and (2) g is such -that LZ ée) 46 <« @ . (2.9)

For L =1 (1) and (2) reduce to the conditions in Brown and Hwang (1982).

pxp?
At this point we note that the UMVUE LX corresponds to g=1 in which case (2)
above becomes redundant. A]sq, if a sequence of functions {hn} can be found
such that it satisfies conditions (i), (ii) and (i11) of Lemma 2.1 and more-
over (1) and (2) above are satisfied with L = Ipxp (sq that by Brown and
Hwang (1982) the generalized Bayes estimate § of vy(8) against the prior G is

admissible), then (1) and (2) are satisfied for any L, , since

kxp
fa(e)||Lvh (8)[ | do <A, fa(e)||vh (8)] % do

2 2 :
and f Lg ée) do < xmaxffljjﬁ%g%%§L— de ,

where Anax denotes the maximum eigen-value of LIL. In view of the preceding
analysis it will then follow that 69 = L.§ is admissible for Lvy(e). This of
course corresponds to the fact that the admissibility of Ls for Lvy(e) under
squared error loss is equivalent to the admissibility of § for v¥(e) under the
loss (a - vw(e))l L'L(a - vy(e)), which by Shinozaki (1975) in turtivis eduivalent to
~the admissibility of & for vy(e) under usual squared-error loss so long as L'L
is positive-definite. Specializing to the case g=1, it will mean that so long
as X is admissible for vy(g), LX will also be admissible for Lvy(e); however, as
is well known typically X is nof admissible for vy(e) beyond dimension p = 2,

so that admissibility of LX for Lvy(e) will not follow in a straightforward
manner for p > 2. This also indicates that for (1) above to be satisfied for
every p > 1 (and not just p < 2), new choices of {hn}'different from the sequence

of Brown and Hwang (1982) need to be found. In what follows we show that for

suitable h 's condition (1) above holds for any p > 1 so Tong as k < 2. It will



be clear from the proof that if k > 3 (i.e., if one wants to éstimate 3 or more
Tinear functions of the means), then (1) immediately fails (as it should be).
Before we get into the actual analysis, we remark that by making a non-singular
Tinear transformation on the sample space (which will preserve the exponential
structure) we may assume that the rows of L are unit vectors. In terms of our
estimation problem it means that we are trying to estimate any k coordinates

of the mean vector. We also remark that the admissibility question in the
problem of estimating the coordinates is not interesting unless there is a
dependent structure in the sample space, because the admissibility problem otherwise
essentially reduces to a one-dimensional problem because of the independence of
the coordinates Xi; see, for example, Lehmann (1983). In the following theorem

we have taken g=1; Tater we shall indicate other g's which may be handled too.

Theorem 1 If the distribution of pr] is in the multiparameter exponential

family (1.1) with (H) = RP, LX is admissible for Lvy(e) for any L (R(L)

2xp’
in the proof means rank of L).

Proof: Assume without Toss of generality R(L) = 2 since if R(L) = 0 or 1,
either LX becomes proper Bayes or L can be essentially taken as a single row
vector in which case admissibility follows from the case R(L) = 2 to be treated
below.

If R(L) = 2, we may take the vectors of Lzas the first two unit vectors as
mentioned before. In view of Lemma 2.1 and the discussion thereafter, we have
to construct sequence of functions {hn} with compact support satisfying (ii)
and (iii) of Lemma 2.1 and such that f(ﬁg;' hn(e))2 de + f(gg;hn(e))2 de —>0
as N —> o,

a
: - ‘ n. e ant
For n > 1, define [|of| = [e ] + £ +iz3l61, '5 where o >'1:is a sequence of

reals to be chosen later. Now define



h_(8)

1l
—

if [loll, <1

Tog Ilolln 451 < |]o)] <n
Tog n n

= 0 if {le]] *> n (2.10)
n

Since ||e||n is everywhere continuous in ¢ and differentiable outside the set

{e: 6; = 0 for some i}, and since {g: ||6]| = a constant} has Lebesgue measure

zero,hn is almost everywhere differentiable (in fact, by throwing out a countable
union of null sets, we can find (HO)_C:(H) such that every h, is differentiable

on (H) and the Lebesgue measure of (H) - (H)O is 0).

0
Next note that {6

I

bos| > n for some i > 1}
{
{

n
D
1l

[lelf,>> n} (as o > 1 for all n)

N
1D
0

hn(g) = 0}

-2{e

h (e)}> 0} c{o = [p;] <n foralli>1},

which is compact in (H) = Elp. Since hn's have compact support and 0 f_hn <1,

(i) of Lemma 2.1 follows.

[0 . B -
To prove (ii), first note that if ng—ﬁ-——> 0 as n —> =, then for every fixed

9, ||e||n <n for all large enough n. This is because |0,] < %—for i=1,2

04

for large enough n, and for i > 3, |eo. n._"n for large enough n since
= i 3(p-2)

[0

n

p oy
Tog (Ie]} +lezl+ {123 Iejl} )

log n

Tog [fef]|

Tog T —> fasn— =

Also,

I A

for every fixed 9.‘ It follows from the definition of hn that hn(e) —> 1

as n — x»,
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In order to verify (iii), define

S= (o los| < 11,
=1
Clearly, S Gi{o: [o.] < 1°forallli > 1)
o
cfor fo ] <1, Jop] <1, Jog] " < fo ] for all i 5 3).

o .
Hence, for oeS, ||o]| = |e6,] +]o,]| + E lo.] M < E [6:] <1
; no T2 oy D =gy

= S c{e: h () = 1}.

n

Since [do > 0, (iii) holds. We now need to show that
S

' 2 d , 2

I(Héﬁ' h.(6))" de + f(agé- h.(6)) do —> 0 as n —> »,

Towards this end, first observe that {g: 1 < |]e||n < n} 1is an open set in

(H) = R P. Hence,

d - _ 1 d
65;'hn(e) o [Te]T, Tog'n - de, Helly 1y [lef], <n a.e. (Lebesgue)
' (2.11)
Now, <o |[{e]] = sgn e, and 4 |1e|}.. = sgn o (a.e.}),so that from
8 - 5y and g, n - 39" % €1
d 2 d : 2 1
(2.11), (77— h (8))—~=(— h _(8))° = I. < ]lel] <n
d.e-l n d@;z n Hellnz(]ogn)z 1 n a.e.

!
(Togn

. . _ 1
Hence, it suffices to show I_ = 2 / llellz I . [lo]], < —>0
n

as n —> =,

Note that the integrand in In is a function of ]eil's; hence
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P p
1=t [ —sde = —E o 1O(say) (2.12)
(logn)® g: 6:>0 v i ||e||n (Togn)

1<[[8] [, <n

On the first quadrant, namely, {e: 6 > 0 for every i}, transform first to

(¢
. for i > 3. Hence,

variables Yy © 6], Yp = 62, y; = 61

p 0!
e 1o oy " dy
E 2 p-2 =3 - (2.13)
‘y'i) o

i=1 n

1<yi<n

yi>O;V1

Next transform to variables t1,t2...tp with t, =y, +...+Vyp, 1 <1 <p.

Note ti + 1 f-ti for every i. Thus, from (2.13),

LI
0 ] 1 P an
ID = — | m (t. - t.,q) dt
N ogb- 1< t]_<n ;:TZ_ i=3 ! i+l ~
0<t.+1 <t LA
i 0-2
p-3 : o
2 n B, Iym "o
-1 n i=1 n n (2.14)
~ o p-2 2 p-2 .
P2 (p-2) (1 + B2
n
Now for any fixed r,
€ &_l -1 &»_r_ - 1-¢ OL_]— - ocL - 1
B, )= fx " (1) " x+ [ x " (1x) " dx+
*n %n 0 e
1 5;_" 1 o - : o - -
f x " (1-x) " dx = 0(a )if o —> =, since the middle term
1-¢

behaves like a constant for a fixed € > 0 and the first and the second terms



12

are O(an).

Hence, by (2.12) and (2.14),

b2
OLn - an
I =09]- LI o1
" (Togn)*
Now choosing o = {p-2) Togn

n  Tog logn °

p-2
a
O‘n «n n ocn Obn-
- > = Toanr — 0 and L—T?v——o 0asn— =,
(Togn) g (Togn)

Hence In ~—> 0 as n —>, verifying (iv) of Lemma 2;1.
This proves Theorem 1.

Remarks \

1. The choice of o is clearly not unique. Other choices of a, can also work.

[0
2. If L had k rows, then defining [|e|| = |o,|+|6,|+...+]6, |+ § lo | "
n 1 2 k A i
i=k+1
and hn as before, it is seen as in (2.15) that
k%2-+E:E-
oo O ]
In =0 |- > N B Clearly, if k > 3, then for no positive
(Togn) (k-2%=+-5~—)

n
sequence a, the quantity in brackets can go to zero. On the other hand, if

we allow o, to be negative, clearly ||e[|n can be small eyen when

912 is Targe and thus hn's cease to have compact supports. Thus the

N~—10o

1
above analysis works only up to k = 2 as it should because for k > 3 admis-

sibility usually is not true.
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3. For the case k=1, one can choose o = p-1 and it-can.be seen that with-this

choice of o In = 0(——1—3 —> 0 as n —> », However, for k=2, it is

logn’
~--necessary to take a —> *". Heuristically speaking; this means as the
dimensionality of the problem increases, flatter priors are needed to

prove admissibility.

4. The sequence of priors has formal similarity to the sequence used in
Berger (1976a); however, Berger's (1976a) sub-additive norm has to be
suitably modified to treat a changed expression for the Bayes risk
difference An‘ It is important to remember that the fastest convergence
to zero of In will usually be achieved by taking hn as the minimizing
solution of an appropriate variational problem. See the discussion on page
979 of Brown (1979).

5. In the above analysis g was taken as 1.. It is natural to ask for what other

choices of g, the same sequence of hn's may work. For k =1, if

~(p-1
g(e) < Cty % (z L for some o > 0, where ty = oI+ E lo 1% s

it is still true that In = 0(+=—) and thus converges to zero. Clearly,

for priors with bounded densities o = p-] will work. However, for

(ad—g

admissibility one also needs./ __5167—_—__— dée < «, This will be true if
- L dg] ol e
in addition to g(8) < c - t, gy T O(t] ) for some

e > 0. Of course, both these need to be true only for large .
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6. Continuing with other choices of g which can be accommddatedalso when k = 2,
a special class of priors which is of interest in many prob]éms (and especi-
" ally the normal problem) is the class of spherically symmetric priors.

If, for example, g(e) = ¢(||e]||) where ¢ is bounded and a.e. differentiable,

condition (1) in (2.9) holds with hn's as in Theorem 2 up to k = 2. Also,
by straightforward calculations,
(ag;- g(e))2 < constant Xx ¢'2(|[e||) for i:> 1.
Hence, condition (2) in (2.9) holds whenever ? ﬂ!EH—)(EE:—]dxk © 3
) . ! 3(X) 3
as an example, take ¢(x) = ]2r where r > 0 (for r = 0, one has the uniform

1+x

prior; these priors were also considered in Berger (1976a)). It is easy

w 2 p-1
to check that with this choice of ¢, [ d ¢(§)X - dx < « whenever
0

2-4r < p < 2r+2, and hence the corresponding generalized Bayes estimate
Gg(x) is admissible for (ﬁ],ﬁz). Actually if p < 2r, g becomes a finite
prior so that admissibility of Sg needs this prdof only for 2r < p < 2r+2

(note that if p > 2, p > 2-4r is anyway true for every r > 0).

7. In the normal case, the priors g(e) = C - ||e|{2'p'€, e > 0, also have
some interest. It is easy to check and is also mentioned in Brown and

Hwang (1982) that for such g's, with h as theirs, fllvhn(e)IIZ a(6) de —> 0

, 2
and f Liva{e) do < » for every p > 1. Consequently, such priors generate

admissible estimates of Lvy(e) for any L (recall the discussion preceding the

statement of Theorem 1).
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8. More general weighted quadratic losses can perhaps be tackled for the case
k = 2. But it seemed to us that in this problem of estimating linear combi-
nations of the means, probably the only meaningful weights are constants. Of
course, in view of Shinozaki (1975), a separate admissibility proof is not
needed for constant weights.

9. For the special case g = 1, an alternative admissibility proof for k = 1 and

2 can be written down using the multiparameter information inequality.

3. Inadmissibility results in several independent Gamma distributions. If the

restriction (H) = RPis relaxed to, say, (H) = (0,#)P (as in the gamma or

the negative Binomial case), clearly hn's need to be redefined because hn's

of the previous section are 1 for 6 near 0, and thus such hn's cannot have
compact support if (H) = (0,«)P. Keeping the gamma problem in mind, one

might want to define hn as in section 1, replacing 0, by log 0, Usually

such an approach works well because the gamma problem is similar to the normal
problem via the logarithm (see page 576 in Brown (1980)). A crucial require-
ment for this similarity to hold is the special scale-structure of the gamma
distribution. However, if one wants to estimate a linear combination

Zyiei_] by a Tlinear estimate ZCiX.s this structure is lost unless only one

Y; and the same C; is non-zero. One will then anticipate that thé superficial
similarity between the gamma and the normal problems may be absent in this
problem. In what follows, we shall show this indeed is the case. By using the
much-too-well-known technique of conétructing an improved estimator by solving
an appropriate differential inequality on the sample space, we will now show
the inadmissibility of many 1ineér estimates even when we are estimating just

a single linear combination of the gamma scale-parameters.
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, -X.0. as-1 o
- o 11 X, i 0, i
Theorem 2 let.XilQS.f(xiﬂgi) = Fa, s Xi > 0, a; > 0.
b -1 . P
Let y{6) = ) 2:6. ', 2, > 0 for each i. Let §,(x) = ) a.x. be a linear
- jap 1 i 0~ =1 373
p
2. z .
. Jg=1 4 .
estimate such that aj < (>) = 5 , J=1,2....,p. Then GO(X)
d,.(]+ 2‘ OL‘;) .
J j=1 J
is inadmissible for y(e) under squared-error loss.
Proof: Let s§(X) = 60(5) + h(X) be a competing strategy. Then,
a(e) = R(e,8) = R(8,8,)
[ p -1 2 p -1 2
= Egl6g(X)+n(X) - T a6, - Eg|6g(¥) - I 28, ]
i i=1 =1
- Efn20) + 2000) 2% E 28571 h(X) (3.1)
e\_ ~ ~§=1 J i=1 ~

Under appropriate tail and integrability conditions on h, Ee[ei-] h(X)]

1-ai 1 ]-ai N
= Eg X; gi'(X)J , where 91(5) is such that X 5?;' gi(x) = h(x)

(see Berger (1980), page 549) (3.2)

Hence, from (3.1),

Nt~

1o,
a:x: - ng]zjxj ngj(X)] = E,[D(X)] (Say) (3.3).

ae) = E, [hz(g() ) ] g

J
It's clear that if function 9; and h can be chosen such that subject to (3.2)

and the tail-conditions of Berger (1980), D < 0 for almost all X, then 8y

will be proved inadmissible. It is also clear from (3.2) that the ultimate

T-a; .
solutions 9; must be such that Xs 1 5%;- gi(x) is independent of i; we will
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call such gi's "coordinate-consistent". We now provide coordinate-consistent

solutions g; to D(X) < 0.

“j
C ay gaj
Let g.(x) = =— x. X , 1 =1,2,...p (3.4)
1~ a1 1 j J
]-a_i 3
( ) 3
C(1+za. Lo .
s e RN : (3-5)
J J
) lJ ZaJ .
By hypothesis, aj < —TH5g. for every j.
J J
(% ' a.(1+za.)
let 0 < e = min%‘—i - —J_—L} (3.6)
. o zo
J A
1-a. ,
h : X - X .
Then 2h(x) zax ZZszJ j 93(%)
inl
T8 . T+2a., 2
=2C T xj .9 [ Za.i- X aij - I ai- xJ
J .. i NN
J_
Tols '
< - 2ce T X, oz x, (3.7)
j g
Now, from (3.3),
) ) el %
C(1+2a) Eaj _ Tans
D(X)i — 23 Ix - 2Ce 1 x. J ij
- (za;) J i j
. o .
zo, C(]+Za-)2 El—
= CI x, 5 Ix “% - 2z X
J (Zocj) i’ N
1 ( )
Tos cpn{ 1+ o
<Cn xj J 0 23 ng - Ze; X (p0 = max E%_ )
J (Zocj) J J J J
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_'I‘ Zoaj 2
<0, if 0 < C<2py \y) - (3.8)
J

s Tos

J
If a' >'___(—+—-)_
J o 1 Zuj

and sufficiently close to zero. We now note that if gi,h as defined in (3.4)

for every j, D(x) < 0 for every X by choosing C negative

and (3.5) above satisfy the tail-conditions in Berger (1980), then

X) = 5 a.x. will be proved inadmissible. We merely remark that it is easy to

i
O"J

check that they do. This proves the theorem.

Some remarks are in order.

Remarks 1. If y(g) = zEe(Xj), then %5 = oj. The best componentwise
J

linear estimator for Ee(xd) (with respect to squared-error loss) is anj, where

O Z0l s
5 it is easy to verify aj < T;%E—-for every j whenever p > 1. Hence

a; =
T+a,
J OLJ j

o.X.
z =54 is inadmissible for zo.6. 1 whenever p > 1.
FRARY g3

o X

2. Some controversy remains regarding whether : T%El is after all a "natural"

J J

linear estimate for Zuﬁﬂg] or not. Let us, for simplicity, treat the case
J

o5 = a for all j. It is easy to check there is no "best" linear estimate of
293] ; this is because the risk-function of linear estimates involves both Zeg
J J

2

and (263])2. However, some linear estimates can be shown to be trivially inadmis-
J

sible in that one can dominate them by other linear estimates. For example, if

each aj = k, it follows quite easily that k - ij is inadmissible for 263]
J J
if k < —l—-or k > A . Roughly speaking, in the first case k. « £x, is too much
at1 a+l j J
p

of an under-estimate and by giving it a positive linear shift one can improve



19

upon it. So the only k's which pose non-obvious admissibility problems are

E%T' sk < ]] . From Theorem 2 above it follows if k <

T
+— +—
“p *p

» again one has

1
T

LN
*"p

inadmissibility. However, the theorem does not say anything about k =

and it seems plausible it is an admissible choice. More generally,

o .
J IX:. may be an admissible estimator of Za.671 . In view of this,
1+3a. . J . )]
J J J
-] &3
one may rather call this a natural estimate of Zajej instead of z ]+i xj.

J J J
Unfortunately, our attempts to prove its admissibility have not been successful.

3. If o = o for every j, the improved estimate shifts by a multiple of the
geometric mean. It turns out the improved estimate is Empirical Bayes; one can
show this assuming a conjugate gamma prior for the ei's with an unknown scale-
parameter r, and incorporating a data-based estimate of r. A more detailed
discussion on this aspéct in some related gamma problems appears in Das Gupta
(1984).

4. Because of the form of the improved estimate, an exact analytical form of the
risk-improvement A(e¢) is easy to find. This is because, under quadratic loss,
one requires only the first and the second moments of the estimates to find A(g)
and those of course are easily found. Thus, risk-simulations will not be
necessary if one wants to evaluate A(Q).

5. In section 2 it was seen that if (H) = RP the natural estimate of any two
Tinear combinations remains admissible, while for (H) = RE, inadmissibility seems
to prevail even for one Tlinear combination. A similar phenomenon was found to be

true for the problem of estimating the whole mean-vector of independent gamma

variables in .an article of Berger (1980); it was shown that typically, in the
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gamma problems, the critical dimension of inadmissibility is one less than that
in problems with (H) = RP. Whether this similar inadmissibility behavior in

the two problems can be related may be of some theoretical interest.

6. In Berger (1980), improved estimates of the vector of scale-parameters were

o " (5.0, - 1)2, for m = 0,1, and 2. Letting

obtained under losses Lm = : j 385

ne~-1o

;
sBm denote the improved estimate under loss-function Lm’ it is of interest to

7! The

know whether E X) provides us with an admissible estimate of ZeJ

estimates ag are, however, highly non-linear and it is difficult to find their
risk or try to dominate them by solving differential inequalities. However,
using a method first used by Hwang (1982), one can often conclude

z m is actually inadmissible. The basic Temma to be used in the proof

is stated below; see Hwang (1982) or Das Gupta (1984) for details.

Lemma 3.1 Let X = X],l..,Xp have an arbitrary multiparameter probability
distribution. Let Y( ) be any parametric function and let 6](5) and §2(§) be
two estimates of Y(Q) such that 8o dominates 81 under squared-error loss. If
d = 8o -5}, then any other estimator ¢ of y is 1nadmis$1b1e if it satisfies
9-§'5.9-§1 for all X. For a scalar parametric function vy, this Temma roughly
means if 81 is an under-estimate (over-estimate) of y and is inadmissible, then
a further under-estimate (over-estimate) is also inadmissible. This simple-
looking lemma proved by Hwang (1982) is surprisingly powerful in establishing

inadmissibility of a whole class of estimators. The notations used below are as

in Das Gupta (1984).

p
Let y(e) = ) kjeg] be a linear combination of the scale-parameters of p
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independent gamma variables X1,X2,...X . Let A be a p-dimensional rectangle

p
in RP; let
#
K*(X) = ? ajxj[]+¢*(X)IA(X)]
A(x) = ; a;x; (16 ()1, (x) ] (3.9)

be two estimators of y(g). The idea is to choose ¢, ¢*, and A such that X*
dominates A. Lemma 3.1 then will imply inadmissibility of any & satisfying
(x*-2)s < (a*-A)r; since a*-A = 0 outside A, if inequality holds for x in A, ¢
will be inadmissible. The main task is to actually show A* dominates A; in
order to do this, we break up R(g,x*) - R(6,2) as Ee[A(¢*(§)) - M(¢(x)] plus a
negative quantity where A is a differential operator,and then get hold of ¢,¢*
such that a¢*(x)<-a¢(x). As is well known, the right place to search for

¢, ¢* 1S in an appropriate class of estimators 60[1+¢] which dominate
p
50(X) = ¢ asX..

j 1 JJ

By familiar computations,

R( 0s >\*) -~ R( 0s 60)

= EL#2(x) (age)® Ty(0) + 2000 (nagx)? 13000 - 258567 %(x) (3agx,)15(0]
HE

i i j ,
(3.10)
By Lemma 2.1 and (2.2) of Das Gupta (1984), for a given function h(x),
06700, (0] = EL, (0, 1,007 - Lo gi0ax, o 2 1 (x)]
% A 3% A i 9 g AT
U..i_] .
A - _
where e g;(x) = h(x)x; ) (3.11)

1

For a function g(x) of a single variable x, a < x < b, such that

lig g(x)fe(x) =0, Ee[g(x) é%—l[a’M](x)] js defined as -g(M)fe(M), where

a <M< b; in the multivariate situation when A is a product rectangle as

above, partial derivatives of products of step-functions is defined as
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d
o 7 9i(xs) = o= (x;). T g.(x.); for details see either Hwang (1982)
3X; j o9 dxi T g2y T30

or DasGupta (1984). Using (3.10), an analogous expression for R(e,2) - R(e,5y) s

and (3.11),R(6,2%) - R(e,2)

= {R(0,2*) - R(6,84)} - {R(0,1) - R(8,84)}

-0
= Ei:{A¢*(X) - 20(X)} Ip(x) + 2z 207" (9:%(0) - g;(x))x, S%Q' IA(x)] (3.12)
3 o1
’ * = *
where . g (x) = ¢*(x) (§ ajxj) X
ai-1
2 gi(x) = e(x) (2 agxs) x , (3.12)
Bxi J
Ap*(x) = ¢2*(X) (z a,x,)% + 20%(x) (z a.x:)% - Zzz-g.*(x)x.]—ai
j JJ j JJ 5 157007 i
2 2 2 1-a
and ¢ (x) = ¢°(x) (g ajxj) + 2¢(x) (g ajxj) - 2§ zigi(x)xi (3.14)

We now go into the question of choosing ¢(x), ¢*(x) such that R(e,r*) - R(6,))

is negative for all ¢. By Theorem 2 it is known that whenever aj < (>)

%3
133 o
, i X. + Co . i T a.X. i .
agrjigagj' for every j, ? aJxJ C ? XJ dominates ; aJxJ for suitable C
J
This suggests choosing
.aj
ZOLJ'
¢(x) za,x, = C I X, (3.15)
J J
o .
C -+ Za.: J
- i M "3 (3.13) 1 ily checked. Assu
If gi(x) = 5;1712337- X g X5 , (3.13) is easily checked. sume
J

{aj} satisfy the inequalities mentioned above.

Ei. ]Zai | o
. + .
aJ ZaJ

Letting ¢ = min{
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Io
2J
+ 2C|uX. (e - 73 J =+ a.) X
g3 g MRy T
= C° Ix IX: = L PsXojt Mxe ¥ 3 x.(Cop. - C7p )y Iy, J 5 x (C P - 2Ce)
j I J-JJ-JJjJ-JJ-J o N5 P
P Zo 2
J J J
+ 2C IIX, 2 (e - == =% +a;) X
5 i 1+zaj o5 J° ]
= A+B+C+D (say) (here Py = max pj) (3.16)
J
Clearly, A,C,D are < 0 for C > 0 and B is minimized for every x at C =-%—
- - N 0
Hence, defining ¢* as in (3.15) with C = %—-, it follows Aa¢*(x) < A¢(x) whenever
0
0 <C < %f-.Going back to (3.12), the second term in the risk-difference,
0
el 2 00l (" G A 1
2 205 (g5(%) - g5 (X)) LAl
1 (apa]—C) Zay Pi
=E 3 2505 TRAEER Xs (ng ) Ei;' IA(x)

<0 if 2. > 0 and if A is of the form (0,M)° for some M > 0.

Consequently, (3.12) implies A* dominates A. Lemma 3.1 now enables us to state

the following Theorem.

Theorem 3  For 25 > 0, let v(g) = zzie;] be estimated under squared-error loss.

- L. Z0.
- . . J J
Let GO(X) § ajxj be any linear estimate such that aj < Q:TT¢EEE7' for every
J
) JLJ. ZOLJ-
J>1. lete = m}n {5317;5537' - aj > 0. If s(X) is any other estimate such

that for some M > 0 and some 0 < C < %—- s
“ R0
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§(x) < aAx, +C -1 X, for Xe(O,M)p,

b
J-JJ jJ
then & must be inadmissible.

Remarks: 1. A similar result will be true if the hypothesis of the above theorem
% .o .,

- . J 3 .
holds for x near « for some{qj} with aj > 531715537- for every j and some

2. Io.
-€ = md J J
0> C>56-, where ¢ = min aj - 63(1+2aj g .

2. Theorem 3 shows the inadmissibility of some of the alternative estimates proposed
in Theorem 2. There does not exist any C which minimizes D(x) for every x in

Theorem 2. However, with gj = oy, the bound on D(g) in (3.8) is minimized
-1

Pg o oy g
at C = ——Tifaf—' m1n 7:32;7 - aj .
J J J O
J_
v 1 Zaj Zo
i X 2 mind =2 - a.y+ Ix., ¥
Thus, in some sense, ZaJxJ + Po m1n§ TH o an xJ 3 may be regarded

as a natural alternative to Zajxj. Theorem 3 does not show this estimator to

be inadmissible as the Theorem is true only for C strictly smaller than %—
0

there. It may actually be an admissible estimator.

3. For the Toss L_j = E. 9;] (1-619i)2, the improved estimate of (9'] 671 ..,9'])

i=1 Preep
. X_i .C(ai+]).‘
in Berger (1980) was 61(x) = =7 * T 0 <C<2(p-1), b >0.
%4 b+z(a.+1)"x.
s J J
J
The natural choices of b and ¢ are 0 and p-1 respectively. For the case o; = a,
s (p-1) b
- . b(p-1 1 p-1 P .
6.(X) = —=z.X, + < IX. + Ix." . If all a;'s
i 0 T T S ()% §I .
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= i p-] :]_ 7
are equal, then ¢ oot 1) (aF 1T and Po o The hypothesis of Theorem 3

holds with aj = E%T" zj = 1 for every p > 1 and every o > 0. Consequently,

61(x) is an inadmissible estimator of f 65].
1 Jj=1

11 ~1T0

J
The componentwise sum of Berger's (1980) improved estimates corresponding to
the Tloss L] = _E] 91(1—6161)2 is also easily seen to be inadmissible in our

j=
context. This is because the improved estimates now shrink the natural estimate
rather than expand it (see page 559 in Berger (1980)),and hence the hypothesis of
our Theorem 3 is trivially satisfied. A similar inadmissibility result can
also be proved, with some effort, by taking the improved estimates corresponding
to his case 4 (usual squared-error loss). Wé remark that unlike in the previous
two cases, now inadmissibility can be proved by using Theorem 3 above only for
some range of values of the aj's. Finally, Theorem 3 cannot be used to estab-
1ish inadmissibility of the sum of the coordinate-wise estimators that correspond
to the invariant quadratic loss (case 2 in Berger (1980)). However, it is
apparent that Theorem 3 can be used to handle quite a few non-linear estimates

which arise naturally from the work of Berger (1980).

. Generalization of a theorem of Brown and Hwang Brown and Hwang (1982) gave

a unified proof of admissibility of many generalized Bayes estimators of the
vector of means in the exponential family. The most important thing in the
main theorem in that paper was that the same sequence of multipliers hn(e) was
shown to work in a Blyth-type admissibility proof in a wide variety of probiems
with different generalized priors g. The importance of such sequence of hn's
in admissibility problems was earlier emphasized in another context in Berger

(1976a). We will show in this section that the technique of Brown-Hwang can
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be used to prove admissibility of generalized Bayes estimators of parametric
functions which are, in some sense, in a close vicinity of the mean-vector.

The technique used is Brown-Hwang's; also, with some obvious modifications,

the proof for the'one-parameter case naturally extends to the multiparameter
case. Because of these reasons, we will give dn]y a short sketch of the

proof in one-dimension and then mention some applications. The notations are as

in section 2.

Let v(e) be any smooth parametric function. Fix o, cand a non-negative function

. = e v
GW(G) - C?Y(t)dt * a% where [v(t) dtis to be

g(o). Define m(e) = g(e).
interpreted as a primitive of y. It will be implicitly assumed in the following

theorem that "1im_ f_(x)n(e) = 0 and I (ig—iJ-n) and 1-(#) < « for every x.
656,5 °© X' g X

We have the following admissibility theorem (a version of Theorem 4 below has
been independently obtained by Ghosh and Meeden (1983)).
Theorem 4 = The generalized Bayes estimate Gn(x) of y(e) against the prior 1(6)

is admissible under squared-error loss if
(i) There exist functions hn satisfying (i), (ii), and (iii) of Lemma (2.1)

: 1
such thatjf{hn (e)}2 n(e) d6 —> 0 as n — =, and

CYR 2
(i1) .(%—%ﬁ% m(e) do < = .
iq é g e') 0

Proof: Since the loss is squared-error, by doing an integration by parts,

6
(80X (6) y(g)ec/T(E)dtyg
(%% = ¥18) 1(5)qe

ey



27

)
where £(8) = y(8) - cfy(t)dt + a0
Defining gn(e) = g(e)hﬁ(e) and ﬂn(e) = hﬁ m(6) = gn(e) eg(e)’ one has,

Ja,00) - 6 (x)* 1,0y) ()

n

I(g'ef) I (g e¥)] %
‘ [ x X } I, (m)du(x)

c? I (g e®) ] Ifg; e°)
I (g' e§) 1I.(h%gq' ef) ] ‘
< 2 X Xx'n
— - I.(r.) d
- C2 f [Ix(g eg) Ix(hﬁ g eE) X n) U(X)

2
1.(h_h' g e
] f [ x_nn ] I (w. ) du(x)
c2 Ix(hﬁ g ef) x*"n’ T
= An +B (say) (4.2)

As usual, the task rests in finding appropriate hn's such that An’ Bn -+ 0.
Applying Cauchy-Schwartz's inequality on Bn’ ;

B, < constant {fhr'](e)}2 g(e) eg(e) do »~ 0 if hypothesis (i) in Theorem 4 holds.
In order to show An > 0 under hypothesis (ii), as usual we apply the Dominated
Convergence theorem. Since it is obvious that the integran in An converges to
zero pointwise, it will suffice to show that integrands are uniformly (in n)
bounded by the integrable (wrt dy) function ng (gé;i) T %.

Again, this follows, as in Brown-Hwang, by noting that the integrand is
I(g" e®) . []\2
<Ix§gn ef |- 7 MES
-Ix(g e®)
B : 2
I(g" e®)
g X 29
< Ix gg e g

I, ((%592 ﬂ) (4.3)
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This completes the proof of the theorem.

Remarks 1. The proof goes through without any problems in the multiparameter

situation. Suppose Vy(g; is to be estimated under a quadratic loss lla - vy(e)||2.

With n(e) = g(e) eg(e), where £(8) = w(o) - cy(é) + g'g, the hypotheses of the
theorem should be changed to

2

(i) there exist h 's such that fl]vhn(e)ll 1(6) d6 —> 0, and

2
(i1) &H%H n(e) do < = .
(H)

We also mention that no problems arise in writing down appropriate sufficient

conditions for more general weighted quadratic losses as in Brown-Hwang (1982).

2. The result of Ghosh and Meeden (1977) follows as a corollary. First note,
in the context of Ghosh and Meeden (1977), g{(e8) = 1 so that hypothesis (ii)

causes no problem. Also, 1f'fnf](e) de = « on both the tails, where

n(e) = e¥l(0) - tfy(t)dt+ad (see Ghosh and Meeden (1977)).indeed appropriate

hn's exist so that hypothesis (i) also holds. To find such hn's, one merely

needs to write down the Euler equation for the variational problem of
] - .
minimizing [qu (6)}? m(6) do, subject to u(e) = 0 for eg(a ,b ) and

u{eg) = 1, where a4 8, b + 8, and o, is an interior-point. It is easily

n
seen the solution, if called hn, is given by

b, .
o fonT(t) dt
_e e
h,(e) = T if oy <6 <b
[ (t) dt
%
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e A
[ 1 (t) dt
a
_on :
e ifa <6<s, (4.4)
{7 1 (t) dt
a
n

The hn's clearly have compact support; since an; b%-are monotone sequences,

condition (iii) of Lemma 2.1 causes no problem; also, as fn'1(t) dt — o
in both the tails, quite clearly hn(e) —> 1 as n —> « (after a certain stage

6 e(an,bn)). Thus, under the hypothesis of Ghosh and Meeden (1977),

aH(X) = X%Q-is admissible for v(e).
. Let (H) = HRP and consider the uniform prior m = 1. Then with hn as in

Brown and Hwang (1982), hypothesis (i) in the multiparameter case holds up

to p = 2. Hypothesis (ii) is equivalent to

[l|€vy - vy - gll2 do < = (4.5)

If vy = avy+b, clearly with appropriate ¢ and o, the integrand is zero and (4.5)
holds, meaning that:the uniform prior generalized Bayes estimate is admissible
up to p = 2. Of course, since the loss is squared-error, this fact follows

from Brown and Hwang (1982) and a separate proof is not necessary. But (4.5)
says that if for suitable c, P the integral above 1is:finite, then admissibility
still holds. Thus, roughly speaking, if the parametric function is in a close
vicinity of the mean-vector, the uniform prior Bayes rule remains admissible

up to two dimension. It will be interesting to know if violation of a condition
essentially Tike (4.5) will actually imply inadmissibility. In the special
Normal distribution, examination of various parametric functions which are

not in the long run essentially linear in o in the sense of (4.5), has led us

to believe this should be the case at least in that distribution.



4. Just as p(g) = 1 is the non-informative prior in the normal problem, in the

-1 - - P
gamma problem with scale-parameters 611,622,...,ep] , the prior H(6) = I ei
i=1

|
o
-
-l
ct

is the non-informative prior and is of some special interest. For p =

oo

is seen as in remark 3, that if f(cy(e) L a)z 6de < = for suitable ¢
0

[
and o (k being the known shape parameter), then the Bayes solution against
the non-informative prior remains admissible. We remark that it is easy to

write down the analogous integrability condition for a general p and general

weighted quadratic losses.

5. It is clear that if y(6) is linear in the natural parameter 8, then

f?cY(e) - %—- d)z o do cannot be finite. This of course corresponds to the
gact that the non-informative prior generalized Bayes estimate of the natural
parameter is not admissible in the gamma problem. However, the prior which
results in the admissible estimate |—<i-2--r:annot be handled by our Theorem 4,
i.e., Theorem 4 fails to show Eigiis admissible for 6. Whether this means
that Brown-Hwang's technique to carry out Blyth's theorem will work only for
parametric functions "near E(X)" is not clear to us. However , it seems clear
that builg-in in Brown-Hwang's technique is the implicit assumption that the
estimate sﬁ(x) is 5%?—p1us a small-enough perturbation, and if v(®) is nowhere
near -the mean, there is no reason why the dominant term in 5ﬁ(x) should be

linear in X; it is thus not surprising that such y(e)'s cannot be handled by

Theorem 4 of this section.

6. Final remarks. It will be interesting to obtain a characterization of linear

admissible estimates NGRS for a linear combination Z¢1ui of the means. The
sequence of priors in section 2 of this paper is best suited for the UMVUE

and for other estimates, a different argument, possibly using Brown's (1979)
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heuristics may be necessary. Also, it should be interesting to know if
inadmissibility results similar to those of section 3 can be proved for the
Negative Binomial distribution, another distribution with (H) = RE. Pre-
sumably, the risk-identities in Hwang (1982) should prove useful. Also,
estimating a linear combination of the means under quadratic lToss is pretty
much 1ike estimating all the means under a Tinear. combination of quadratic
losses (both problems essentially combine all the means in an additive
fashion); one expects similarity in admissibility patterns in the two probiems.

This is taken up in the multivariate gamma situation in Das Gupta (1984).
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