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1. INTRODUCTION

It is now over three decades since statistical inference problems

were first posed in the now familiar selection and ranking framework.

More than 700 papers have been published over these years in journals

and proceedings of international conferences. During the last fifteen

years, five books and a categorized bibliography have been published.

Starting with a handful of researchers in the 1950's, the area of selection
and ranking procedures has gained the attention of numerous active researchers
today.

Selection and ranking problems have generally been studied using either
the indifference zone approach of Bechhofer (1954) or the so-called subset
selection approach due mainly to Gupta (1956). A comprehensive survey of
significant contributions using these two approaches covering a span of
almost thirty years is given in Gupta and Panchapakesan (1979). The present
paper is mainly concerned with the subset selection approach. Our aim is
to provide a historical perspective, trace the major developments that took
place in the subset selection theory over the years 1955-1984 divided into
three periods, indicate recent trends and directions for future research, and
discuss the impact of research in this area. In doing so, we will not be

concerned with details of procedures but only with the nature and trend of the
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whole or in part is permitted for any purpose of the United States Government.



developments in each period. The periods themselves sérve more as a general

reference to several phases of growth of the theory rather than as precise

partition of the entire period.

2. HISTORICAL PERSPECTIVE

In many practical situations, the experimenter is faced with the
problem of comparing k (> 2) populations. These may, for example, represent
different varieties of wheat in an agricultural experiment, or different
competing coherent systems in engineering models, or different drugs for a
certain ailment. In all these prob1ems, each population is characterized
by the value of a parameter o. In the above-mentioned examples, this
parameter 6 may be the average yield of a variety of wheat, or the reliability
function of a system, or an appropriate measure of the effectiveness of a
drug.

The classical approach in the preceding situations has been to test the
so-called homogeneity hypothesis H0 that 81 =ev.= By where 61s.+.56, are the
(unknown) values of the parameter & for the k populations. If the populations
are assumed to be normal with means Byseves0) and a common unknown variance
02 (which is a nuisance parameter), we have the familiar one-way classification
model and the test can be carried out using Fisher's analysis of variance
technique. However, this usually does not serve the experimenter's real purpose
which is not just to accept or reject the homogeneity hypothesis. The real
goal often is to identify the best.popu]ation (the varﬁety with the largest
average yield, the most reliable system and so on). As Bechhofer noted in his

now classical 1954 paper, the deficiencies of the ANOVA 'do not lie in the

design aspects of the procedure but rather in the types of decisions which are



made on the basis of the data'. Of course it was recognized (see Cochran and
Cox, 1950, p. 5)that the hypothesis that there is no difference between
different treatments is unrealistic and that the real problem is to obtain
estimates of the sizes of the differences between the treatments. However,
the method of estimating the sizes of differences was often used as an
indirect way of attempting to reach the goal of finding the best treatment
or treatments. The attempts to formulate the decision problem to answer this
realistic goal set the stage for the development of the selection and ranking
theory.

The two main approaches that have been used in formulating a selection
and ranking problem are familiarly known as the indifference zone approach
and the subset selection approach. Suppose there are k populations TyoeessT
where s is characterized by the distribution function Fe.’ i=1,...,k, where

j
0; is a real-valued parameter with a value in the set @. It is assumed that

i
the 6; are unknown. Let us denote the ordered 0; by 9[1] 5_9[2] 53"5-e[kj
and the (unknown) population m; associated with o[ 7 by T(4) i=T1,...,k.
The populations are ranked according to their e-values. To be specific,
USRS defined to be better than () (w(i) < n(j)) if i < j (that is,
6[1] 5-6[j])' The experimenter is presumed to have no prior information
regarding the true pairing between (e],...,ek) and (6[1],...,e[k]). The
basic problem in the indifference zone approach is to select one of the k
populations with a guarantee that the probability of selecting the best
population, called the probability of a correct selection (PCS), is at

* * . 3
least P* (1/k < P* < 1) whenever s(e[k],e[k_]]) > &*; here 6(e[k],e[k_1]) is
an appropriate measure of the separation of the best population (k) and the

next best population T(k=1)" The constants P* and 6* are specified by the

experimenter in advance. The statistical problem is to define a selection



rule which really contains three parts: sampling rule, stopping rule for

sampling and decision rule. If the rule is based on a single sample of

fixed size n from each population, then the minimum value of nis determined so that
the specified minimum PCS can be guaranteed. As we stated above, this

guarantee is to be met when g = (6],...,6k) belongs to a part of the

parameter space @, namely, Q ='{g: d(e[k],e[k_]]) > §*}. The region

6*
Qg% is called the preference zone. It should be noted that no requirement

is made of the PCS when 9 belongs to the complement of Qs It is this fact
that led to the original label of 'indifference zone' approach. There are
several variations and generalizations of the basic goal discussed above.
For details, reference can be made to Gupta and Panchapakesan (1979).
In the subset selection approach for selecting the best population

the goal is to select a nonempty subset of the k populations so that the
best population is included in the selected subset with a minimum guaranteed
probability P*(%v< P*¥ < 1). Here the size of the selected subset is not
determined in advance but by the data themselves. Selection of any subset
consistent with the goal (here selecting the best population) is called a
correct selection (CS) and the probability of a correct selection using a
rule R is denoted by P(CS|R). The requirement that

P(CS|R) > P* (1)
is referred to as the basic probability requirement, the P*-requirement or the

P*-condition.
Denoting the (random) selected subset by S, the requirement (1) can

be written in the form
PY‘(TT(k) €S) > p* (2)

which brings out its similarity to the probability statement associated with

a confidence interval procedure. While P* corresponds to the confidence



coefficient, the size of S, denoted by |S|, corresponds to the 'length' of
the confidence interval. Thus any subset selection rule for 'constructing' S
meets the criterion of validity by satisfying (1) or (2) and |S| serves as a
measure of the sensitivity or performance of the rule. It should also be
emphasized that in the subset selection framework there is no indifference
zone specification; the validity criterion or the P*-condition must be
satisfied, whatever the configuration of the unknown parameters. The
coﬁfiguration of the parameters which yields the infimum of the probability
of a correct selection (PCS) is referred to as the least favorable configura-
tion (LFC).

Besides being a goal in itself, selecting a subset containing the best
can also serve as a first-stage screening in a two-stage procedure designed
to choose one population as the best; see, for example, Alam (1970), and
Tamhane and Bechhofer (1977).

To point out some other differences between the indifference zone and
the subset selection approaches, consider the problem of se]ecting the
population associated with the largest mean from k normal populations
with unknown means B1se-+ 50 and a common variance 02. When 02 is known,
Bechhofer (1954) proposed a single stage procedure based on samples of size n
each from the k populations. When 02 is not known, a two-stage procedure
is necessary to guarantee the probability requirement using the indifference
zone approach. On the other hand, one can solve the problem by single stage
procedures for both cases in the subset selection approach. Also the subset
approach can be used when the sample size n > 2 has already been chosen
without regard to the type of analysis to be used for the data.

Besides the problem of selecting the best of k given populations, another

problem that has been investigated from the early period is that of comparing k



experimental treatments (populations) with a standard or a control treatment.
The goal is to select a subset of the experimental treatments that contains

all treatments that are better than the standard or the control.

3. EARLY DEVELOPMENTS (1955-1965)

Early investigations of subset selection rules predictably centered
around well-known parametric families of diétributions, namely, normal,
binomial and gamma. Gupta (1956) considered a procedure for selecting the
population with the largest mean from k normal populations with means Hyoe s ook
and a common variance 02. He considered the case of known as well as unknown

2

o~. Based on samples of size n from these populations, his rule in the case

of known 02 is

Ry: Select ms if and only if Xi > max X, - =, (3)

where Xi is the mean of the sample from Tss i=1,...,n, and d > 0 is the smallest
constant such that the probability requirement (1) is satisfied. The smallest

constant d satisfying the requirement is given by

inf P(CS|R) = P* (4)
£

where @ denotes the parametric space. When 02 is not known, the rule R2 of
Gupta (1956) is of the same form as R] except that o is replaced by s, where
52 is the usual pooled unbiased estimator of 02. 0f course, the constant d
will have a different value now.

For selecting the population with the largest scale parameter from k

gamma populations with (unknown) scale parameters By 0090 and a common known

shape parameter v, Gupta (1963) proposed the rule



R .

3¢ Select =, if and only if X; > ¢ max X, (5)

1<j<k Y
where Xi is the mean of a random sample of size n from T i=1,...,n,
and ¢ € (0,1) is to be determined to satisfy the P*-requirement.

The rules such as R], R2, and R3 are all referred to as Gupta's
maximum type rules. Of course, these have their counterparts for the
problem of selecting the population with the smallest parameter of interest.
These maximum type rules have been investigated extensively in the Titerature;
their optimal properties have also been studied.

As opposed to the maximum type rules, average type rules were proposed by
Seal (1955, 1957, 1958a). In the case of selecting the normal population with

the largest mean when the common variance 02 is unknown, the average-type

rule is
R4: Select s if and only if
k-1 .
3 v(1)
X; > FZ] cp iy - sts (6)

...5_Xéaz]] denote the ordered sample means after deleting
; »e..5K), s° is the usual pooled unbiased es:jTator of 02, CqsreesCy ]
are nonnegative constants subject to the constraint.E ¢, = 1, and
t = t(k,P*,c],...,ck_1)'is chosen to satisfy the P*l;Lquirement. However,
as we will discuss later, the maximum type rules are found to be approximately
Bayes optimal under reasonable loss functions. The additional simplicity in
determining the constants associated with these rules makes them more appealing
and useful.

The initial investigations of the rules for normal means, normal variances

and gamma scale parameters were concerned with derivations of the properties of

the rules such as monotonicity and of results relating to the supremum of the



expected size of the selected subset for these specific distributions.

The first paper in the direction of a unified treatment was by Gupta (1965)

who treated subset selection in terms of 1qcat10n and scale parameters; a similar
exposition for the indifference zone appfoach was given by Barr and Rizvi

(1966a). It was assumed that the selection statistics used in the rule have

distributions differing in a location or a scale parameter. Let Ti be the

statistic associated with the sample from ms (i =1,...,k) with distribution
F(x-ei) in the Tocation case and F(x/ei) in the scale case; hereei's are

the parameters to be ranked. The rules investigated by Gupta (1965) are R

5
(location case) and R6 (scale case) given below.
R5: Select s if and only if
T, > max T.-d (7)
1<3=k
and
R6: Select ms if and only if
Ty > cmax T, (8)

1<j<k I

where d > 0 and c € (0,1) are to be determined so that the P*-requirement
is satisfied.

Gupta (1965) showed that the infimum of the PCS in either case is attained
when the parameters are equal and this infimum is independent of their
common value. He also derived the following important properties of these
procedures.

(1) The procedures are monotone, i.e., for 8; > 855 the probability of
including s in the selected subset is at least as large as that of including
s

(2) The probability of selecting the best population in the selected

subsét of size |S| (not known in advance) is maximum among all possible subsets

of size |S]|.



(3) If the distribution F(x,8) possesses a density f(x,6) that has a
monotone 1ikelihood ratio in x, then the E(|S|) is maximized over all parametric
configurations when the 6, are equal and this maximum is kP*.

For selecting the binomial population with the largest success probability,
Gupta and Sobel (1960) proposed a location type rule. Let X; be the number of

successes in n trials associated with T i=1,...,k. Their rule is

R7: Select s if and only if
X; > max X: -d (9)
1<j<k Y

where d is the smallest nonnegative integer for which the P*-requirement is met.
An interesting feature of Procedure R7 is that the infimum of the
PCS occurs when all the parameters are equal but it is not independent of
their common value, say, p. For k = 2, Gupta and Sobel (1960) showed that
the infimum of PCS over p occurs when p = %n When k > 2, the common value p
for which this infimum takes place is not known. However, it is known that
this common value p +-% as n » o, This difficulty regarding the infimum of
the PCS led to the investigations of conditional selection rules which will
be discussed in the next section.
The investigations of these early period were mainly under the assumption
that the sample sizes are equal and that the nuisance parameters (such as
c? for the normal means problem) are equal.
Besides the problem of selecting the best of k given populations, procedures
were proposed and investigated also for the problem of selecting a subset
containing all the populations that are better than a control, and that of

partitioning a set of populations with respect to a control. The early

contributors are Bhattacharya (1956), Gupta and Sobel (1958), and Seal (1958b).
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4, YEARS OF MAIN GROWTH (1965-1975)

The decade 1965-1975 witnessed a very significant growth of the ranking and

selection theory, in general, and the subset selection theory, in particular.
This period also marks the advent of the 'second generation' of researchers
coming mostly out of Cornell University, University of Minnesota and Purdue
University. The research during this period encompassed many facets of the
subset selection theory. The main developments during this period can be
broadly categorized into (i) unified results for the existing theory, (ii)
generalizations and modifications in the formulation of the problem and the
goal, (iii) decision-theoretic formulations, Bayes and empirical Bayes procedures,
(iv) selection procedures for multivariate normal and multinomial populations,
(v) development of conditional procedures, (vi) nonparametric procedures,
(vii) selection from restricted families and (viii) sequential procedures.
As one can see, many of the developments, that took place in the theory had
their beginnings in this period. We will discuss these briefly. For more
details on these results, the reader is referred to Gupta and

Panchapakesan (1979).

4.1 Unified Theory

In Section 3, we referred to Gupta (1965) who presented unified results
for Tocation and scale parameter families. These results were further
generalized by Gupta (1966). This was followed by a more compre-
hensive unified theory by Gupta and Panchapakesan (1972). Let Myse ey have
absolutely continuous distributions Fe]""’Fek’ respective]y; where the 0
belong to an open interval @ of the real line. It is assumed that {Fe},

O € @, is a stochastically increasing family in 6. Let h = hc,d’ C € [1,w),

d € [0,») be a class of real-valued functions defined on the real line satisfying

the following conditions: For every x belonging to the support of Fe’
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(1) hc’d(x) > X, (i) h1 0(x) = x, (iif) hC d(x) is continuous in ¢ and d, and

- b4

(iv) Tim ) = =, c fixed, and/or 1im h_ g(x) = =, d fixed, x + 0.

Creo

d_mhc’d(x
Using the above class of functions h, Gupta and Panchapakesan (1972)
considered the following class of procedures whose typical member is denoted by

R

h
Rh: Select the population s if and only if
h(xi) > MaxX  X., (10)
l<j<k

where Xs is an observation from Tis i=1,...,k. The PCS is minimized when

= 9. In general, the value of the PCS depends on 6. Under certain
regularity conditions (see Gupta and Panchapakesan, 1979, p. 206) Gupta and
Panchapakesan (1972) obtained a sufficient condition for the PCS to be
monotonically 1ncrea$ing (or decreasing) in 6. When 6 is a location or a
scale parameter, the PCS is independent of 6. Gupta and Panchapakesan also
obtained a sufficient condition for the supremum of the expected subset size
to occur when the parameters are equal. This latter sufficient condition
implies the one for the monotonicity of the PCS in 6. Besides the cases of
location and scale parameters earlier discussed by Gupta (1965), the general
results have been applied to the case where the density fe(x) is a convex

o«

mixture of the form .Z w(e,j)gj(x). Here gj(x),'j = 0,1,..., is a sequence
of density functions ;nd the w(6,j) are nonnegative weights such that

_§ w(e,j) = 1. The results for the convex mixture directly apply to the
g;gcedures for selection from multivariate normal populations by Gupta and
Panchapakesan (1969) in terms of the multiple correlation coefficient of one

component with respect to the others, and by Gupta and Studden (1970) in

terms of the Mahalanobis distance function. It should also be noted that
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the class of functions h includes the usual choices made earlier, namely,

h(x) = cx, ¢ > 1, and h(x) = xtd, d > 0. The class also includes

=

—
=

~—
n

cxtd, ¢ > 1, d > 0, which was used by some authors later.

4.2 Generalizations and Modifications of Basic Formulation

Deverman and Gupta (1969) considered a generalization of the basic subset
selection goal. Let 6[1] 5,..5_e[k] be the ordered parameters of k populations.
The populations associated with t largest ei's are the t best populations.

Any subset of a fixed size s is called an s-subset. The goal is to select a
subcollection from the (E) s-subsets with a minimum guaranteed
probability P* so that the chosen subcollection contains at Teast one
s-subset having at least c of the t best populations. Obviously, for a meaningful
problem, the integers c, s, t, and k must be such that k > 2 and

min(s,t) .

max(1, s+t+1-k) < ¢ < min(s,t). Also, P*> ) (?)(5:;)/(5). When
i=c

s =t=c=1, we get the basic problem of selecting a subset to contain the
best.

In the basic formulation we select a nonempty subset of the k given
populations. When the parameters 6; are all very close to one another, we
are likely to select all the populations. So it is meaningful to put a
restriction that the size of the selected subset will not exceed m (1 < m < k).
Even otherwise, one may want to select a nonempty subset of a random size
subject to a maximum of m. Such a formulation is called a restricted subset
size formulation. ‘The general theory was developed by Santner (1973, 1975)
and the normal means selection problem was investigated by Gupta and Santner
(1973). An important feature of this formulation is that an indifference
zone is introduced. The minimum guaranteed PCS is required when the parametric

vector 6 = (e],...,ek) belongs to the preference zone. The minimum sample size
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n and the constant associated with the selection rule are to be determined.
The general theory of Santner (1975) formally reduces to give the results
of Bechhofer (1954) for m = 1 and, those of Gupta (1956, 1965) for m = k if
the indifference zone is allowed to vanish.

To illustrate the restricted subset selection problem,consider k normal
populations with unknown means Wpse sl and a common known variance 02.
We want to select a subset of size not exceeding m (1 < m < k) such that
the best population (the one associated with “[k]) is selected with a
probability at least equal to P* whenever k] T M[k-1] > & where § > 0 is

specified in advance. The Gupta-Santner rule (1973) is

R .

g Select ms if and only if

- - v do

where X;,...,X, and X[]] 5,..§_X[k] are the unordered and the ordered sample
means based on samples of size n. For a specified value of §, d will depend
on k, P*, and n.

Another modification is to relax the goal of selecting the best popula-

tion. If ¢ are the parameters to be ranked, one may be content with

ELRRT L
selecting populations that are nearly as good as the best (the one associated
with e[k]). Lehmann (1963a)used this idea, though not for a subset selection
goal. Priority in introducing this concept goes to Fabian (1962) who defined
a A-correct ranking for the problem of Bechhofer (1954). Let us consider the
case of location parameters. Lehmann (1963a)defined a good population as

any population =, for which 6. > e[k] - Ay A > 0. Desu (1970) defined
superior and inferior populations by 8; > e[k] - b and 6. j_e[k] - Ay
respectively, where 0 < Ay < b, His goal is to se]ect a nonempty subset

2 .
of the k given populations that excludes all inferior populations with a
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minimum guaranteed probability P*. The performance of a procedure
satisfying the P*-requirement can be evaluated, for example, by the

expected number of superior populations included in the selected subset.
Carroll, Gupta and Huang (1975) considered eliminating inferior populations
with respect to the t best, i.e., those mi's for which 0, j_e[k_t+]] - A,

A > 0.. They called these populations strictly non-t-best. These definitions
are modified in an obvious way to handle scale parameters. Panchapakesan
and Santner (1977) introduced a generalization by defining a good population
relative to the t-thbest as one for whichvei z-p(e[k-t+1]) where p is a
function possessing certain general properties. They considered two

goals: (i) selecting a nonempty subset containing only good ones, and (ii)
selecting a subset whose size does not exceed m (1 < m < k) and which will

include at least one good population. Their treatment complements the

unified results of Gupta and Panchapakesan (1972) and Santner (1975).

4.3 Decision-theoretic farmulation; Bayes and empirical Bayes Procedures

During the period of main growth, early contributions to the
decision-theoretic formulation were also made, and some‘Bayes and empirical Bayes
procedures were derived. These early contributions may be consid-
ered modest compared to the growth of the literature on the classical
procedures during this period. However, they gave the impetus to the
developments that would follow in the subsequent periods.

To describe the decision-theoretic setup, let =, (i =1,...,k) be
characterized by the probability space (%, G, Pi)’ where Pi belongs to some
family @ of probability measures. Let us assume that the family P is
stochastically ordered; in other words, there is a stochastic ordering

between any pair (Pi’Pj) from ?. The stochastically largest among
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MyseeesTy is the best population. In the case of more than one contender,
we assume that one of them is tagged as the best. We observe % = (X1,...,Xk)
where Xi is an obsérvation from T i=1,...,k. The space of the observation

X is xk = {x = (x1,...,xk): x; €%, 1= 1,...,k}. The decision space 8 consists
of the 2k subsets d of the set {1,2,...,k}; in other words, 8 = {d|d< {1,...,k}}.
Thus a decision d‘corresponds to the selection of a subset (possibly the empty
set) of the k given populations. Any decision d € 8 is a correct selection if

J € d where " is the best population. A selection procedure is a measurable

k

function § defined on_xk x 8 such that for each X € X", we have 6(%,d) > 0 for

any de ® and ) a(é,d) = 1. Here G(é,d) is the probability that the subset d
des

is selected when X is observed. The individual selection probability pi(é)

for the population = is given by pi(%) = ) 8(x,d), the summation being over
doi

all subsets that contain i. While, in general, the individual selection
probabilities do not uniquely determine the selection procedure 6(%,d), they
do so when the pi(%) take on only values 0 and 1 (see Gupta and Panchapakesan,
1979, p. 212).

Studden (1967) studied optimum selection rules assuming that
g = (61""’ek) js a permutation of a k-vector of known elements. He
assumed a loss function L(Q,d) = Z L.

L7
ied
whenever m is selected and I = 1 or 0 according as a correct selection is

(Q) + L(1-I), where Li(Q) is the loss

or is not made; here, L is a positive constant. This Toss function is also
assumed to be permutation-invariant. Studden (1967) obtained the best (in the
sense of minimizing the risk) invariant selection rule.

Nagel (1970) defined a concept of just selection rules. His definition
[see also Gupta and Nagel (1971)] involves a partial ordering defined on X and
is applicable when the dimension of 2 is one or more. In the one-dimensional case,

a selection rule R, defined by its individual selection probabilities
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p.(%), i=1,...,k, is called just if and only if the following holds:

X; 2 ¥ X5z vy forall § 1 15 py(y) > py(x).
Let @ denote the space of the parameter vector 8 and 2 denote the part of
Q@ in which all the parameters are equal. Nagel (1970) showed that, under

stochastic ordering on the parameter space, for any just rule R

inf P(CS|R) = inf P(CS|R). (12)
Q 2
The result in (12) is a reasonable property to be expected of a rule. Nagel
also showed that a permutation-invariant just rule is monotone.
Deely and Gupta (1968) obtained Bayes procedures considering linear

loss functions of the type

L(S,e) = jgsaj(e[k]-ej) | (13)

where S denotes the set of indices of the selected populations. Deely (1965)
investigated empirical Bayes procedures and derived these procedures in several

special cases.

4.4 Selection Procedures for Multivariate Normal and Multinomial Distributions

Several problems were investigated relating to the best component of the
mean vector of a single multivariate normal population and the best of several
multivariate normal populations. For ranking multivariate normal
populations several criteria were considered, such as the Mahalanobis distance
function (Alam and Rizvi, 1966; Gupta, 1966; Gupta and Studden, 1970), generalized
variance (Gnanadesikan and Gupta, 1970), and multiple correlation coefficient
between a particular component and the remaining ones (Gupta and Panchapakesan,
1969). However, in some of these problems the exact infimum of the PCS was

not derived 1in general. For selecting the best component of a single
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multivariate normal population, Gnanadesikan (1966) considered a location

type procedure based on sample component means. Except in the case of bivariate
normal, only a lower bound of the PCS is used to obtain a conservative value of

the constant to be used in the procedure even in the case of known correlation
matrix . The difficulty is due to the fact that the association between the

ranked components and the known correlations is unknown. If we assume that

the components have the same variance and are equally correlated with correlation

o > 0, then the exact solution is available (Gupta, Nagel and Panchapakesan,

1973). For selecting the best of several p-variate normal distributions,

N(%i’zi)’ i=1,...,k, in terms of the Mahalanobis distance function, Alam and Rizvi
(1966), Gupta (1966),and Gupta and Studden (1970) proposed procedures when the covar-
iance matrices Ty are known as well as when they are unknown. The special case of common
pX (Zi = 5 for all i) was not solved. This was later solved in an approximate sense
by Chattopadhyay (1981). A few other measures were considered (Frischtak, 1973;
Gnanadesikan, 1966) for ranking multivariate normal populations but the results

in these cases are very limited in scope or are asymptotic in nature. For

selecting the populations better than a standard, Krishnaiah and Rizvi (1966)
considered, as criteria, linear combinations of the elements of mean vectors

and distance functions whereas Krishnaiah (1967) considered linear combinations

of the elements of the covariance matrices.

For selecting the most (or the least) probable cell in a multinomial
distribution, Gupta and Nagel (1967) proposed a single stage procedure. Let
X],...,Xk denote the cell counts based on n independent observations from
a k-cell multinomial distribution with unknown cell probabilities PyseeesPy-

Gupta and Nagel (1967) proposed and investigated the following rules R9 and

R]0 for selecting the cell with the largest and the smallest Pis respectively.
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R9: Select s if and only if
Xi > max X; - D (14)
1<j<k I

where D = D(k,n,P*) is the smallest nonnegative integer for which the

P*-condition is satisfied.

R]O: Select s if and only if
Xy < min X, +C (15)
1<j<k )

where C = C(k,n,P*) is the smallest nonnegative integer for which the
P*-condition is satisfied.

The first interesting point to emerge about R9 and R]0 is that,unlike
in earlier problems such as normal means, normal variances, etc.,
the analysis in the minimum case does not exactly parallel that in the maximum
case. Also, for k > 2, the LFC was not completely determined. Gupta and Nagel
(1967) showed that the LFC (in terms of the ordered pi) is of the type
(0y...,0,5,P5...5P)» S < P, in the case of Ry and is of the type (p,...,pP,q),
p < g, in the case of R]O' An alternative to R9 is the inverse sampling
selection rule of Panchapakesan (1971, 1973) for which the infimum of the PCS
occurs when all the cell probabilities are equal.

Multinomial selection rules are also important in the sense that they
provide distribution-free procedures. Let TysesesTy have continuous distributions

Fe-’ i=1,...,k, which belong to a stochastically increasing family in so.
i

Let P; denote the probability that in a set of k observations, one from each
distribution, the observation from s is the largest, i = 1,...,k. Selecting
the stochastically largest population is equivalent to selecting the population

associated with the largest p;. By taking observations, vector at a time,
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and noting which population yielded the largest observation, we can convert
the problem, in an obvious manner, to that of selecting the most probable

multinomial cell.

4,5 Conditional Selection Procedures

In Section 3, we noted that, for the Gupta-Sobel rule [R7 defined by
(9)1, the infimum of the PCS occufs when all the success probabilities
associated with the k binomial populations are equal to p, but this
common value p at which the infimum takes place is not known when k > 2. Thus, there
was no result available earlier that gave a reasonable conservative value of
the associated constant for any given n. Similar difficulties arise also
with procedures for Poisson populations. There are also a few other
interesting points about the usual procedures in this case. Let us briefly
mention them here.

Let X1,...,Xk denote the numbers of occurrences from k Poisson
populations with parameters AMoeeeshpo respectively. Suppose we want to
select the population with the largest A Here the usual location and
scale type procedures cannot be found to satify the P*-condition for all

permissible values of P*., Gupta and Huang (1975a) proposed a modified procedure
given below.
R Select s if and only if

X1+]_3 c max X (16)
1<j<k

11°

where 0 < ¢ = c(k,P*) < 1 is to be chosen subject to the P*-requirement.
The motivation behind this procedure comes from a result of Chapman (1952) -
which says that there is no unbiased estimator of A1/x2 but X]/(X2+1)

is "almost unbiased." Gupta and Huang (1975a) have shown that the infimum
of the PCS occurs when A SeeeS A TN however, the common value x at which

the infimum occurs is not established.
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Since the common value of the parameters at which the infimum of the PCS
occurs is not known for these rules for the binomial ahd Poisson populations,
the natural question is: Can we find conservative values for the constants
defining the procedures? An answer in the affirmative follows from the use
of conditional selection rules which form a part of the important contributions
of the period under review.

Gupta and Nagel (1971) first proposed conditional subset selection rules
in the case of binomial, Poisson, and negative binomial populations. Since their
rules are randomized just rules, they satisfy (12). For selecting the
binomial population with the largest success probability,.their rule

specified by the individual selection probabilities is as follows.

R12: Select the population characterized by success probability 0,
with probability

1 if Xi > C

t
pi(é) = o if x; = cp, i=1,...,k, (17)
0 if x, <c
with t = Xq Fooot Xy and the constants p and ¢, are determined to satisfy
E(p (R)[T = £) = P> (18)
where T =

X] +...4 Xk' The important fact to note about R]2 and similar
Gupta-Nagel randomized procedures for Poisson and negative binomial populations
is that the infimum of the PCS occurs when the parameters under consideration
of the k populations -are equal and the constant associated with the rule
(depending on the value of the statistic T on which the conditioning is done)
is independent of the common value of the parameters.

For the binomial selection problem Gupta, Huang and Huang (1976) proposed

a nonrandomized conditional rule

R]S: Select s if and only if
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X. > max X; - D(t), (19)
! 1<j<k J
k
given T = ) Xi = t, where D(t) > 0 is to be chosen to satisfy the P*-condition.
i=1

Exact result for the infimum of the PCS is obtained for only k = 2; in this case,
the infimum is attained when Pp =Pr =P and is independent of the common value
p. For k > 2, Gupta, Huang and Huang (1976) obtained a conservative value for

D(t). They also obtained a conservative value for the constant d of the
unconditional rule R7 in Section 3. It should be noted that, in using the
conditioning argument to obtain a conservative value of d, one can always
guarantee the P*-condition. The values of the constant d tabulated by Gupta
and Sobel (1960) for k > 3 are based on normal approximation and thus may
lead to a drop of the PCS below P*.

Conditional rules for Poisson populations were given by Gupta and Huang
(1975a). These are similar to R17 given by (16) with c(t) in place of c,
given T = 'E Xi = t. It is well known that, if X]”"’Xk are independent
Poisson variab1;;1with parameters S ERERFY IR respectively, then the conditional
joint distribution of X],...,Xk given X] L Xk = N is multinomial with
ce]]—probabi]ities p; = Ai/zxi. The conditional selection rule for Poisson
was exploited by Gupta and Huang (1975a) to provide a selection rule for select-
ing the most probable multinomial cell which selects the cell s if and only if

X;¥1 > ¢ max X, where ¢ = c(k,N,P*) € (0,1).
1<j<k |

A conservative value of c can be obtained from their
results for the conditional selection rule for Poisson populations.

ATthough conditioning on T = ZXi is used in the preceding procedures, the
ultimate purpose is to guarantee a specified minimum unconditional probability
of a correct selection. This is somewhat different in spirit from the

approach of Kiefer (1977a) who has discussed selection and ranking problems
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(using indifference zone as well as subset selection approach) to illustrate
applications of his general theory of conditional confidence and estimated
confidence in multidecision problems. For details, refer to two excellent

papers_by_ Kiefer (1977a,b) o e e

4.6 Nonparametric Procedures

The first nonparametric subset selection procedure was studied by

Rizvi and Sobel (1967) for the problem of selecting the population having

the largest a-quantile (0 < o < 1) from k populations having continuous
distributions. Assume that the size n of the sample from each population

is sufficiently large so that 1 < (nt1)a < n and define a positive integer r
by the inequalities r < (n+1)a < r+1. This implies that 1 < r < n. Let

Y denote the jth order statistic from Tis j=1,...,n3 1 =1,...,k. The

J»i
procedure proposed by Rizvi and Sobel (1967) is interesting in the sense that

it differs from the usual maximum type. Their rule is

R Select ms if and only if

14°

Y . > max Y (20)

r,i —']fjfk r-c,j
where ¢ is the smallest integer with 1 < ¢ < r-1 for which the P*-condition
is satisfied. However, a c-value satisfying the P*-condition exists only

if a permissible value of P* does not exceed a value P1 depending on n, a,
and k. The procedure is monotone and the expected subset size is maximized
when all the distributions are identical. Nonpargmetric procedures for the
re1ated prob]ém of compéfiéon with a Cohtro] wére studied.by Rizvi, Sobel énd

Woodworth (1968).



Gupta and McDonald (1970) assumed that the distributions Fi’ i=1,...5K,
belong to a location or a scale parameter family. Let Rij’ h| ='1,...,ni
denote the ranks of ns independent observations taken from Fi’ i=1,...,k, in
the pooled sample of N = n, +...+n observations. Let Z(1) < Z(2) <...< Z(N)

denote an ordered sample of size N from any continuous distribution G such
n.

that - «» < a(r) = E(Z(r)]G) <o, r=1T1,...,N. Define H, = ) a(Rij)’

§=1
i=1,...,k. For selecting the population associated with the largest
parameter, Gupta and McDonald (1970) proposed three procedures based on H;'s,

Two of these are the usual maximum type procedures, one for the Tlocation case

and the other for the scale case. The best that can be said about the LFC
for these procedures is that it occurs when Ork-11 ~ ork]- In general, the
LFC for these procedures is not an equi-parameter one unless k = 2. It was
inadvertently claimed to be so by some authors earlier. The same difficulty arises
in the indifference zone formulation. Formal counterexamples were given by

Rizvi and Woodworth (1970). Gupta and McDonald (1970) gave bounds for the

infimum of the PCS. The third procedure of Gupta and McDonald (1970) is

R Select ms if and only if

15°
H. > d. (21)

For this rule, the infimum of the PCS is attained when e] =..® 03

however, this rule may select an empty subset unless P* is sufficiently

large. Some other related papers include McDonald (1972, 1974), Blumenthal
and Patterson (1969), and Puri and Puri (1968, 1969).

If we have distributions from a location parameter family, we can
use procedures based on one-sample Hodges-Lehmann estimators. For these
procedures, the LFC can be determined. Ghosh (1973) studied such procedures
with goals involving selection of a fixed number of populations. Gupta and D.-Y.
Huang (1974) studied such a procedure for the goal of eliminating populations

which are strictly inferior to the t best.
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A review of the procedures described above and a few other related results

are given by Gupta and McDonald (1982).

4.7 Selection from Restricted Families

A restricted family of probability distributions is defined by a partial
order relation with respect to a known distribution. Such families provide
characterizations of 1ife-length distributions and thus are very important
in reliability studies. Selection rules for such restricted families were
first considered by Barlow and Gupta (1969). In order to make our discussion
of the selection procedures for these families adequately self-contained, we
will define the partial orderings that have been used. For more details and
related references, the reader is referred to Gupta and Panchapakesan (1979,
Chapter 16).

We define the fo]]oWing partiai order (é) relations for two distributions

F and G assumed to be absolutely continuous.

Definitions 4.1. (1) F is said to be convex with respect to G (F p G) if

1

and only if G 'F(x) 1is convex on the support of F.

(2) F is said to be star-shaped with respect to G (F < G) if and only

]

if F(0) = G(0) = 0, G 'F(x)/x is increasing in x > 0 on the support of F.

(3) F is said to be r-ordered with respect to G (F p G) if and only if

1

and G 'F(x)/x is increasing (decreasing) in x positive

| —

(negative).

(4) F is said to be tail-ordered with respect to G (F 3 G) if and only

if F(0) = 6(0) = % and ¢

It is known that convex ordering implies star-ordering. Further, when

F(x)-x is increasing on the support of F.

G(x) = 1-e *(x >0), F < G is equivalent to saying that F has an increasing
failure rate (IFR) and F < G is equivalent to saying that F has an increasing
failure rate on the average (IFRA). Of course, if F is IFR, then it is also

IFRA.
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Let LETRREPL have the associated absolutely continuous distributions
F1,..., Fk’ respectively, The best population is defined in terms of a
characteristic such as the mean or quantile of a given order. Let F[k] denote
the distribution function of the best population. We assume that F[k] is
stochastically larger than the rest and that Fifﬁ G, i=1,...,k.

Under the above setup, Barlow and Gupta (1969) proposed a procedure for
selecting the population having the largest o-quantile (0 < a < 1) when all
the Fi are star-shaped with respect to a known G. Let Tji denote the jth
order statistic based on n independent observations from T i=1,...5k,

where j < (n+1)a < j+1. The Barlow-Gupta procedure (1969) is

R16: Select s if and only if
T, . >c max T, (22)
Joi larck 97

where ¢ = c(k, P*, n, j) is the Targest constant in (0,1) for which the P*-
condition is satisfied. Tables for the constant c and the constant for the
analogous procedure for selecting the population with the smallest a-quantile

are given by Barlow, Gupta and Panchapakesan (1969) for the special case

of exponential G,i.e. for the IFRA family of distributions. Another interesting
special case of G is the half-normal obtained by folding N(O,oz) at the origin,
where o is assumed to be known. The class of distributions which are star-
shaped with respect to thisfolded normal is a subclass of IFRA distributions.
Selection in terms of quantiles for this restricted family was considered by
Gupta and Panchapakesan (1975).

Barlow and Gupta (1969) considered also the selection of the population
with the Targest median from a set of distributions that have lighter tails
than a specified G. The definition of Fi having a Tighter tail than G used
by them implies that Fs centered at its median is tail-ordered with respect

to G. The procedure of Barlow and Gupta (1969) applies equally to the
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problem of selecting the population with the largest median from a set of
populations which, centered at their respective medians, are tail-ordered
with respect to G. This is discussed by Gupta and Panchapakesan (1974),
who also provide the values of the constant when G is the logistic distribution,
that is, G(x) = [1+e_x]-1.

Some important unified results were obtained by Gupta and Panchapakesan
(1974). They defined a general partial order relation called #-ordering through
a class of functions ¥ = {h} and discussed a related selection problem. The
#-ordering includes the star- and tail-orderings as special cases. The
selection rule is of the type Rh defined in (10) using a member h of #. In
Section 4.1, the general results of Gupta (1966) were mentioned. His third
special case, besides the location and scale parameter cases, is really the
case of a restricted family using H-ordering, even though the description

there is not in terms of the partial ordering.

4.8 Sequential Procedures

Barron (1968) and Barron and Gupta (1972) investigated a noneliminating
type sequential procedure for selecting the population with the largest
mean from k normal populations with unknown means 61""’ek and common known
variance 02. However, it was assumed that the successive differences of
the ordered 6, are known. The sampling for their procedure is done by taking
one observation from each population at each stage. At any stage, each
population that has not been so far classified as accepted or rejected, is
subject to one of three possible decisions: accept, reject, or postpone
classification. Sampling continues until all the populations are classified
either as accepted or as rejected. ATl populations that are accepted constitute
the selected subset. It should be noted that until all populations are
classified, the samp1jng is made from all populations, previously classified

or not.
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Swanepoel and Geertsema (1973) considered a sequential procedure for
selecting the normal population with the largest mean from k populations,
N(ei,cﬁ), where all the parameters are unknown. They defined a selection
sequence using the idea of a confidence sequence introduced by Robbins (1970).
For each n > 1, let Bn denote a subset of the k populations defined'by n

observations from each population. Any sequence'{Bn} is a selection sequence if

Pr(w(k) € Bn for all n > 1) > p* (23)

for all PR Let [S(n)| denote the size of the subset Bn and let r
denote the number of populations tied for the best population. Then, for
the selection sequence defined by Swanepoel and Geertsema, |S(n)] + r a.s.
(almost surely) as n + «, and Bn = {“(k-r+1)""’ﬂk} a.s. for large n.
The size of the selected subset can be restricted to a maximum of
m (1 <m < k) by defining a stopping variable N as the first integer n > 1
such that [S(n)| <m. If r <m, then N < « a.s. and the subset By (which
contains at most m populations) includes the best population with a minimum
probability P*. However, if r > m+1, then N = » with positive probability.
Gupta and Huang (1975b) discussed three sequential procedures of which
two are parametric and the third is nonparametric. The nonparametric and one
of the parametric procedures are of the nonelimination type. The goal of
their parametric procedures is to select what they called mildly t best

populations. Suppose that 91""’ek are unknown location parameters of k

given populations. Then s is called mildly t best if 65 3-e[k-t+1] - s

where A > 0 is specified. Fort =1, ms has been called a superior population
by Desu (1970) and a good population by Lehmann (1963). Gupta and Huang
(1975b) have discussed their procedures in a general setup and obtained
special results for selecting from normal populations in terms of their
means Or variances. Their nonparametric procedure is for selecting the

population with the Targest location parameter when the k populations have
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absolutely continuous distributions F(x—ei), i=1,...,k. It is assumed
that F(+) is symmetric about the origin and that the densities have monotone
Tikelihood ratio property and are differentiable almost everywhere. Carroll
(1974) has discussed some asymptotically nonparametric sequential selection

procedures.

4.9 Other Developments

In the early investigations, detailed results were obtained only for
procedures which used samples of a common size from the populations under
consideration. Also, in the case of selection in terms of the means from
k normal populations, the early investigations assumed equal variances.

When the variances are not equal (that is, under heteroscedasticity),

the only trivial case is when they are all known and the sample sizes are the
same. To handle various other situations that arise, several procedures were
proposed and investigated.

Let TyseeesTy be k normal populations with unknown means Bysee0s8) and

2

(known or unknown) variances o%,...,ok. Let Xi and s? denote the mean and

the variance (divisor n1-1) of a random sample of size ns from s i=1,...,k.

n..
11
Let us first consider the case of known variances. In describing

It 1)

2 K 2
Let s“ = ) (n1-1)si/(N—k), where N =
i=1

;
various procedures, we have used the same letter d to denote the constant
in each case. This constant d is the smallest positive constant for which
the P*-condition is satisfied. Also, if o rather than o appears, it it

assumed that oq =...= o = o. Gupta and W.-T. Huang (1974) proposed the rule

Ry;: Select n. if and only if Xi > max X, - %

——1§j§k J /ﬁi'

Later Gupta and D. Y. Huang(1976a) proposed the rule

Rig: Select = if and only if X; > wmax (Xi'dQ/%T' %T)'

For the case of unequal variances, Gupta and Wong (1976) proposed the rule
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2 2
0. Q.

Rig: Select ms 1f and only if Xi > max (X,-d ‘ﬁl + ﬁi).
1<j<k 7 i N

Chen, Dudewicz and Lee (1976) proposed a rule assuming o to be unknown. In

the case of known o, their rule would be

. Loy /1 1
Rog: Select n. if and only if X, > max - do /— + —
20 i i 1<j<k n, a

where the constant a is nonnegative and is usually chosen betweén n[]:l and n[k],
both inclusive. |

For all the above procedures (R]7 through RZO)’ the respective authors
have obtained Tower bounds for the infimum of the PCS. For k = 2, Gupta and
D.-Y. Huang (19768 have shown Rig to be more efficient than R]7 in terms of
the supremum of the expected subset size. Berger and Gupta (1980) considered

minimax subset selection rules using the criterion M = max P(v(. is

| T<j<k-1 3)
selected). They have shown that Ryg> and R]g (when 01 T-..= 0p = c) are

minimax with respect to M in the class of nonrandomized, just, and translation
invariant rules which satisfy the P*-condition. The rules R]7 and R20 are not
minimax, in general.

Next, Tet us consider the case of unknown variances. The counterparts
of the rules R17, R]8 and R20 were proposed by the respective authors where
the new rules Ri7, Ri8 and RéO were of similar forms with s rep1acfng
o. Of course, the constant d will have a different value in each
case. Gupta and Wong (1982) proposed a rule Ri9 which selects ms if and
only if

Xi > max X. - Cc max s,.
1<i<k Y 1<j<k

As in the case of known Gils’ these authors have given only lower bounds
for the infimum of the PCS. Some comparisons of Ri7, Ri8 and RéO are given
by Chen, Dudewicz and Lee (1976).

When the variances are unknown and unequal, and the sample sizes are
unequal, Dudewicz and Dalal (1975) proposed a two-stage procedure for

selecting the population with the largest mean under the indifference zone
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formulation. Let Ny be the first-stage sample size for each population, and

n; - N, the second-stage sample size from i i=1,...,k. Their procedure
is based on the statistics ii’ where ii is a weighted average based on all

the n, observations from Tis i=1,...,k. The weights are chosen subject

to certain conditions. They also proposed the following subset selection rule

R Select s if and only if ii > max X, - d

21° T 1<j<k J
where d > 0. For this procedure, the P*-condition is satisfied irrespective
of the choice of the positive constant d. So one has to impose some

additional restriction in order to have a meaningful choice of d. One
possibility is to introduce a restriction on the expected subset size in

some configuration of the means. It is worth noting that a two-stage prbcedure

is not necessary for satisfying the P*-condition in the subset selection

approach, whereas it is necessary for the indifference zone approach.

Among other problems studied during this period is the selection From

k normal populations, N(“T’O?)’

j i=1,...,k, when the parameters to be ranked

are g, = |u1!/0., i=1,...,k. The parameters 6, are the signal-to-noise
ratios if the populations represent different communication systems. For
this problem, Rizvi (1971) studied a Tocation-type procedure (of the type
Ry in (1)) based on the absolute sample means. His main results deal with

the case of 0% S GE = 02 (known or unknown) and samples of equal sizes.

5. YEARS OF FURTHER STRIDES (1975-1980)

Of the many important contributions made during 1975-1980, the foremost
concerned the development of the decision-theoretic approach to subset
selection. Besides Bayes procedures, several minimax and r-minimax rules
were derived. The first paper on locally optimal rules also appeared during
this period. Several contributions were also made to classical procedures for

specific families of distributions.
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5.1 Bayes Procedures

In Section 4.3, we discussed the early developments of Bayes procedures
using linear loss functioné. The first papers to appear with nonlinear
loss functions are Bickel and Yahav (1977), Chernoff and Yahav (1972),
Goel and Rubin (1977), and Gupta and Hsu (1978). They use = different
Tinear combinations of four components of loss, namely, (i)
the simple Toss due to an incorrect selection, which takes value 0 or
1 according as a correct selection is or is not made, (i1) |S|, the size

of the selected subset, (iii) e[k] - max e » Which expresses a measure
jes

of loss in using in the future the populations that are selected, and (iii)

e[k] - .Z ej/lSI, which is an 'average' loss in using in the future the populations
that are selected. The components used in .the linear

combination are: (i) and (iv) by Bickel and Yahav (1977), (ii1) and (iv)

by Chernoff and Yahav (1977), (ii) and (i11) by Goel and Rubin (1977),

and (i) and (i1) by Gupta and Hsu (1978).

Goel and Rubin (1977) assumed that the k distributions had densities and

‘beTonged to a family with montone Tikelihood ratio property. The vector § of the

k parameters was assumed to have an exchangeable prior distribution. They derived the
Bayes rule under this setup and.obtainedeurther-simp]ifications in the case of the
prior - distribution of § being a mixture of i.i.d. random variables.

They alsoobtainedan 'approximate' Bayes rule R, which selects larger

subsets than the Bayes rule but is the Bayes rule for k = 2. This approximate

Bayes rule, under a further assumption regarding the form of the posterior
distribution of 0:5 reduces to the classical procedure of Gupta (1956) except

that the constant that is involved depends only on the cost per population.

Goel and Rubin (1977) also discussed the special case of normal populations,
%)

N(6.,07), i = 1,...,k, where 02 is known and [ has an exchangeable multivariate

j
normal prior for all k.
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Chernoff and Yahav (1977) considered selecting the population with the
largest mean from k normal populations with means B1s00 050 and a common
known variance 02, where § has an exchangeable normal prior. They compared
their Bayes procedure with the (random size) subset selection procedure of
Gupta (1956) and the fixed size subset selection procedure of Desu and
Sobel (1968). Their results were based on Monte Carlo studies of the
integrated risks with respective to different exchangeable normal priors.

Bickel and Yahav (1977) also considered k normal populations with
means 8q,...,0, and a common known variance 02. They investigated the optimal
solution when k goes to infinity under the assumption that the "empirical
distribution " of the means 8:5 i=1,...,k, converge in a suitable sense
to a smooth limiting probability distribution. Their asymptotic solution is:
Select the populations that generated the last 100x0 percent of the order
statistics, where A depends on the 1imiting distribution of the 8 and on the
penalty associated witﬁ a wrong decision.

Gupta and Hsu (1978) studied the comparative performances of the maximum
type procedure of Gupta (1956) and the average type procedure of Seal (1955)
with their Bayes procedure in the case of normal means with exchangeable
normal priors. Their Monte Carlo results indicate that the maximum type
procedures do almost as well as the Béyes procedures. Similar results have
been found under different loss functions by Chernoff and Yahav (1977),
and Hsu (1977). These studies are useful because an easy-to-implement
procedure whose performance is close to that of Bayes procedure is most
welcome from a practical point of view; Bayes procedures typically require
numerical integrations to implement them and are difficult to compute
explicitly.

In other developments, Gupta and Hsu (1977) using the same loss function

as in their 1978 paper established the monotonicity of Bayes subset selection
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procedures, under certain generalized monotone 1ikelihood ratio property
assumption, for a restricted class of priors. Miescke (1979) assumed

certain additive Toss functions and showed that, in the normal case with
symmetric priors, the Gupta procedure is the limit of Bayes rules as the

sample size tends to infinity.

5.2 Minimax and r-minimax Rules

For the class of subset selection rules for which the PCS is at least
P*, Berger (1979) investigated minimaxity taking the loss as measured by
the subset size. Under certain mild conditions, he showed that the minimax
value cannot be less than kP*. Applying this to location and scale problems,
he showed that, under the monotone likelihood ratio assumption, the rules of
Gupta (1965) are minimax. He also obtained some necessary conditions
for minimaxity. One of these conditions is related to (12) which is an
important property of just selection rules. It should ée pointed out that if a
rule is minimax with respect to the subset size |S|, thén it is minimax also
with respect to |S'|, where S' consists of all the non—%est populations that
are selected. 2

Berger and Gupta (1980) obtained minimax rules in the class of nonrandomized,
just, and invariant rules when the risk is measured by the maximum probability
of including anon-best population. These rules are of the form proposed and
studied by Gupta (1965) in location and scale parameter problems. Berger and
Gupta (1980) used their results to examine the minimaxity of several rules for
the normal means problem when the variances are known but not necessarily
equal and the sample sizes are unequal. We have réferred to these results
in Section 4.9. |

Bjdrnstad (1980) compared three minimax procedures for the normal

means problem where the common known variance 02 = 1. Let 81,...,ek denote

the means. The three procedures are the maximum type procedure of Gupta
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(1956), the average’{ype procedure of Seal (1955) and a procedure of
Studden (1967). The performances of these three were compared by using
the expected number of bad popu]ations (that is, those for which
0 < e[k]—A’ A > 0 given) as the criterion, while controlling the PCS
when there is only one good population. The numerical comparisons made
for several slippage configurations shoWed that the average type procedure
is inferior to the other two. While these twovothéf rules seem |
comparable, the maximum type rule performs better when A is small.

The use of par§§a1 or incomplete prior information in statistical
~inference has led togthe so-called r-minimax criterion, a term
initially used by Bh;m and Rosenb]attl(1967). The basic idea of the
criterion, howevér; %s due to Robbins (1951). Here the prior distribution
is assumed to be a member of the subset I of the class of all priors.
The r-minimax rule is obtained by minimizing the makimum expected risk over
r. When T consists of a single prior, one has the Bayes rule for that
" prior. On the other hand, if T consists of all priors, then we have the
usual minimax rule.

Gupta and Huang (1977) derived a T-minimax procedure for selecting the

best population. Let Tises Ty be k populations with densities fe s 1= Theuiuk,
i

respectively. Define t. = max Ty where t.. is.a measure of separation
1<jsk H |
b3 |
between =, and w.. The population . such that 1. = min T, is called the
! ) ! - 1<j<k

best population. Let @, = {Q|ri < tpks 1= Tseiisk, where T, is a given
constant. The parameter space @ is partitioned into 2 U 2 U...U Qs
where g can possibly be the empty set. Here o is appropriately chosen
so that Qs corresponds to configurations where ﬂf is the best, i = 1,...,k.

When 9 € QO, selection of any one of the populations is considered a correct
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selection. For deriving their r-minimax rule, Gupta and Huang (1977)

) is a prior

assumed that T = {p(Q)|£ do(g) = g, i =1,...,k}, where o(g
i k
distribution and gy,...,q, are nonnegative and ) a; < 1.
i=1

Gupta and Kim (1980) considered minimax and r-minimax ru]és for
partitioning k populations MysenssTy in comparison with a standard or
a control my- Let m, have density fi(x—ei), where f; is symmetric about
the origin and is strongly unimodal (that is, f1 is log-concave on the real
line). Any population s is superior, equiva]ent, or inferior to T
- according as 80y > 4, Or -4 < éi'eO < b, 0r 8,-85 < -4, where A > 0 is
given. Gupta and Kim (1980) under appropriate losses for misclassifications
of the populations derived I'-minimax and minimax rules for both the cases
when 60 is known or unknown. When 60 is unknown, attention wés restricted
to the class of rules for which the decision'about s depends only on the

observations from wi,and WO’ i=1,...,k.

5.3 Construction of Optimal Selection Procedures and an Essentially

Complete Class

Gupta and Huang (1980a) obtained a selection procedure under certain
optimality conditions. Though their results are obtained in a general
setup, we will describe it in terms of the normal means problem for simplicity.

Let « o Ty be normal populations with unknown means S ERERL and a common

1°-
variance 02 = 1. The population associated with the largest 05 is the best
population. A selection procedure is specified by the individual selection
probabilities for the populations. Gupta and Huang (1980a) derived an optimal
rule in the class of rules for which the PCS is at least v(0 <y < 1) by

minimizing the supremum of the expected subset size. In the general setup,

the result requires a generalized version of the monotone likelihood ratio
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for the multidimensional case.

Gupta and Huang (1980b) considered the class ¢ of rules for which
the size of the selected subset is controlled when the distributions are
identical. The goal is to obtain a rule in this class which maximizes
the infimum of the PCS over the parameter space 2. Under certain assump-
tions, Gupta and Huang (1980b) obtained an essentially complete class of
rules for this problem. In this regard, a rule 6] is defined to be as
good as 85 if igf P(CS]G]) 3_1gf P(CS|62) where both &, and 8, belong to
the class C. The essentially complete class obtained by Gupta and Huang
is the class of"monotone"selection procedures. Suppoée X1s- 05X are

Observations from k populations with densities f(x—ei), i=T1,...,k. Let

y

AT

= (.yi]s---ay.ik)a where y” = X_i—Xj,

the individual selection probability for Tis i=1T1,...,k. Then the selection

J=T1,..0,ks §Fi. Let §; denote

rule § = (6],...,6k) is monotone if, for any i and j, Gi(yi) is nondecreasing
n

1n'y1j, when all other components of Y are kept fixed.

5.4 Locally Optimal Subset Selection Rules

Gupta, Huang and Nagel (1979) were the first to investigate locally

optimal subset selection rules. They were interested in obtaining such

rules based on ranks while still assuming that the distributions associated

with the populations were known. This is appealing especially in situations

in which the order of the observations is more readily available than the actual

measurements themselves due, perhaps, to excessive cost or other physical constraints.
Let f(x,ei) be the density associated with mis 85 €0 i=1,...,k,

where @ is an interval containing the origin. Let a = (A],...,AN) denote

the rank configuration of the pooled sample of N = kn observations obtained

by taking a sample of size n from each population. Here Ay = J means that
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the ith smallest observation in the pooled sample came from LFE Let QO =
{8: 0y =...= ek}l The goal is to derive a permutation-invariant rule §

based on the rank configuration A such that

inf P, (CS|s,8) = P _ (24)
'QGQO L

subject to the condition:

maximize Pe(CSIG,A) for all g € A0 (25)

N

where AO denotes a neighborhood of any 20 € 9- The motivation in seeking
Tocally optimal rules satisfying (24) is due to the fact that, for many
classical subset selection ru]es.in the literature, the LFC is an equi-
parameter point. Since the distribution of the ranks does not depend

on the underlying distributions when § € ags the condition (24) implies
that the PCS is constant for S QO" So AO can be taken as a neighborhood
of 8 = (0,...,0). Gupta, Huang and Nagel (1979) derived a locally optimal
(in the sense of (25)) rule under certain regularity coqditions on

f(x,8). If f(x,8) = e-(x-e)/[]+e-(x-e)]2, the 1ogist1c%density, their
rule becomes: Select m; if and only if Ry > ¢, where RE is the rank-sum

1

statistic for the sample from Tis i=T1,...,k. This is‘fhe procedure R15
defined by (21) of Gupta and McDonald (1970).

Some other locally optimal subsét selection rules with different optimality
criteria have been recently obtained by Huang and Panchapakesan (1982b) and
Huang, Panchapakesan and Tseng (1984). These will be discussed in the next

section.

5.5 Modified Goal for Subset Selection, and a Complete Ranking Formulation

In Section 4.2, we discussed the restricted subset selection formulation
of Santner (1975) whose aim was to restrict the size of the selected subset
by an upper bound m < k-1. Huang and Panchapakesan (1976) studied a modified
formulation in which besides controlling the PCS, an upper bound 8 € (0, k-1]

is imposed on the supremum of the expected subset size whenever the
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parametric vector p = (91""’9k) belongs to a preference zone 24 defined
appropriately for a specified 6*. The treatment of the problem by Huang and
Panchapakesan (1976) is in a general setup that includes location and
scale parameter cases. As in the restricted subset size formulation of
Santner (1975), one has to determine a constant associated with the rule as
well as the smallest sample size needed to meet the requirements. Specific
application to selection in terms of treatment effects in a two-way
layout is also discussed by Huang and Panchapakesan (1976).

In another paper, Huang and Panchapakesan (1978) have considered a
subset selection formulation of the complete ranking problem. Let
B72+ -0 be the ungnown parameters of k populations. The interest is in
ranking the k popu]étions according to their 8-values. Any permutation
of the set of integers {1,2,...,k} corresponds to a ranking of the populations.
Huang and Panchapakesan (1978) considered the problem of selecting a nonempty
subset (of a random size) of all the k! possible permutations such that the
correct ranking is included in the selected subset of permutations with a
minimum probability P* € (1/k!, 1). They have discussed Tocation and scale
parameter cases. If X],...,Xk are the observations from TyseessT with
densities f(x-ei), i=1,...,k, the procedure of Huang and Panchapakesan

(1978) is

R22: Include the ranking (1],12,...,1k) in the selected subset if
and only if

max  max (Xi 'Xi ) < d, (26)
2<s<k l<r<s 'r s o

where d is the smallest positive constant for which the P*-condition is

satisfied. The infimum of the PCS is attained when 6] =, ..z ek.
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5.6 Entropy-based Selection

Selection in terms of an information measure was first considered
by Gupta and Huang (1976b) and Gupta and Wong (1977a). The former paper
was concerned with binomial populations and the Tatter with multinomial
populations. The significance of these papers is due not only to the
importance of information-theoretic measures in practice but also to the
iTlustration of using concepts of majorization and Schur functions
for obtaining probability inequalities in selection problems.

Let LETRERL be k multinomial populations each with m cells and let
the unknown cell-probabilities of s be Pi1oe+oPim i=1,...,k. The

Shannon entropy function associated with s is Hi = H(pi1”"’pik) =

m .
- Z pj log pj. This function is a measure of the uncertainty with regard
J=1

to the nature of the outcomes from Tis i=1,..., k. The populations are to
be ranked in terms of the entropy function. For m = 2, the problem of
selecting the population with the largest Hi reduces to that of selecting

the binomial population associated with the Targest w(eﬁ) = -9,

j log 8,

-(1—61)109(1-61), where 6. is the success probability. ?Gupta and Huang

(1976b) studied a selection rule in this case. Their ﬁh]e is

R23: Select s if and only if
Xi Xj

o(57) 2 max w(z) - d, (27)

1<3<k

where Xi is the number of successes in n trials associated with s
and d = d(k,n,P*) is the smallest nonnegative constant

such that 0 < d < y([n/2]/n). Here [n/2] denotes the largest integer < n/2.

For this rule, the infimum of the PCS takes place when 8y =...= 6 = o.
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However, as in the case of R7 of Section 3, the common value of & for which
the infimum is attained is not known. Gupta and Huang (1976b) have obtained a
conservative value ford as was done by Gupta, Huang and Huang (1976) in the

case of R7.

To discuss the general case of m > 2, we need the following definitions.

m

Let 2 = (a;,...,a ) and A, = izr ari]e where ary] <2 3 denote the

ordered components.

Definitions 4.2. A vector a = (a1,...,am) is said to majorize another

vector p = (b1,...,b ) of same dimension (written a>borbx g) if Ar-i Br

m

for r=2,...,m, and A1 B]. A function f is said to be Schur-convex

|v

(Schur-concave) if f%é) f(%') (f(%) g_f(%'))whenever x> X'

In our se]ectioé problem, we assume that there is a population whose
associated vector oféce11-probabi]1ties is majorized by the associated
vector of any other population. Such a population will have the largest Hi
because the entropy function is Schur-concave. Gupta and Wong (1977a)

proposed the rule
R24: Select s if and only if

. X. X. X.
il im Jl jm .
Pl seees —) z']Tgik m(—ﬁ—',..., —ﬁ—) - d, (28)

where Xi],...,X. are the cell-counts based on n independent observations from

im
ms (i =1,...,k), ¢ is a Schur-concave function, and d = d(k,m,n,P*) is the
smallest positive constant for which the P*-condition is satisfied. Gupta
and Wong (1977a) obtained a conservative value of d using the idea of

conditioning as in the paper of Gupta and Huang (1976b).
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5.7 Other Developments

Here we discuss several developments dealing with various aspects of
subset selection procedures. These relate to
selection procedures for Poisson processes, selection from restricted families,
selection procedures based on medians, robust nonparametric procedures, selecting
a good subset of the predictor variables, and subset selection used for screening

in a two-stage procedure for selecting one population as the best.

Selection procedures for Poisson processes. Let LA ERRREL be k Poisson

processes with unknown mean rates Moo oMy respectively. Gupta and Wong
(1977b) investigated four different procedures for selecting the process with
the largest M. Two of these procedures are based on the number of occurrences
Xi(to)’ i=1,...,k, during time tO from these processes and are essentially
Rule RH defined by (16) and its conditional analogue, both discussed

in Section 4.5. A third procedure is

R25: Observe the processes continuously until max X.(t) = N.
1<i<k

Select s if and only if

X;(t) > N-c (29)

-where N is a positive integer specified in advance, and ¢ = c(k,P*,N) is
the smallest nonnegative integer for which the P*-condition is satisfied.
The infimum of the PCS for the rule R25 takes place when;‘u1 BEREER A and
is independent of the common value y. The constant c isjthe smallest integer

(0 < ¢ < N) which satisfies

(-6, () > P, (30)
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where Gr(t) is the cdf of the gamma distribution with unit scale parameter
and shape parameter r.

The fourth procédure of Gupta and Wong (1977b) is based on observing the
processes at successive intervals of time, t = 1,2,..., until the first time
ty when Xi(to) > N for some i. The selection procedure is based on the
waiting times for N and N-c occurrences, where ¢ js the constant of the
rule R25. The details of this procedure are omitted here. The infimum of
the PCS for this rule is the same as in the case of R25, namely, the left-

hand side of (30).

Selection from restricted families. Let MyseeesTy be k given populations

with distributions F],...,Fk, respectively. It is assumed that there is one
among them which is stochastically larger than any of the rest. This popula-
tion, denoted by F[kj’ is defined to be the best. It is also assumed that F[k] é G,

where G is a known distribution. A1l distributions in the context are assumed to be

)

absolutely continuous with the positive real T1ine as the support. Let X§1% (Yj n

denote the jth order statistic in a random sample of size n from Fi(G). Define

Pav, 1= Taxdi), i-1,. .k (31)
% T LA T Tk

T =

where r (1 < r < n) is a fixed integer,

a. = gG-](_—)'gG-](%)s J = ]ao--sr"]:
(32)

and g is the density associated with G.

If G(y) = 1-e7Y, y > 0, then aj =1/n for j =1,...,r-1, and a, = (n-r+1)/n.

+ (n—r+1)X(1) which is the well-known total 1ife

r.,n’

= x(1) (1)
Thus nT, = X],n +oo0t Xr-],n

statistic until the rth failure from Fi'
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Now, for selecting a subset containing Fy -, Gupta and Lu (1979) proposed
2 k]

the rule
R26: Select s if and only if
T, >c max T., (33)
1<j<k

where c is the largest number in (0,1) for which the P*-condition is satisfied.

They have shown that, if a; 20 for j =1,...,r, g(0) <1 and a,. > c, then

inf P(CS|Ryg) = [ Gr™ (y/c)d6r(y), (34)
9]

O 8

where G, is the cdf of T, and @ is the space of all the k-tuples (F],...,Fk)
such that there is one among them which is stochastically larger than the
others and is convex with respect to G. Thus, the constant c is chosen to
be the largest number in (0,1) such that gG'](E%l)_i c and the right-hand
side of (34) is equal to P*. For the special case of G(y) = 1-e™Y, y > 0,
the condition a; > ¢ becomes ¢ < (n-r+1)/n. This special case is a slight
generalization of the results of Patel (1976).

Hooper and Santner (1979) considered selection of good populations in
terms of a-quantiles for star- and tail-ordered distributions using the
restricted subset size approach discussed in Section 4.2. Let s have the
distribution Fi and let F[i] denote the distribution having the ith smallest
o-quantile. Denoting the a-quantile of any distribution F by xa(F), uF
is called a good population if Xd(Fi) > C*Xa(F[k-t+1])’ 0 <c*<1, in the
case of star-ordered families, and if x (F.) > xa(F[k—t+1]) - d*, d* > 0,
in the case of tail-ordered families. The goal of Hooper and Santner (1979) is to

select a subset of size not exceeding m (1 < m < k-1) that contains at least

one good population.
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Selection procedures based on medians. Gupta and Leong (1979), Gupta

and Singh (1980), and Lorenzen and McDonald (1981) investigated subset selection
procedures based on sample medians for selecting the population with the

largest location parameter 0, from k given populations belonging to several
specific location parameter families. Let Ti be the sample median based on

n independent observations T i=1,...,k. Then the procedure studied by

all these authors is

R Select s if and only if Ti > max T.-d, (35)

27" = 1%5ek

where d is the smallest nonnegative number for which the P*-condition is satis-
fied.

Gupta and Leong5(1979) considered the case of double exponential
populations, name]y,'f(x-ei) =-% exp[-lx-ei|], i=1,...,k. Gupta and Singh
(1980) considered normal populations with means Byseeesfys and a common known
variance. They also studied performance characteristics of R27 in the double
exponential case. Lorenzen and McDonald (1981) discussed the case of logistic
distributions with means PR and a common known variance. Gupta and
Singh (1980) made a numerical study of the efficiency of Ro7 compared to the
Gupta procedure based on sample means. Their study indicates that the
procedure based on sample medians, though ordinarily less efficient than
the procedure based on sample means, does better when the normal populations
are contaminated. Lorenzen and McDonald (1981) compared R27 with the procedure
based on means, and the rank-sum procedure (in the case of k = 2) of Gupta and
McDonald (1970). The general nature of their findings are that the median
procedure does better than the means procedure when there is contamination and

it does better than the rank procedure when the 6, are believed to be roughly

in an equally spaced configuration.
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Robust nonparametric procedures. In Section 4.6, we discussed the

difficulty in establishing the LFC for maximum type procedures based on
ranks. Hsu (1980) proposed a rule based on pairwise (rather than joint)
ranking of the samples for which the PCS is minimized when the distributions

are identical. Let MyseessTy have distributions Fe ""’Fe s respectively.

1
Let Xi]""’xin denote the observations from T i=1,...,k. For 1 <1,j <k,

i$J, define Rgi) to be rank-sum of the sample from s in the combined
sample from =, and n.; also, let Dji <...< DJi 2
1 J (1) (nz)

» oy B = T1,...,n. Then the rule of Hsu (1980) is

denote the n"~ ordered

differences Xia'xjs

R28: Select s if and only if

either T. > max T, or max R4 <, (36)
T<jsk it

where T, = % pd1 /k and
i =1 med

A if n? = 2p+1
Ji
Dmed " . . .
(003y*0{as1))/2  if n” = 2p.
Here D;;d = 0. The constant r = r(n,P*) is the smallest integer such that
P, (max R§.1) > 1) < 1-P*, (37)
if1

where PO denotes the probability evaluated when the distributions are identical.
It should be pointed out that D%;d is the usual Hodges-Lehmann estimator of
ei—ej; the averaged estimator Ti of 0; was introduced by Lehmann (1963b) to
make the estimators compatible.

In another paper, Hsu (1981a) proposed a class of nonparametric subset

selection procedures based on two-sample Tinear rank statistics for the
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case of unequal sample sizes.

Selection of variables in linear regression. Applications of regression

analysis in practice for prediction purposes often involve a large number of
independent variables. In such situations, a subset of these predictor
variables may be sufficient for "adequate" prediction. In this sense, there
arises a problem of selecting a "good" subset of these variables. For nice
reviews of several criteria and techniques that have been used in practice,
reference may be made to Hocking (1976) and Thompson (1978a,b). The ad hoc
procedures described in the papers of Hocking and Thompson, however, were not
designed to select a good subset with any control on the probability of
selecting the important variables. The first papers to formulate this problem
in the framework of Gupta's subset selection were McCabe and Arvesen (1974),
and Arvesen and McCabe (1975).

Consider the linear model

Y=X+eg, : (38)

where X is an Nxp krown matrix of rank p < N, ] is a px1 parameter vector,

and € ~ N(0, o2
Ny

N)’ IN being an identity matrix. The model (38) which includes

p independent variables is considered to be the "true" model. Consider all

k = (E) reduced models that are obtained by retaining t out of the p variables.
The comparisons of these reduced models are made under the true model assumptions.
Let 0%,...,05 denote the error variances of these reduced models. The best subset
of size t of the p variables is defined to be the set fok which the error variance
of the corresponding reduced model is of1]. We will call this model the best
reduced model of size t. Arvesen and McCabe (1975) proposed a rule to select a

nonempty subset of all reduced models of size t so that the best reduced model
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is included with a minimum guaranteed probability P*. They proposed a

Gupta type scale procedure based on the error sums of squares associated with

these models. However, these sums of squares are not independent and an

exact evaluation of the infimum of the PCS is difficult. Arvesen and

McCabe showed that the PCS is asymptotically (N > «) minimized when By =.e.® Bp = 0.
Sti]1] the constant associated with the procedure is not simple to compute.

An algorithm for determining the constant using Monte Carlo methods is

given by McCabe and Arvesen (1974).

Subset selection for screening in two-stage procedures. Suppose we have

k normal populations with unknown means 81500050y and a common variance 02.
The population associated with the largest 6, is the best population. For
selecting a single population as the best under the indifference zone
formulation of Bechhofer (1954), a two-stage procedure is necessary if 02

is unknown. The main purpose of the first stage is to obtain an estimate of
02 so that the total sample size necessary to satisfy the P*-condition can
be determined. If 02 is known, then the single stage procedure of Bechhofer
(1954) applies. However, in this latter situation, one can use a two-stage
procedure where the first stage is meant to effectively screen out inferior
populations. Obviously, this is done by using a subset selection procedure
designed to retain superior populations. Early investigations of Cohen (1959)
and Alam (1970) were mostly confined to the special case of k = 2. The

1977 paper of Tamhane and Bechhofer for k > 2 renewed the interest in such

procedures. Their procedure is described below.

R Take a first-stage sample of ny observations from each population.

29°

Retain the populations =, for which Xi > max X;-ho, where the Xi are the
1<j<k
sample means based on Ny observations and h > 0 is to be specified prior to the

experimentation.
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Let S denote the set of populations thus retained. If S consists of only one
population, stop sampling and select this population. If S consists of more than
one population, take an additional sample of size n, from each population in S.
Select the population associated with the largest 71, where the 71 are the means
based on N +n, observations for the populations in S.

It should be noted that the fixed-sample procedure of Bechhofer (1954)
is obtained as a special case of R29 by letting h = 0 or ». For  Rule R29,
PCS is - guaranteed to be at least P* whenever 8 = (e],...,ek) belongs
to Qgx = {g: e[k]—eék_1].1 s§*}; however, for giveh (k, 8%, P*), there are an
infinite number of combinations of (n], Nos h) which will give the above

guarantee for PCS. Tamhane and Bechhofer (1977) used a minimax criterion, namely,

minimize sup E(T) subject to inf PCS being equal to P*, where T = kny + |S|n2, the total
Q Q
8§*

sample size required. However, the LFC is shown to be e[]] =,..= e[k_]] = e[k]-a*
only in the case of k = 2. For k > 2, Tamhane and Bechhofer (1977) obtained
conservative solution by taking the infimum over Qg% of a lower bound of the

PCS; in a subsequent paper, Tamhane and Bechhofer (1979) provided an improved

yet conservative solution by using a sharper lower bound for the PCS. Their
numerical study shows that the procedure R29 is very effective as a screening
procedure, especially as k increases.

We initially pointed out that, when 02 is unknown, the first stage of a
two-stage procedure is utilized for estimating 02 and determining the total
sample size. If one wants to further use the idea of. screening, it can be
done by a three-stage procedure where the first stage is used to determine
the additional sample sizes necessary in the subsequent stages, the second
stage is used to eliminate inferior populations by a subset rule, and the
third stage (if necessary) to make the final decision. Such procedures have

been studied by Tamhane (1976) and Hochberg and Marcus (1981).
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6. RECENT DEVELOPMENTS (1980-1984)

Developments that have taken place in the last three or four years constitute

continuation of research on several topics that we discussed in the preceding

sections as well as some new aspects and directions.

6.1 Decision-Theoretic Developments

In this subsection, we will discuss minimax, I-minimax, Bayes and
empirical Bayes procedures for three different goals, namely, (i) selecting
the best populations, (ii) selecting good populations, and (iii) selecting
good populations in comparison to a control. However, results relating to
two-stage and sequential procedures will be discussed separately along with
some results for classical two-stage procedures. Also, some locally optimal

selection procedures will be reviewed elsewhere in this section.

'Selecting the best populations. Let «

ERRRRL have densities f(x,ei),
where 05 belongs to an interval of the real line, i = 1,...,k. It is
assumed that f(x,e) has a montone likelihood ratio in x. Bjgrnstad (1981a)
considered the goal of selecting the t best popu]ationé, namely, those
associated with t Targest ei's. Here the decision space consists of all
subsets of {1,...,k} of size > t. Bjgrnstad considered nonnegative, semi-

additive loss functions of the form L(g,d) = a(|d]) Zd L.(8), where d denotes
i€

the subset selected and |d| its size. Here a(|d|) > 0 and L.(g) > 0. Bjgrnstad
(1981a) has shown that, under certain conditions, the procedure that selects

the t populations corresponding to the t largest Xi's (Xi is an observation

from “1) minimizes the risk uniformly in 9 in the class of permutation-

invariant procedures. He has also shown that a class of likelihood-ratio type

procedures are admissible for monotone loss functions.
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In Section 5.1, we discussed asymptotically optimal rules of Bickel
and Yahav (1977) for selecting the best population. In a recent paper,
Bickel and Yahav (1982) showed that the same rules also minimize the
asymptotic risk for a wide class of smooth "monotone" loss functions within
the class of procedures with PCS bounded below by a specified P*. They
also showed that Gupta's maximum type rule with P* as the minimum PCS is
asymptotically optimal within the same class of procedures and for the same
class of loss functions for essentially any prior for which the empirical distribu-
tion function of the means tends to a fixed distribution function with prior proba-
bility 1, and whose essential supremum is finite.

For selecting the best population in the context of a randomized complete

block design, Huang and Tseng (1983) have obtained r-minimax procedures.

Selecting good populations. Let Myswees, be normal populations with

unknown means 615--.56, and a common known variance 02. A population r, is
said to be good if 85 2 8y A > 0 given, and bad otherwise. Gupta and

Kim (1981) considered the loss function

L(g,d) = )
€

; LB(ei—e[k]+A) + 1%d Lg(ei-e[k]+A),

d
where d is the selected subset of {1,...,k}, LB is nonincreasing, LG is
nondecreasing, LB(y) =0 fory > 0, and LG(y) =0 for y < 0. Assuming that
8 has an exchangeable normal prior, Gupta and Kim (1981) have shown that
Gupta's maximum type rules are extended Bayes. For a simple loss function,
they have made Monte Carlo comparisons of the maximum type and the average
type rules with the Bayes rule. As in the studies of Chernoff and Yahav
(1977), and Gupta and Hsu (1978), the study of Gupta and Kim (1981) indicates

that the maximum type rules do, indeed, perform well.
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Bjérnstad (1981b) developed a theory for a class of procedures,
called Schur procedures, and applied it to certain minimax problems. Let
TyaeeesTy have densities f(x-ei), i=1,...,k. We assume that f(x-8) has
monotone 1ikelihood ratio in x. Given the observation x = (x],...,xk), a
selection rule is defined by 6(%) = (6](%),...,6k(%)), where 61(é) denotes
the individual selection probability for T i=1,...,k. We consider the
class C of just, permutation-invariant and translation-invariant procedures.
Now, § € C if and only if there exists a permutation-symmetric function

s': ]Rk_]

~ IR, which is nonincreasing in each component such that for
. o iy L _ _ _ .
every 1,61(%) § (x] XgoeoosXg 17XioXi 1 KsseensXy Xi)' A subset selection

procedure § = (6],...,6k) is said to be a Schur-procedure if § € ¢ and &'

is a Schur-concave function. Bjgrnstad (1981b) has obtained several
properties of Schur procedures. Subject to controlling the minimum expected
number of good populations selected or the probability that the best
population is in the selected subset, he has obtained minimax procedures
using the criterion of minimizing the expected number of bad populations (or

a similar criterion).

Selecting good populations compared to a control. Let TiseesTy be the

populations that are compared with the control Ty Let s be characterized
by 0.5 i=0,1,...,k. Gupta and Hsiao (1981) considered the case of normal
populations with unknown means 82675+ +56) and known variances. They called
a population . good if |61_90| < A and bad if [ei-eo| > p+e, where A > 0 and
€ > 0 are specified constants. They used a simp1é additive loss function
which is made up of loss L1 for every good population that is not selected,
and loss L2 for every bad population that is included. They considered both
cases of known and unknown 6. and obtained minimax, r-minimax and Bayes

0
rules. Their Bayes rule was derived under a normal prior for §.
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In another paper, Gupta and Hsiao (1983) considered uniform distributions

on (O,ei), 1=20,1,...,k. They defined a population m: to be good if 6, > 6

0
and bad otherwise. They considered the loss function L(g,s') = L, ) (ei-eo)
ieA
+ L2 Z (eo-ei), where L] and L2 are known positive constants, s denotes the

i€eB i
selected subset, A denotes the set of good populations that are not selected,

and B denotes the set of bad populations that are selected. Gupta and Hsiao

(1983) derived empirical Bayes rules in both cases of known and unknown 8-

Gupta and Leu(1983a) also considered selection from uniform distributions
on (O,ei), i=20,1,...,k. But they defined m; to be good if Iei—eol < A and
bad otherwise. They derived Bayes and empirical Bayes procedures (for both 6

0
known and unknown cases) using a loss function L(Q=s) given by

L(g,s) = ] Cl(GO'A'ei)I

(65) +
i€s

{6,<65-0}

} ¢, (8:-06,-4)
i€s 271 70

Co(6.-0.+A)1 (6,) +

I{eO+A§ﬁi}(ei) *

c,(8at0-06.)1 (6.),
1%5 4Y~0 i {60<91<90+A} i

where s is the selected subset, cj's are positive constants, and I is the
indicator function. Subset selection from uniform distributions, using the
é1éssica1 approach, was studied by Barr and Rizvi (19665) with an extension

of their procedures to a large class of non-regular distributions.

6.2 Isotonic Procedures

In this section as well as in the previous sections, we have discussed
the problem of comparing several populations with a control and the contributions
of several authors in this respect. It has been assumed by these authors that
there is no information about the ordering of the unknown parameters 0 of

these populations. In some situations, we may have partial prior information
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in the form of a simple or partial order relationship among the unknown
parameters. This is typical, for example, in experiments involving different
dose levels of a drug where the treatment effects will have a known ordering.

Let = be the k populations that are compared with the control population

1205k
g Let s have distribution Fei’ i=0,1,...,k. It is assumed that 0:5 i=
T,...,k, are unknown, but it is known that 6, < 8, <...< 6. A population s
(i = 1,...,k) is defined to be good if 6, > 6, and bad otherwise. The goal
is to select all good populations. We would expect any reasonable procedure
R to have the property: If R selects s then it selects all populations "
for j > i. This is the isotonic behavior of the procedure R. Naturally,
one would propose rules based on isotonic estimators of e],...,ek. Such
procedures have been recently investigated by Gupta and Yang (1984) in the
case of normal means (common variance 02 may be known or unknown), by Gupta
and Huang (1982) in the case of binomial populations with success
probabilities 6> and by Gupta and Leu(1983b) in the case of two-parameter
exponential populations with location parameters (guaréntee times) 0 and a

common (known or unknown) scale parameter . ATl these papers treat

both cases of known and unknown eo.

6.3 Locally Optimal Subset Selection Rules

In Section 5.4, we discussed a locally optimal subset selection rule based
on ranks given by Gupta, Huang and Nagel (1979). Their local optimality
criterion involved maximizing the PCS in a neighborhood of an equi-parameter
point. Locally optimal rules involving different optimality criteria have
been recently investigated by Huang and Panchapakesan (1982b) and Huang,

Panchapakesan and Tseng (1984).
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Huang and Panchapakesan (1982b) considered two goals, namely, selecting
the best from k populations MysesesTps and selecting from TyseeesTy those
populations, if any, that are better than T which is the control population.
Let =, have density f(x,ei), i=0,1,...,k, satisfying certain regularity
conditions. For the first goal, the best population is the one associated
with the largest among 61""’ek' For the second goal, s is defined to be
better than T if 0, > 9, and inferior to L otherwise. As 1in Gupta,

Huang and Nagel (1979), it is assumed that the functional form of f(x,8) is
known. For selecting the best population, Huang and Panchapakesan (1982b)
derived a permutation-invariant rule & such that igf Pe(CSIS) = P* where

. X
QO = {§: By =...= ek} . Their rule is locally opt?ma] in the sense that it
is strongly monotone in a neighborhood of any point‘go'in Q- For selecting
populations better than a standard, it is assumed that 8 is unknown but
9, 5_66, a known quantity. Huang and Panchapakesan considered the class of
rules § for which |

Po(my
4"

is selected|g € ) <vs 1= 1,000k,

and obtained a locally optimal rule in this class which is optimal in the

sense that it maximizes

1]

3
36y Pelms

, . L
- Py is se]ected|ej 6f < 6.5 t T)Ie

=n% °
i~%

i
The above criterion of Tocal optimality is related to the ability of a rule
in choosing a population which is 'distinctly better' than the control while
all others are not.
Huang, Panchapakesan and Tseng (1984) obtained a Tocally optimal rule

for selecting populations better than a control. Their rule is not based on

ranks but on statistics T1.0 suitably defined to indicate the difference
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between s and g i=1,...,k. Also, their procedure does not require equal
sample sizes. They considered the class of rules for which the probability of
selecting T when By =...= 8, = 8 is fixed at the Tevel Yio i=1,...,k.

The Tocal optimality criterion used by them amounts to maximizing the
efficiency (in a certain sense)of the rule in picking out the superior
populations in the direction of each ms being superior while all others are
identical to the control. Huang, Panchapakesan and Tseng have applied their
general results to the following special cases: (a) normal means comparison -
common known variance, (b) normal means comparison - common unknown variance,

(c) gamma scale parameters comparison - known (unequal) shape parameters,

and (d) regression slopes.

6.4 Two-Stage and Sequential Rules

In Section 5.7, we descirbed a two-stage procedure (R,q) of Tamhane and
Bechhofer (1977) for normal populations where the first stage involves a subset
selection rule employed to eliminate inferior pobu]ations. Such rules have been called
elimination type rules. We also noted the difficulty in establishing the
LFC when k > 3. Consider the problem and the goal of Tamhane and Bechhofer
(1977). They used Gupta's maximum type rule for screening based on the
first stage sample. Let us call this procedure S]. Gupta and Miescke
(1982) considered S] and two other screening procedures 52 and S3. S2
retains populations that yield the t largest Xi’ 2 <t<k-1, t fixed, and
Sy retains niif and only if Xi > Cys i=1,...,k. Let d] and d2 denote
two decision rules at the second stage,both choosing the population that
yielded the Targest sample mean, d] using only the second stage samples and
d2 using combined samples of both stages. The Tamhane - Bechhofer rule corre-

sponds to (S], 2). Gupta and Miescke (1982) proved that for (Su,d )

B
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a=2,3, 8 = 1,2, the LFC in Qg% is the slippage configuration 8% given by
817 =+++= O[k-11 © ory1-8*. For (Sy»dy), they have obtained a Tower bound
for the PCS which is minimized over Qgx AL Pous @ result similar to that of
Tamhane and Bechhofer (1979).

Gupta and Kim (1984) proposed a two-stage elimination type procedure
for the normal means problem when the common variance 02 is unknown. It
should be noted that for this problem, Tamhane (1976) and Hochberg and
Marcus (1981) proposed three-stage procedures as pointed out in Section 5.7.
Gupta and Kim gave a new design criterion and obtained a sharp lower bound
on the PCS. j

For the norma]jmeans problem (common known variance), Gupta and Miescke
(1984a) studied two-stage procedures with screening at the first stage using a
Bayesian approach. The sampling is done as in the case of the procedure R29.
Under the assumption of a Toss function which includes the cost of sampling,
they derived a Bayes procedure with respect to i.i.d. normal priors.

In another paper, Gupta and Miescke (1984b) studied permutation-invariant
sequential procedures for selection from MloeeesTy belonging to an
exponential family, with associated parameters Oyse+ -0 respectively. For
the class of procedures considered, at stage m (m = 1,2,...) observations are
drawn from all eligible populations at that stage. Then the procedure either
stops and makes a final subset selection from the eligible populations, or it
selects a subset from the eligible populations and proceeds to stage m+l. Under
a genéral loss structure (favoring large parameteré), Gupta and Miescke (1984b)
have shown that at all stages the finally selected subsets have to be associated
with the largest sufficient statistics from the eligible populations. In fact,
these natural final decisions have been proved to be uniformly optimum in

terms of the associated risk.
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For a survey of these and other multi-stage selection procedures,

reference may be made to Miescke (1982).

6.5 Other Developments

In Section 5.7, we discussed the problem of selecting a set of good
predictor variables. In the formulation of Arvesen and McCabe (1975) only
reduced models involving t (fixed) out of p independent variables were
considered. Huang and Panchapakesan (1982a)formulated the problem as one
of eliminating all inferior models (compared with the full model which is
called the true model) using the criterion of expected residual sum of squares
to define inferior models. Hsu and Huang (1982) investigated a sequential
procedure for selecting good regression models. Recently, Gupta, Huang
and Chang (1984) have discussed selection of an optimal subset of predictor
variables using the criterion of expected residual mean squares to define an
inferior model. Their treatment of the problem differs from that of earlier
papers in the sense that they use simultaneous tests fora family of hypotheses.

In Section 3, we defined a rule R4 which is really a class of rules based
on contrasts. Let C denote this class. The procedure R4 can select an empty
subset unless P* is suitably (depending on k, c],...,ck_1) farge. Letc,
denote this subclass of rules that select a nonempty subset. Deely and Gupta
(1968) showed that, for the normal means problem (common known variance),

Rule Ry of Gupta (1956) is optimal (in the sense of minimizing the expected
subset size) in the class C, when the means are in a slippage configuration
(65...,6,048), & > 0, provided vh § is greater than a constant depending on k and
P* only. This result (which essentially amounts to considering k = 2, if

we consider all configurations) was extended by Gupta and Miescke (1981) to

k = 3 normal populations. They proved the following result: Let
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P* ¢ (0,1) (P* ¢ [2/3,1)) and n be fixed. Then R is optimal within C
(C+) at every configuration 8 = (6],62,63) such that 6[3]-6[1] is 'sufficiently’
large.

Gupta and W. T. Huang (1981) presented a survey of results on mixtures

of distributions and considered selection from TyseeesT where s has the

m
density fi(x) = .21“1jgj(x)’ where gj(x), j=1,...,m, are known densities
J:

m
jm are unknown constants in (0,1) such that ) a5 = T, i =1,...,k.

and Giqseessly
j=1

i
They considered several procedures for selecting the population associated with

the Targest A where A = A(ai],...,aim), i=1,....k. Form= 2,3, they studied

Sy : -
B N

small samples procedures with A(aii;.:.;a{h) = aii. For any real-valued function

A on (0,])m, they considered procedures based on Targe samples when m > 2,

Bjgrnstad (1983) considered a class of estimators called expansion
estimators to be used in defining a subset selection procedure. These
estimators of the population parameters are obtained by employing preliminary
multiple comparisons procedures, and they tend to expand the differences
between them, compared to the usual estimators. Bjgrnstad (1983 has studied

a class of maximum type procedure based on these expansion estimators.

Amer and Dudewicz (1980) studied the problem of se]ectihg from several
populations a subset containing (i) those which are better than a dual proportion
standard, and (ii) those which are better than an upper proportion standard and
none which are worse than a Tower proportion standard.

Dudewicz and Chen (1983) investigated subset selection procedures where
the correct selection corresponds to including all best populations in the
selected subset. They considered the'1o¢ation and scale parameter cases, with

specific applications to normal and exponential populations. Their procedures

are related to those of Desu (1970), Carroll, Gupta and Huang (1975), and
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Panchapakesan and Santner (1977), all discussed in Section 4.2. The goal
of selecting all best populations is a limiting case of selecting good
populations.

Mishra and Dudewicz (1983) have studied subset selection procedures for
simultaneous selection of extreme populations, that is, populations associated
with the largest and the smallest parametric values. Their results for

normal means include both cases of known and unknown variances (not

necessarily equal).

Brostrom (1981) investigated a technique, called sequential rejection,
for selection procedures. This technique is applicable to "all or nothing"
type goals, such as selecting a subset containing all good populations, or
selecting a subset containing no bad populations. Chotai (1980a,b) has
studied several procedures based on likelihood ratio.

In related developments, Hsu (1981b) obtained parametric and nonparametric
simultaneous confidence intervals for all distances from the best under

the location model. In the parametric case, he has shown that these intervals

represent a substantial strengthening of the probability statements associated
with the procedures of Bechhofer (1954) and Gupta (1956, 1965). Jeyaratnam
and Panchapakesan (1984) have discussed the problem of estimation after the

subset selection using the Gupta rule (1956) for k = 2 normal

populations with common known variance.

7. IMPACT OF DEVELOPMENTS AND FUTURE - AN ASSESSMENT
In the preceding sections, we have attempted to provide an introduction
to the beginnings of the ranking and selection theory and to trace the develop-
ments in the subset selection theory, The Titerature
on the subject of ranking and selection on the whole has grown enormously

over these years, thanks to vigorous pursuit of many research workers. The

e e et o e e e - LSy
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research workers in this field are no longer confined to a few schools or a
few geographical parts of the world. It serves well to take stock of past

in order to visualize the potential for future. Our general assessment that
follows is not confined to subset selection alone but encompasses the ranking
and selection field as a whole.

We earlier referred to the indifference zone and subset selection
approaches for the selection and ranking problems. The inadequacies of the
tests of homogeneity and the multiple comparisons techniques to answer the
concerns of the experimenter regarding the best population or subset of best
populations had been recognized by the late 1940's. The slippage problems of
Mosteller (1948) and Paulson (1952) were early efforts in the direction of
more meaningful formulations. The early papers dealing with choosing the best
population were Bahadur (1950) and Bahadur and Robbins (1950). The stage was
set for the development of the field of selection and ranking when Bechhofer
published his now classical 1954 paper.

Some of the early applications of selection and ranking procedures were in
theareas of animal science and égricu1ture. A few papers worth noting in
this respect are Becker (1961, 1963), and Putter and Soller (1964, 1965).
Several papers have appeared dealing with applications to tournaments, traffic
fatality data, system performance evaluation, accounting, reliability models,
education and psychology. A list of papers with such specific applications
is given in the recent categorized bibliography of Dudewicz and Koo (1982,
pp. 88-92). A bibliography of applications is also given in Gibbons, 0lkin
and Sobel (1977). For some papers advocating selection and ranking in
practice, see Chew (1977a,b).

Although tables needed to implement the procedures were available in
many papers starting with Bechhofer (1954), the application of the theory

by the user had been rather slow. Part of this problem, until recently,
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was due to unavailability of books that presented these new techniques and
results in a way easily accessible to users at various levels. The monograph
by Bechhofer, Kiefer and Sobel (1968) was the first book to deal exclusively
with the subject. Though written for the theoretician and the practitioner,
the book represents significant contributions to sequential procedures by the
authors and thereby, perhaps, is accessible only to sophisticated users. Also,
the period 1965 - 1975 marked the main growth of the field and as such it would
have been rather premature for the appearance of a methods-oriented book for the
practitioner or a comprehensive book on various deve]dpments. So it was not
until the late 1970's that the next two books came out fulfilling these
objectives. The book by Gibbons, Olkin and Sobel (1977) brings the basic
methodology (mostly using the indifference zone approach) to practitioners and
others. The text of Gupta and Panchapakesan (1979) provides a comprehensive
survey of various developments in all aspects of the theory, with a special
chapter on Guide to Tables. These are followed by books authored by Buringer,
Martin and Schriever (1980) and Gupta and D.-Y. Huang (1981). Besides these,
the text of Dudewicz (1976) devotes a chapter to selection and ranking, and the
book by Kleijnen (1975) discusses uses of several selection procedures in the
context of simulation. In addition to these books, several expository articles
have appeared in journals from time to time; these are either overviews of the
subject or surveys of developments dealing with certain aspects of the theory.
A special issue of Communications in Statistics - Theory and Methods (Volume
A6, Number 11) was devoted to selection and ranking procedures.

The books and special issues mentioned above have certainly contributed
to further developments in the theory. Equally important have been forums for
exchange and dissemination of ideas provided by special meetings and workshops.
In this respect, special mention should be made of the special course on
selection and ranking under the auspices of The American Statistical Association

during its annual meeting in 1979 at Washington, D.C., and a similar special
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course organized in the same year at the U. S. Naval Postgraduate School,
Monterey, California. The lecturers in these two shourt courses were:

Bechhofer, Gibbons, Gupta, and Olkin. The course organized by the ASA is
available on video tape from the Continuing Education Section of the association.
Also to be noted is the special advanced workshop and Conference on Inference
Procedures Associated with Statistical Ranking and Selection organized by
Dudewicz, and held in Honolulu, Hawaii in July 1982. The proceedings of this
conference areto be published by the American Sciences Press under the title:
The Frontiers of Modern Statistical Inference Procedures,as Volume 10 in
their Series in Mathematicé] and.Management Sciences.

In this connection, mention should be made of the proceedings of three
symposia held at Purdue University in 1970, 1976 and 1981. These are published
by Academic Press under the title:Statistical Decision Theory and Related Topics.
Each of these three volumes include quite a few papers dealing with selection
and ranking. The activities described above have been helpful in bringing the
developments in the field to the attention of research workers in industry,
government and academia.

Although for several standard situations, tables are available in the
original papers and in the book by Gibbons, 0lkin and Sobel (1977), it is
desirable to develop computer packages for applications. One such package,
commercially available,is RANKSEL produced by Edwards. It is an interactive
package for the design and implementation of (a) selection of the best
normal population when the common variance is known under the indifference zone
formulation (Bechhofer, 1954), (b) selection of a subset of normal populations
when the common variance is known or unknown (Gupta, 1956, 1965), (c) selection
of all normal populations better than a control when the common variance is
known or unknown (Gupta and Sobel, 1958). For further details on this

package, see Edwards (1984a,b).
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Another computer package, named RS-MCB, has been recently developed by
Hsu and Gupta for (simultaneous) implementation of ranking and selection (RS)
and multiple comparisons with the best (MCB) in terms of means for normal
populations having a common unknown variance. At any specified confidence
1eve1, the RS part of the package (a) implements the Gupta subset selection
procedure, and (b) decides whether or not to choose the population that yiered
the largest sample mean as the best. The MCB part prints and plots constrained
two-sided simultaneous confidence intervals for each mean minus the best of the
remaining ones (Hsu, 1981b and 1984). This package can handle unequal sample
sizes. For details of this package, reference can be made to Gupta and Hsu

(1984).
Considering the fact that many of the activities that we have described

in the preceding paragraphs took place within the last five years,'it is
perhaps too early to be pessimistic about the absence of dramatic change in
the attitudes of the users. The major hurdle, if we may call it so, in
adopting the selection and ranking formulation lies, on the part of many
applied statisticians, in giving up the rush to testing of a 'null hypothesis'.
Finally, as our review would indicate, there are several situations in
which more satisfactory solutions are needed. Some of the areas where not
much has been done are multivariate problems, reliability models, and
selection of the best predictor variables. Little attention has been paid
to probTems that arise with regard to model selection, time series data and

signals in communications.
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