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ABSTRACT

As measures of goodness of a selection rule, usually two quantities,
the probability of a correct selection and the expected size of the selected
subset, are considered. Based on these two criteria, Gupta and Huang (1980)
proved a theorem to derive a selection procedure with some optimality
property. However, the theorem cannot be applied to the unequal sample
sizes case. In this paper, we use a different method to generalize this
theorem to the unequal sample sizes case. Also a dual problem is investigated.
Also, we treat a selection procedure in terms of multiple tests. Based

on this approach, we derive an optimality result.
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1. Introduction

Let TysTosees st be k independent populations which are characterized
by parameters 61309502505 respectively. Let Xi be the observation from
population i 1 <1 <k. Assume X = (X1""’Xk) is a sufficient statistic
for g = (e],...,ek). Suppose that we are interested in selecting a subset
of the k populations containing the largest parameter (or the smallest
parameter). For subset selection, let § = (61,...,6k) be a selection
procedure, where 61(5) is the probab111ty of selecting s 1 <1<k,
based on the observed vector X = x, and Z 8:(x) > 1, for all x (i.e. at
least one population is selected). As mealures of goodness of a selection
rule, usually two quantities, the probability of a correct selection and
the expected size of the selected subset, are considered. Based on these
two criteria, optimal selection rules have been considered by Bahadur (1950),
Eaton (1967), Lehmann (1961, 1966), Studden (1967), Nagel (1970), Spjgtvoll
(1972), Alam (1973), Gupta and Huang (1977, 1980), Berger and Gupta (1980),
and Bjgrnstad (1981), among others.

Most of the Titerature on the optimality of selection rules deals with

the problem when the sample sizes are all equal and is restricted to the

*This research was supported by the Office of Naval Research Contract
NOOO14-75-C-0455 at Purdue University. Reproduction in whole or in
part is permitted for any purpose of the United States Government.



Tocation model. Gupta and Huang (1977, 1980) formulate the problem more
generally, including location and scale cases. In this paper we will follow
the notation in the papers of Gupta and Huang (1977, 1980) and generalize
the theorem in Gupta and Huang (1980) to the unequal sample sizes case.

In Section 3, we use a different approach to deal with the problem of
Gupta and Huang (1980) and generalize it to the unequal sample sizes case.
Also a dual probliem is investigated. In Section 4, we treat a selection
problem as a multiple tests problem. Based on this approach, we derive an

optimality result.

2. Notations and Definitions

Following the notation of Gupta and Huang (1980), Tet @ = {6 = (61,...,6k)}

be the parameter space. Let 45 = rij(g) be a measure of separation between

m and mye We assume that there exists a monotonically non-increasing

function h such that T h(Tij )

<1<k, and gy = -0 (an indifference zone), where & = U_ Q.. For this
i=1

problem, we assume A and Ty are known with A > Ti4 for all i. Let

). Let g5 = {o]r;5(8) 28, ¥ £ 1, 1 <] <kl

T; T min T, 1 < i < k. We define t* = max T, The population associated
jEi M l<a<k |

with t* will be called the best population. It should be pointed out that
if g € a5 then 7, > 7y for all $ 1. Thus if g € ;5 then n, is the best
population. 1In case of any tie(s) of the populations corresponding to t*,
any one of the tied populations is "tagged" as the best population and
selection of any subset containing this population is called a correct
selection.

Let the observed sample vector be denoted by x = (51,...,§k), where

X5 = (XgpoeesXyp,

1)’ ] _<_1 _<_k’ X_i-l,...,X.

in are the samples from Tss
.i

1 <i<k. We define



(2.1) S(8,8) = P (CS[s)

= the probability of a correct selection using rule &,

k
(2.2) R(6,6) = ] E,6.
-i:] et

= the expected size of the selected subset using rule §.

Let there be a suitably defined statistic zij based on the n, and nj

independent observations from s and Ty 1 <1,j <k, respectively, and

suppose that for any i, the statistic L = 155 J#i,1 <3 <k}is

iJ
invariant sufficient under a transformation group G and let

T ='{Tij; jJFi,1<J<k}beamaximal invariant under the induced group

G. It is well-known that the distribution of Zi depends only on Tye For
example, if the observations from m; are mutually independently distributed

with unknown mean 6., 1 < i < k and known common variance 02, Zij might be
n, n.

X7 bv; 7 .l by J . . -

X5 - Xj, where X, = QZ]Xiz/ni and Xj = QZ]le/nj. For any i, let the joint

density of Zij’ j¥i,1<Jj<k, beP (Zi) = PT.(ET) with respect to some

-1
85(Z5).
1

9

o-finite measure u. We note that Eesi(g) = ET

The following definitions can be found in the paper of Alam (1973)

(see also Gupta and Huang (1981)).

Definition 2.1. A measurable subset S of the sample space is called

monotone non-decreasing if x € S and y satisfies X 2 Yio 1 <1 <k, then

y € S.

Definition 2.2. Let Pe(S) denote the probability measure of S under
the conditional distribution of X, given g. The distribution is said to

have stochastically increasing property (SIP) in g if Pe(s)-i Pe.(S) for



every monotone non-decreasing set S and for all 6, < 6., 1 <1 <k.

Definition 2.3. A function ¢(x) is said to be non-decreasing if

o(x) < oly) for x;

i S Y5 1 <1i <k

3. Optimal Subset Selection Procedures Based on Criteria S(8,8) and

R(g,5)

In the following discussion, we will assume that the density function

P (z;) = P_ (z;) defined in Section 2 has the SIP in t

denoted by Py(z,) when Tij = T4; - constant, ] £1i,1<3j <k, and by

P.(z;) when Tif T A j#1,1<J<k. Our goal is to generalize the
theorem of Gupta and Huang (1980). It should be pointed out that the
proof is different from that of Gupta and Huang (1980).

First we quote two lemmas from Alam (1973) and Lehmann (1961) for

completeness.

Lemma 3.1. (Alam (1973))

Let {Pe} be a family of distributions which has SIP in g. Then
Ee¢(§) 5_Ee:¢(§) for all non-decreasing integrable function (x) and
85 < 65 1_5_1 < k. (Thus, if P_ has SIP in g, and if p(x) is non-
decreasing in X3 then Eem(x) is-non-decreasing in ej.)

Lemma 3.2. (Lehmann (1961))
Let u and A be two probability distributions on g and w1 (subsets
of ), respectively. Let A and B be two positive constants and let 60

maximize the integral

(3.1) Bf S(g,6)du(e) - Af R(g,s)dx(e)
“0 “1



where S(8,8) and R(6,8) are defined by (2.1) and (2.2), respectively.
Then

(i) 60 minimizes sup R(6,8) subject to inf S(6,8) > v provided

B€u, 9€uy
(3.2) J R(e.s%)dn(8) = sup R(e,s")
u)-l 96(»1
and |
(3.3) [ s(e.s%)du(e) = inf s(e,8°) = .
(.UO E_)ELUO
(ii) Govmaximizes inf S(8,8) subject to sup R(8,8) < v'
8€uwy 6€w,
provided
(3.4) J R(e.6%)dr(e) = sup R(g,s”) = v
U)-I Qew-l
and
(3.5) [ s(8,6%)du(e) = inf S(s,6Y).
“g 8€uwg

Thé following theorem is a generalization of Gupta and Huang (1980).

Theorem 3.3. Suppose that for any i, pi(gi)/po(gi) is non-decreasing in
4 and that Pe(gi) has the SIP. If R(g,ao) is maximized at T3 T Ty T

constant, for all i,j, where 60 is given by

1 if Pi(zi) > ciPO(gi)

0 .
(3.6) 85(z;) = § A, if P.(zy)
0 if P.(z;)

iPolz;)

A

c;Polz;)s

Ci(> 0) and A; are determined by fs?Pi = vy, 1 <i<k. Then 60 = (6?,...,6k

minimizes sup R(8,8) subject to inf S(8,8) > v.
0€Q 0€Q



Proof. Let u be the probability distribution which assigns probability a;
(will be determined later) to the set w, = {9lTij =ate s, 1< <k,
and A be the probability distribution which assigns probability one to the
set w, = {9|Tij = 1,4 = constant}.

Let A and B be two positive constants (will be determined later). Then

Bf S(8,8)du(e) - AfR(8,8)dxr(s)
g Q

B

k
L i_Eesid“(Q) - A f(.z Eeai)dx(g)

i Wy i=1 =

nr~1x

k
fiz161(8aipi - APO)

which is maximized by putting 8, = 1 or O as BaiPi > or < APO. Let A, B,
k

a5 1 < i < k be satisfied the conditions a; >0, ) a; =1, and c; = A/aiB,
i=1

0

then 5~ defined by (3.6) maximizes Bf S(e,s8)du(e) - AfR(8,8)dr(s). Now, by
- Q

& 0

assumption Pi(gi)/PO(Zi) is non-decreasing in z;, then s, is non-decreasing

in z; and by Lemma 3.1, for any § € @, we have

S(9,6°) = E_ 6 > E

- T

0_ (0, _
61 = fﬁ.P. Y-

A 11

1 ey

. 0
Hence inf S(9,5")
o€

On the other hand,

LR

1]
<

K
{S(g,ao)du(g) = 1Z1aiIG?P1
)

Therefore | S(g,éo)du(g) = inf 5(9,60)
o 0€q

1]
-~

Next, we have
0 _ 0 _ 0 .
)dr(e) = [ R(e,s )da(e) = sup R(8,8"), by assumption.
Wy 6eq

The theorem follows by applying Lemma 3.2. (1i).

[R(es
Q



Remark: In the theorem of Gupta and Huang (1980), €, = C 1 <1 < k which
is a special case of Theorem 3.3. We note that if the sample sizes are not
equal, in order to satisfy the condition fs?pi =y, 1 <1<k, Cs should be
different.

Furthermore, we have the following theorem, which 1is a dual of Theorem

3.3.

Theorem 3.4. Suppose that for any 1, pi(;i)/po(gi) is non-decreasing in z;
0) is maxijmized at Ti5 S Tii o constant,

and that P (z;) has the SIP. If R(6,6
for all i,j, where 60 is given by (3.6) and Ci(> 0) and A; are determined by

k
) fs?po = v' and fa?pi is independent of i. Then s0 = (6?,...,63)
i=1

maximizes inf S(g,8) subject to sup R(g,s8) < v'.
0€Q 0€Q

Proof. By the same argument as the proof of Theorem 3.3, we have 60 defined

by (3.6) maximizes

Bf S(g,6)du(e) - AfR(g,8)da(e).
= Q
Q
Now, if o € Wy we have

o, . K .0 .
R(gs6") = _Z] f65pg = v'» by assumption.
1:
Hence
0 _ 0y _ ..
JR(g56 )da(e) = sup R(g:87) = v'.
Q IS
Furthermore,
TR S R I .

[ S(e,6 )du(e) = 'Z]aifsipi = faipi, since faipi is independent of i,

Q 1=
and

inf S(e,do) > min fﬁqp. = fan..
o€t - 1<i<k ity T

Hence



%)du(e) = inf s(0.6Y).

J s(858
- QGQ

Q
The theorem follows by applying Lemma 3.2 (ii).

Remark: For equal sample sizes case, p.(z;)/p.(z;) is independent of i. If
— =1/ r0 =

we choose c(> 0) and A such that f&?po = v'/k, then

1 if pi(z;) > cpylz;)

0 _ . _
61(%1) - AO if pi(Zi) - Cpo(gi)
0 if pi(z;) < cpylzy)

maximizes inf S(9,6) subject to sup R(e,8) < v'.
EQ BEQ

Example:

Let X;15...,X;, be a random sample from N(ei,oz), 1 < i < k, where
i

02 is known. Then (X],...,Xk) is a sufficient statistic for ¢' = (61,...,6k),

n.
i
where X, = ¥ X. /n. o N(e.,cz/n.). Consider the transformations
LTI F i i i

gc(x],...,xk) = (x]+c,...,xk+c), then Zi = {Xi'xj; i, 1 < k} is a

<3J
maximal invariant. The induced group G = {§C|§C(e],...,ek) = (e]+c,...,ek+c)}

has maximal invariant I% = {ei-ej; jJ 31,1 <J <k} and the distribution of

Zi depends only on 1 For any i, the joint density of Zi is given by

j*

Po(z) = P_(z;) = (2n0?) K /2 |5 1 Bexpia(z;-0

TS ](gi'fi)/zcz}

|-
i) Ly
where

1.1
n1 n1 l_.
. ni
Ly = : 4+

L 1 1
n. _—t —
T ™ (k=-1)x(k-1)



eyt ("I") means that the ith row (ith column) is deleted.

P (z,) has SIP in 1.,
T. =1

ris 1 21 < kand
=1

n2

2 i 2
(n1. - N—)/ZO }

Pi(gi)/PO(Zi) = exP{Ani(jiizijnj)/ch - A

which is non-decreasing in z;

; (N = .Z ni). Furthermore,

P.(z;)/Py(z;) > c; iff X, > j%injxj/jii ng + d;.

Thus

0 if X. < n.X./ n, + d.,
1 j;i JJ j;i J 1

if R(Q,so) is maximized at 6; = 8, =...= 6, then we have

(i) if d; =a L , then 6 defined by (3.7) minimizes
i n; ;

sup R(g,8) subject to inf S(g,8) > v.

0€Q eEQ
k A_di
(i1) Z = y' and o ) = constant,
- i=1 /1 T, ]
/__ S
n; % ng )Ny
JFi

then s° defined by (3.7) maximizes inf S(8,8) subject to sup R(8,8) < v'.
0eR pER

In particular, if Ny =Ny =...n =, then

0 . 3 1 3
(3.8) s; =1 iff X, > v— X, + d.
i i = k-1 524 j

We know that R(g,60) is maximized at o) =...= 8, iff inf S(g,s
GEQ
1

(see Bjgrnstad (1981)). Therefore, if o(((k- 1)/k) nzd/ﬁ).i‘E and
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d = a-00” () (KD

W=

, then 60 defined by (3.8) minimizes sup R(8,8) subject
0EN

1
K

m!»—l

to inf S(6,8) > v. If o(((k-1)/K)En%d/o) <
0€d

then 60 defined by (3.8) maximizes inf S(9,8) subject to sup R(8,8) < y'.

and d = -Q_](%—)cn_ﬁ(hil) ,

o€ 8€0

4, Optimal Selection Rules in Relation to Multiple Tests

Let X = (X ..X_ ) be a random vector with probability distribution

1o- k)
depending on a parameter vector ¢ = (e],...,ek) € Q. Consider a family of

hypothesis testing problems

(4.1) H.: o€eq against K.: 8 € Q,

it - 01
where Q97 T -9y 1 <i <k, and Qs 1 < i <k, are defined as in Section 2.
k
We know that g, = N i+ A test of the hypotheses (4.1) will be defined
i=1

to be a vector (§1(x),...,5, (x)), where the elements of the vector are ordinary
test functions. When x is observed, we reject Hi with probability 61(5),

1 < i < k. The power function of a test (6],...,6k) is defined to be the
vector (B1(e),....8,(8)), where g,(g) = E;6,, 1 <1 < k. Fore €ay, we

know that g;(g) is the probability of a correct selection and §,(x) is the

~ probability of selecting the best population s

Let SY be the class of all tests (6],...,6k) such that
1
(4.2) E
4.2 sup E 6. < vq.
R

Hence the expected subset size for the selection rule § over QO in SY is less
1
than or equal to Yy For each i, 1 < i < k, we would, subject to (4.2), Tike

to have g.(g) large when g € ;. For g € o, if we make 8;(8) large, then

Bj(g) will often have to be small for j § i, if (4.2) is to be satisfied.
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Therefore, we will restrict attention to tests which
(1) maximize the minimum average power over Qis 1 <1<k, i.e. maximize

k
L inf E_6.(X) among tests 6 in S, or
i=1 seq, - "

(2) maximize the minimum power over @., 1 < i <k, i.e. maximize

min inf Eeai(g) among tests § in S_ (see Spjgtvoll (1972) and
l<ick gea, = i

Gupta and Huang (1977)).
As discussed in Section 2, we will assume that, for any i, the

statistic Z; = {Zij; j#1i, 1 <3<k} is sufficient invariant under a
transformation group and has joint distribution which depends only on Tyo

say PI,(Zi)’ with SIP in .. Let Pé(gi) = pi(gi), 1<1<k,and

i

P21<21) = Po(gi) when Ti5 T Tii T constant, j ¥ i, 1

Gupta and Huang (1977) have considered the first problem. In this

|A

Jj < k.

section, we will consider the second problem.

Theorem 4.1. Suppose that for any i, pi(gi)/po(gi) is non-decreasing
in Z;. If 60 is given by
1 if cipi(zg) > pylzy)
0 _ . -

0 if Cipi(zi) < po(zi)

k
. 0o 0 . .
where c, (> 0) and r; are determined by 121 faipo = vy and fsipi is independent

k
of i. Ifsup ) E s occurs at t,. = 1. = constant, then 60 maximizes
L0 iJ i1
8€Qy i=1 =
min inf Eedi among all rules 6§ in S

I<i<k e€q; - M
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Proof. Since pi(gi)/po(gi) is non-decreasing in z;» then 6?(;1) is non-

decreasing in z..

j By Lemma 3.1, for any 6 € 2:s

0 0_ (0
E 5, Z.Eé51 = f85p,

which is independent of i, by assumption.

Hence
(4.4) inf E 6 f61p1
GGQ 8
Furthermore,
( Z c;)( min E 60 - min E8.)
i=1 1<i<k = 1<i<k =
'f ( 2 )
= <5 min E S§; - min E §.
i21 Ticick 27 <k 27
k 0 k- 0
= fiz1(61-61)(c1p1-p0) + fiz](éi'si)po
3_0; by definition of 6? and the fact
L ) W
8.Pn < SUP ES: <vyq = S:Pn
0~ 8eny i=1 2" Ty 170
Hence
. 0 .
(4.5) min E §; > min ES..
i<k 27 T lcick &

From (4.4) and (4.5), we have

min inf E66? = min E 6? > min E 85 > min inf Eg8:-
1<i<k QEQ_i - T<i<k = T<i<k = 1<i<k Qeﬂ_i | =

This completes the proof of the theorem.
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Remarks:

(1)

(3)

Theorem 4.1 implies Theorem 3.4, Since min inf Eeéi = inf S(0,6)
1<i<k peQ; - 3y

and if sup R(e,s) < Yqe then 6 € S .
0eR "

Theorem 4.1 can also be proved by using Lemma 3.2 and following the
same arguments as in the proof of Theorem 3.4.
If ¢; = ¢, 1 <1 <k, then Theorem 4.1 follows from the theorem of
Gupta and Huang (1977). Since

| 0

min inf Ejd; - min inf E.s.
1<i<k peQ; - I<i<k eeq, =
1K 0
=% L inf Es. - min inf Es,
i=1 eeQ; - 1<i<k geq, -
-k k
1 . 0 1 )
> ) inf E8; -~ } inf E 8.
k329 sea, ° k 429 8eo. e

\%
(@]
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