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Bayes-Pffprocedures are defined for selecting a small nonempty subset of
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satisfy the PP*-condition, that»is the posterior probability of a correct
selection, for anyrgiven observatio; X = X, is not less than P*, a
predetermined number between 1/k and 1, then these two new selection
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and D* respectively, provided that some regularity conditions are

satisfied. Robustness of these procedures and comparisons with some other

selection procedures are studied by using Monte Carlo simulations.
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1. INTRODUCTION .-
Suppose we have k populations T ses s whose distributions.
are determined by unknown real parameters S ERRRPLIN respectively.

In a subset selection problem, the goal is to select a subset of
the populations which includes the population associated with the

largest parameter with high probability and, posg}51y, includes the
others with low probabilities. A population s will be called the
‘best population 1f 0 3_ej for all j # i. The remaining k-1
ﬁopu1atjons will be called non-best. If there are more than one

population satisfying this condition we arbitrarify tag one of them
<

and call it the best one.

A large body of literature exists in the éfea of subset selection
procedures (see Gupta andﬂPéﬁbhapakesan (1979)). As pointed out by
many authors (see, for example, Bahadur (1950), Bechhofer (1954)) the
testing of homogeneity of population means or variances is not a
satisfactory solution to a comparison among several popu]atiﬁns.

Gupta (1956, 1965) gave a maximum-type subset selection procedure.

The maximum-type procedures present a direct and relatively efficient
way to meet our goal. Gupta and Hsu (1978) s%ﬁdied‘thé:performance

of maximum-type procedure, average-type procedure (Seal (1955, 1957))
and Bayes procedures. Berger (1979) and Berger and Gupta (1980) proved
that the maximum-type procedure is minimax under certain loss functions.
The LFC (least favorable configuration ) of the maximum-type procedure
usually occurs when the distributions are identical, i.e., under the
hypothesis of homogeneity. As usual, in many cases,-ihe hypothesis

of homogeneity is rejected at some small significance level. It seems
then that the maximum-type procedure is still conservative. Therefore
we may wish to relax (modify) the so-called P*-condition. On the.

other hand, in the decision-theoretic approach, Bayes procedure always
provides a decision with minimum risk under a certain loss; however, this



does not mean that its quality is good enough to pass a-certain level.
Suppose the loss function is a linear combination of E{(@),‘7’= T,00.5k,
where Li(Q) is the Toss if the ith population is selected in the subset,
as was assumed by Bahadur and Goodman (1952), Dunnett (1960), Lehmann
(1966), Eaton (1967) and Alam (1973). As pointed out by Goel and
Rubin (1977), the decision-theoretic procedures mentioned above do not
seem to be appropriate, mainly because they ignore a reasonable component
—qf‘]oss which depends on whether or not the selected subset contains the
best population and secondly because they specify the subset size in
advance, whereas it should depend on the info;matjan available from
the:sample. We may use some loss functions that involve an additional..
component, such as the ]osg_fgnction given by Gupta and Hsu (1978), which
is associated with the probabi]fty of incorrect selection, or the one
given by Goel and Rubin (1977), which is associated with the distance
between the selected subset and the best population, or some-others
which are proposed by Chernoff and Yahav (1977), Bickel and Yahav (1977)
and Kim (1979), to improve the quality of decision. However, the
results are quite sensitive to the weights of_gach components, or
equivalently, the ratio of the coefficient of the two Co&honents. In
practice we always have some difficulties in figuring out the ratio
whenever the two components of loss are not comparable, or they are
comparable but the ratio is not a constant function or it is not
completely known. In these situations we may wish?to try some other
methods of attack. ) ,-ﬁ

For guaranteeing the quality of selection procedures, we would
Tike to have a 'quality control' about the class of all possible

selection procedures, that is, any selection procedure with Tower



quality will be removed, even though it might be thercheapést one under
some loss. By using the PP*-condition (defined in ée&tfon 2) as a
control condition we get a class of selection procedures
D and its randomized version D*. The PP*-condition represents the
minimum quality (accuracy) level of a selection procedure under certain
prior information. We try to derive one of these procedﬁres, which
gives the minimum risk under a large family of loss functions and has
‘properties which we think an optimal selection procedure should have.
fh:Section 2 we define some notations, the PP*-condition
(pogterior—P*—condition), class D and D* and ;ropoge two selection
procedures wB and wB*. Some selection procedure% close to wB but
restricted to normal populgtigns were studied by Roth (1978) and Naik
(1978). The optimal properties of wB and wB* in D and D*, respectively,
such as ordered, justness, most efficient and Bayes with respect to a
large family of loss functions are shown in Section 3. Their applica-
tion to normal distributions is discussed in Section 4. In Section 5
procedure wB is compared with the maximum—fype procedure. In Section 6
we discuss their applications to the se]ectioq-progjepffor Poisson
distributions and Poisson processes and their re]ation’t;>the selection

of gamma distributions. Section 7 deals with comparisons of the
MED

£3

' . B B M M
performance of selection procedures ¢ , v , v and y Here y

and wMED are the maximum-type selection procedures based on sample

means and sample medians, respectively (see Gupta (1956, 1965) and Gupta
and Singh (1980)). The comparisons are based on M;nte Ear]o studies.
Robustness of these four procedures is studied in terms of the

expected size of the selected subset and the efficiency (defined in
Section 3) where the robustness is in the sense of the effect on the

performance of the procedure when the k true distributions are not



normal but, say, logistic, double exponential distribution-or the
contaminated distribution (gross error model) (Tukey £1960)). - Further
discussion about the Bayes-P* selection procedures is given in Section

8.

2. NOTATION AND FORMULATION -~

Assume that we have n, independent observations Xij’ Jj = 1,...,n1

for population w., i = 1,...,k. Let X = Ti(xi1""’xini) be a suitable

éétimatqr of 6.5 i=1,...,k; assume that Xi's are independently
distributed. Usually X, is a sufficient statistic. for 8;. Let

-

0 =(0y5.4458,) € o< R and Tet X = (X],.L.,XL)¢w1th cumulative
distribution function (cdf) F(x|e) and densityrkfrequency) f(xle). A
selection procedure will be dénoted by p(x) = (vy(x)s..ow, (X)) where
wi(f): RK [0,1] is the probability that ms is included in the selected
subset when X = x is observed. A selection procedure y is called
nonrandomized if all wi's are 0 or 1, otherwise, it is a ranaomized
procedure. A correct selection (CS) is defined to be the selection

of any subset that includes the best popu]ation.. Supp?se we have a
prior distribution t for ¢ = (ea,:.;,ek) and our cdht?p1wcond1tion is
that for any given observation the posterior probability of CS must be
greater than or equal to P*, a preassigned value between 1/k and 1.
That is

k
(2.1) P(CS[w,X = x) = ]

v (x)p.(x) > P*, for all x,
1

1 1=

—~

where

(2.2) pi(g) = P(“i is the best|X = x) = P(ei is the largest|X = x).

For convenience, we now assume that posterior cdf of ¢ is absolutely

continuous. Then it is clear that



k -
p'l(?-() =1, i -

i=1
hence this kind of selection procedures always exist.ﬂ!Lét

p[1](§) 5,..§_p[k](§) be the ordered p1(§)'s and let T(4) be

the population associated with p[i](§), i=1,...,k, then a subset
selection procedure is completely specified by {mig),..r,w(k)}

where w(i) is defined by

(2.3) w(i)(f) = P(“(i) is selected|y, X = x), i = 1,...,k.

Definition 2.1. Given a number P*, 1/k < P* < 1, and a prior T, we

say a selection procedure y satisfies the PP*;gond¥tion (posterior-

P*-condition) if

(2.4) w(k)(g) = 1 and R(CS|y, X = x) > P* for all x.

Remark 1. The PP*-condition implies the expected probability of CS
with respect to a given prior is not less than P*. Since thg prior
information is used in PP*-condition, it is different from the usual
so-called P*-condition.

Given a prior t, let D = D(T,Pf) (D* = D*(x,P*)) be the class of
all nonrandomized (randomized) ;electiﬁn procéduregjthWHich all
procedures satisfy the PP*-condition for any given observation X = X.

*
Now, we propose two selection procedures wB and wB as follows:

ey

Definition 2.2. Given a number P*(1/k < P* < 1), an observation

X = x and a prior 1, the selection procedure wB is defined by

B B
{w(]),...,w(k)} where -
1, ifi>3

0, otherwise

and j is the largest integer between 1 and k, such that



Definition 2.3. Given a number P*(1/k < P* < 1), an observation

X = x and a prior t, the randomized selection procedure wB* is

. B* B* .
defined by {w(]),...,w(k)} " -

where

and

1, 4f Y praq(x) < P*, § £ K,
1'-2-3' 11727 =" '

k LT
.~(x) < P* and
. .”_izj+1p[1] X an
Mg T

) Priq(x) > P*,
i=j [i]
0, otherwise,

where the constant v is determined so that

Vp p *50<V<].
1311 ﬁm 13 = P

.

- e

Example. If k = 3, P* = 0.90 and the posterior probabilities are:
p](g) = .05, pz(g) = .80, p3(§) = .15, then selection procedure wB*
will select the population o (corresponding to p[3](§)) with

probability 1, and select L with probability v where v is given by

.I15v + .80 = .90 =

1]

v=.10/.15 = 2/3.

*
By definition wB (wB ) is an element of D (D*). In the next

section, we will show some properties for both selection procedures

*
wB and wB . They are properties of ordering, justness, efficiency



and Bayes in its class, respectively.

3. OPTIMAL PROPERTIES

In this section some properties of selection procedures w and wB*

are studied, _

Definition 3.1. A selection procedure p is called ordefed if for

every x € Rkb X < X; implies w.(g) f_w.(x). It is called just if
for every i = 1,...,k, and Xs X' € Rk, vi(x) < v (x") whenever x, i< Xis
xj > X:" forany j # 1. ) .

Just procedures were defined and 1nvest1§ated in more generality

by Nage] (1970) and Gupta and Nagel (1971).

Definition 3.2. A se]ectiBh"ﬁrocedure is translation invariant if

for every x ¢ Rk, for every c ¢ Ry (xtel) = vs{x) for every i =

T,..ok, where 1= (1,...,1).

Lemma 3.7. (Berger and Gupta (1980)) A selection procedure
p(x) = (w](g),...,wk( X)) is just and translation invariant if and

.

only if the following two conditions hold: --- R
(1) for every i = 1,000k, Vs is a function only of the set of
differences {x;-x;|j = 1,...,k,j # i}, and |
(2) if x and y satisfy Xj'xi f-yj'yi for every j # i, then
b (x) 2 (y). - “
Let p = (P],...,pk), where p.'s are defined by - (2 2). If we
treat @ as a selection procedure, then y (w ) is ordered, just and

translation invariant if and only if p 1is ordered, just and translation

invariant, respectively. Therefore, we have Theorem 3.1.



Theorem 3.7. Selection procedures wB and wB* are just and translation
invariant if - |

(1) for every i = 1,...,k, p; = pi(g) fs a function only of the
set of differences {xj-xilj =1,...,k, J # i}, and. |

(2) if x and y satisfy Xj=X; < ¥5-yy for every j # 1, then
p;(x) > p;(y). N

Some sufficient conditions for p to be ordered, just and

-translation invariant are given below:

Theorem 3.2. Let H(g|x) be the posterior cdf-of é; given X = x.
< _
If.H(_lf) is absolutely continuous and has'thé.gehera1ized stochastic

increasing property (GSIP), that is:

=L

(1) H(e|x) = Hi(eilgi,-Hi('l§) = posterior cdf of 0; .

e
—

1

< X

(2) H.(t]x) 3_Hj(t[§) for any t, whenever x, ;

j
. .
Then both wB and wB are ordered and just. If, in addition, Hi has
Tocation parameter Xss that is, Hi(eilg) = Hi(ei_xi) for every

*
i=1,...,k, then both wB and wB are also trans1ation1jnvariant.

Proof: The first part can be proved by using integration by

parts. Since Xi < X4 implies Hi(tlg) E.Hj(tlﬁ) for all t, hence

p;(x) = P(e, i.e[k]'§)

il

f mgiHm(tlg)dHi(tlg)
</ mngm(tlz)dHi(tlg) .
=1-] Hi(tlf)d[mngm(tlg)]

<1- Hj(t|§>d[m§me(tlz)J
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fml;me(tlé)de(tIZ() | o

pj(g) if x, < Xy

Therefore, both wB and wB* are ordered. The proof of justness is similar
to the above and hence omitted. The proof of the Second part is obvious.
Let G denote the group of all permutations of the components of a
k-component vector. A set Sc Rk is called symmetric if gS = S for
all g€ G. A distribution H is called symmetric if H(S) = H(gS) for
all meEéurab]e set S and g € G.. A family of distributions Pe is
called invariant with respect to G if P (S) =;Pge(éS) for a1;
measurab]e set S and g € G.. -
Given an observation X = x, suppose set s is the selected subset
under a selection procedure y in D, then the loss can be described by

a non-negative real-valued function L(g,s) which has the properties

be1ow:

Definition 3.3. For all ge¢ G,' 8 € ®, a loss function L has property

T if and only if
(1) L(ess) = L{gesgs), ~ = v
(2) L(e,s) is non-increasing in 6; for i € s, and

(3) L(e.s) < L{g,s'), if scs'.

Let property T! indicate that the loss function satisfies the
first two conditions of property T, namely, invariance and
monotonicity properties. The third condition of ofﬁeriﬁg of property T
is reasonable, because the indirect loss of an 1ncorré;t selection is
controlled by the PP*-condition and the direct loss of a selected

subset is naturally more than its subset.
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Example 3.1. The following loss functions satisfy property T:

a. L(g,s) =1s|, where |s| is the size of set s. ~

o
|
—~
D

-
wn
o
1]

2 L;(8) where L.(g), the Toss if the ith popula-
tion is selected i;eihe subset, is invariant and monotonic, i.e.
Lgi(gg) = L.(g) for all g ¢ G, and L.(e) 3_L1+](Q)Twhenever 65 < 041
i=1T1,...,k-1. A useful form of this loss is that Li(g) = z(q(g),ei)
which is non-increasing in ei, where q(g) is a real-valued symmetric
fgnction of 6. For example, z(q(g),ei) = C(e[k]—ei)a, a>0,C>0.

The next theorem (Theorem 3.3.) shows that upﬂer some regularity
conditions, a selection procedure mB(wB*) is ééyes.%n D(D*) if the loss

funcfion has property T.

Theorem 3.3. Suppose the prier distribution t is symmetric on @.
Given g ¢ @,iX],...,Xk are 1ndependent1y distributed and the pdf
f(xilei) has monotone likelihood ratio (MLR) property. Then wB(¢B*) is
ordered and is a Bayes procedure in D (D*) provided that the Tloss

function has property T.

*
Proof: First we need to show that the selection procedure wB (wB ) or

w o .

© is ordered. For any i # j, if Xs 5-Xj’ let

8 = {g €ofs; < 851 then

where b is a normalizing factor and 8' is obtained from ¢ by interchange

the components 05 and ej. The third equation above is an application of
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the assumption that  is symmetric on ®. The last inequality is
based on the fact that f(x[g) - f(x]g') is non-negative by the MLR

property of f(x le ) and I ]}LQ) is nonnegative.
k il <

{o. —e[k]}(-)"{ 5=
Because for any given observation X=X, v always has minimum Size

of the selected subset, say m, in D. Therefore, under the assumptions
and the property T, the selection problem turns into "the mth decision
p}ob1emW as mentioned in Lemma 1 of Goel and Rubin (1977), then by
Theorem 4.1. of Eaton (1967), the result ho]dgl _The proof for

: *
procedure wB s analogous, and hence is omitted:

Theorem 3.4, Under the assumptions of Theorem 3.2., wB (wB*) is
Bayes procedure in D(D*) provided that the loss function has property

T.

Proof: By Theorem 3.2., wB(wB*) is ordered. By an argument similar

to the argument in Theorem 3.3., the theorer is proved.

~

For any selection procedure- ¥ '€ D, the posterior efch1enqy of

¥, given observation X = x, is defined by
eff(v]x) = P(CS|¥,x)/E(S|v,x)

where E(Slw,g) is the posterior expected size of the se}ected subset.
The expectation of eff(y[x) is the efficiency of précedure and is
denoted by eff(y). A selection procedure ¢y € D js éﬁ]lg& most
efficient (ME) in D(D*) if eff(y) > eff(y') for all y' ¢ D(D*).
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Theorem 3.5. The selection procedures wB and_wB* are ME.in D and

D*, respectively.

Proof: 1In D, given any observation X = X, since

wB has minimum size of selected subset, say m, any "~
selection procedure ' in D should have its size of
selected subset equal to m+c for some 0 < c<k-1. Now,

e 1X) = Py e (%) +en ot Pri7(x)1/ (m+c)

A

(PLe-m] ) * Py (X) +oet ppyq(x)3 (mec)

< Pripu () +o ot gy (R3/m

eff(y|x),

the first part is proved. <For wB* in D*, the proof is similar hence is

omitted.

4. EXTENSION AND APPLICATIONS

In this section, the formulas for the posterior probabilities
*
which are necessary to carry out the selection procedures wB and wB

are given under various assumptions. _ oo

- W -

Suppose we have k populations Tyoeees s s has normé] distribution

N(u1s012) where “ils are unknown. Assume that we have sample Xi]""’xin.
fo} each population i Let Xi be the sampTe mean and let X = (X1,...,Xk;.
Suppose we are intepested in selecting a subset contain}ng the population
having the largest population mean under the PP*-cohdition, with

respect to some prior distribution  of u = (u],...:ﬁk),_

A. No Prior Information

Under the situation where very little is known a priori, we may

use a "locally uniform' prior (see Box and Tiao (1973)) provided that
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the unknown parameters are locally independent a pr10r1 (see Guttman

and Tiao (1964)).

A.1. Common Variance g2 (Known) and Common Sample Size n

By using the non-informative prior which in this case is Tocally

uniform prior, t(u) « ¢, we have B
(@.7)  ppyyx) = [ moe(t+vm o'](x[i]-x[j]))dé(t), i=1,...,k

- j#i

A.2. Unequal Variance 02 s (Known) and Unequal Sample Size n. 's

By using the same prior as above in A. 1, 1.e.,;(E) = C, we have
_ -

(4.2) p;(x) = f g o(tv, /v *+(x; "X )/v )d@( t)
-co J ]

where Vi = Gi//ﬁ5’ i=1,...,k.

<.l

A.3. Unequal and Unknown Variance o? s and Unequal Sample Size n, 's

By using the Tocally uniform prior T(u 1) « 01—1 for each
population, we have
o s.//n.  X.-x.

(4.3) p.(x) = mT o (t——1 4 1 J g (t)
1 {w i#i Y5 s5//n s;//ns Y

where v, = "i']’
Ny
2 _ 2 .
(4.4) Viss = j§1 (Xij'xi) s T =T,k

and TV is the cdf oF‘t-distribution with v degrees of freedom.

For large v, it can be approximated by the normal distribution.

B. Independent Normal Prior

B.1. Identical Prior

Assume “1'5 have common distribution N(eo,cg) and given My

Xi has distribution N(ui,oz/n), then
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[oe] -

(4.5)  ppiq(x) = {m J_;Ii<I>(t+bnc‘2(x[1.]-x[j])dcb(t);

where b2 = (062 + no_z)'], i=1,...,k.

B.2. Non-Identical Prior

Assume u;'s have independent normal prior d?%tribution N(ei’ogi)'

Since given His X; has normal distribution N(y. ’011/n ). Let

ﬁ?.G) Z(Xi) b$ (001 it o x )
e 2, -2 -1 .
(4.7) b = (og7 + 03 n;)” -

we have, for i = 1,...,k,
(4.8) pi(x) = [ I.o[(tb + (z(x;)-2z(x.))/b.]de(t).
! - ‘]75] 1 J J
In Case A.1. wB and w B are just, translation invariant and ordered,
hence these will be a Bayes procedure in D and D*, respectively,

provided loss function has property T.

C. General Normal Mode1l

Suppose we have k normal populations with -common kHBWn variance
02 > 0 and common sample size n. The observation can be reduced to
X = (X],...,Xk) where X; 1s the sample mean for population w1 Assume
that, given us X has normal distribution N(g,vI), where v = o /n and y
'tself has normal diStribution N(eg1.rT + wb) with o) € R, r - o5 > 0,
wW>-r/k, 1=1(1,...,1) and U = 1'T. Note that here r > 0 and
W > -r/k are sufficient and necessary for rI + wU to be~positive
definite. This model was chosen by Chernoff and Yahav (1977) (t > 0),
Gupta and Hsu (1978) and Miescke (1979). In this model, the pi(g)'s

are exactly the same as that of the independent prior case B.1.
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5. RELATION BETWEEN PROCEDURES v® AND 4™ IN THE NORMAL LocaTION
PARAMETER CASE o

Suppose there are k independent normal populations with a
. 2 . .
common known variance ¢ and common sample size n. For this case

Gupta (1956) proposed and studied the maximum—typé’procedure

o select ng X Xprdo/vE, = 1,0k

where d = d(k,P*) > 0 is determined by the P*-condition, that is,

(5.1) [ & T(tedyde(t) = pr. .

-0

When the prior t is the non-informative p?ior, the following

M

theorem shows that v € D(7,P*) and gives for wM a lower bound for

the posterior probability of CS. Let
(5.2) % = {all possible observed values} = Rk,
(5.3) %= {x € xlx[k] - do/Vn < Xr17}s

(5.5) zg” = xexlxpy = X[i-1] h "[k]‘d"/_/.rTi (117 = %

2) _ ) il ]
= xelagyg - X110 = g = el

(5.6) =z
i
It is clear that tx],...;zk} is a partition of the sample space 2.

Theorem 5.1. Given P*(1/k < P* < 1) and a non-informative prior =, if

the observation X = x ¢ %;s then

(5.7) PCS[, X = x) > Q*(4) c
where
(5.8) Q*(1) = P* + (1-P*)((k-1)/(k~1)).

Therefore, wM € D(r,P*),
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Proof: Without loss of generality we can assume 0//—" 1. Since
p[j](g) is nonincreasing for al] X 72 M < j-1, given x € xi;>wé
have

Pees]u™x) > inf p(cs |y, x)
XeLs -

= inf
;gz JZ1P[J](X)

- = f
- " el szp[JJ( )

= 1-sup Z Pr ](X) T
= ]-sup"'” I o(t+xr ~-xr.+)do(t)
s ,,E / RS R
: T e )1e'"2(t)da(t)
= T-sy ‘ I o(t+ - . o} t)do

i1 w )
= 1_121 / @(t-d)¢k‘2(t)d¢(t)
m=1 -c

= 1-(i-1)f o(t-d)e" 2(t) do(t)
= Q*(i).
The supremum occurs when X € xgg). The last equality follows from

the identity

(5.9) (k=-1)] 5 2(t)o(td)da(t)

= 1= 5 T (trd)do(t)

which can be proved by integration by parts.
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Remark 5.1. If the procedure wM selects one population-only, i.e.
X=x¢ %> then by Theorem 5.1. We have p[k]-i P*,lgé‘botﬂuhrdcédures
wB and wB* will select the same population. In other word, when the
maximum-type selection procedure does an excellent_job, so does the "
Bayes-P* selection procedures. However, the converse is not true.

In general, under PP*-condtion, the subset selected by ¢B or wB* is
always smaller than the one selected by wM, see Roth (1978) for some

discussion.

Remark 5.2. For the case k = 2, wB = wM a.e, -for th given X=x;
< -
if g:elxz, then p[z](g) > P*, hence both wM and @B,se1ect the population
. - . . . , _ /_
n<2) which is associated with x[2] If x ¢ x] and x[2] do/vn < x[]]

then wM and wB select both populations r. and Ty Since

= —

P(X[zj-do//ﬁ = x[1]) = 0, we have wB =y a.e..

Remark 5.3. Under the assumption of Theorem 5.1., and from the proof
of it we have a Tower bound on the value of p[i](g) +...4 p[k](g) for any

observation x € X;.

6. Application to Poisson Distribdtibné and Poissoi Processes

6.1. Poisson Distributions Case

- Suppose that mye++-»m are k independent Poisson populations,

where the independent observations Xi]*""xin from ni’have the
- i

Poisson distribution with arameter . denoted by P(. Ai)s 1= 1,0,k
p ‘I q .'

_; - -
Under the non-informative prior ©(}) « A2 for each population, if the best

population is associated with the maximum parameter, we have

p;(x) = P(x; = Ak l%)

(6.1) Z o xﬁ.(yni/nj)dxi.(y)

J# i
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(6.2) = { .H.xé_(Y)dxi.(Y), if N =,,.= Ny
0 j#i 7] i
where
"
(6.3) m, = 2n.x:+1, x; = jz1 Xij/ni' T

where xﬁ is the cdf of chi-squared distribution with m degrees of

freedom.

- On the other hand, if we are interested in selecting the population

with the smallest parameter A, then “

-

(f)J_;T.U-xmj(ynj/ni)]dxmi(y)

(6.4)  py(x)

y; 2T a2 : .
(6.5) é j£1[1-xmj(y)]dxmi(y) if ny == n -

*
For this case, the simulation results for procedures wB and wB

are tabulated in Table 5.

6.2. Poisson Processes Case

Suppose we have k 1ndependent_Pqi§son processes ...
{X(])(t)},...,{X(k)(t)} with exﬁected arrival fimeéheaUaffto
1/A],...,1/xk, respectively. Hence for the processes {X(i)(t)},.
thé probability that there are m; arrivals until time ti is
(6.6) P(X(i)(t.)‘= m, [A.,t.) = (t.Xl)miexp(-t.x.)/mi!.

i ittt it it
If there exists no prior information, then we use the non-informative
prior T(Ai) o« Xi—% for all processes. Let m = (m],...jmk) and
t= (t1""’tk)’ it can be shown that the ith Poisson processes
has the maximum parameter, i.e. the minimum expected waiting time,

given (m,t) is
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(6.7 pylmt) = [ jgixgmj+1(ytj/ti)dxgmi+](y)’ Pk
Here we list two special cases which are of interest.

(a) Observations m of all processes are obtained in common Tength

time intervals [Si’ t0+si]. Since Poisson process-is stationary,

we can assume that S; = 0. In this case pi(@,p) ig independent of t.

(b) AN mi's are equal to My s i.e. we fix My first, then get observa-

tﬁons, the waiting time, t. Let Ti be the waiting time of the moth

arrival «in the ith process, then Ti has a gamma q1§ﬁr1bution with pdf

given by -

)\._i m_i_] _}\_it_i ,,_“

(6.8) f(t'l) = W (A'It'l) e s t'l > 0.

By using the same non—informati?e prior for A as before, we get

the same formulas for pi(@,g). That is under case (b) the selection
problem is identical with the selection problem on populations with

gamma or exponential distribution.

Remark 6.1. Under non-informative prior, in comparing the subset
selection problem for k Poisson“dfstributions‘Wﬁthfthéfﬁrob1em for
k Poisson processes, it is easily seen that Poisson distribution
model is a special case of Poisson processes model, with, t, = n{

and m. = n.x..
i niX; =

7. COMPARISON OF THE PERFORMANCE OF °", 45, o™ anp MED

Let Tas i=1,...,k be k independent popu]atiansl where m has
the associated cdf Fi(x’ei) = F(x-ei) with unknown location parameter
8;. Let fi(x,ei) = f(x-ei) be the pdf. Suppose the goal is to find a
small (nontrivial) subset which contains the best.
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The following subset selection procedure wMED

based-on sample
medians is due to Gupta and Singh (1980).

MED, . . T
¥ ¢ Select s if and only if Yi Z.Y[k] d

where Yi is the median of the 2m+1 random observations from population
m and Ypyq = max Y;. The value of d' is determined by the following

equation so that the P*-condition is met.

.1 W (urd")A(u)du = P

where -
(7.2)  ACu) = ((2m#1)1/(m!)2) [FCu) I01-F(u) 37 (u)
(7.3) W(U) = IF(U)(mﬂ, m+-|) T

where Iy(a,b) is the incomplete beta function.
In this section we use Monte Carlo simulation techniques to
. B B* M MED
compare the performance of selection procedures ¢ , v , ¢ and y
in the normal means problem. Because selection procedures wM and wMED
are not based on any prior information about the unknown parameters, we

- *
assume that the prior distribution t for both procedures wB and wB is

locally uniform. Since procedure-wM

satisfies-both the P*-condition
and the PP*-condition with respect to the non-informative prior, it

*
makes sense to compare the Bayes-P* procedures wB and wB with wM and

D

compare wM with ¢ME in terms of efficienc§; Furthermore, we assume

the true distribut?ons to be non-normé] distributions, namely, the
logistic, Laplace (the double exponential) and thg‘grosg error model
(the contaminated) distribution, but keep the selectien procedure
unchanged (i.e. still based on the normal assumption) and compute the

efficiency. The Monte Carlo simulation results for both equal

distances of the parameters and slippage cases are tabulated. In the
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simulation study all generated random variab]es are adjusted to have
variance one. Each time five random numbers with inditated distribu-
tion were generated for each population by using IMSL random number
generators. A1l four procedures are applied to the same data. The
simulation process was repeated one thousand times: The relative
frequency of selecting population s is used as an approximation to
the probability of selecting population s The relative frequency

of ‘the sum of selecting each population is treated as an approximation
of the expected selected size. The efficiency (Eff) of each selection
proqedure js approximated by the relative freégency:of the ratio of

selecting the best one to the expected selection’size.

The simulation results indicate that in all cases we have the
performance
(7.4) ¢B* > ¢B > wM,
where the symbol "S" stands for better than.

For small sample size, the efficiency of rule wM tends to be

larger than wMED under the P*-condition.

.

Remark 7.1. The gross error model we used has the densi%& function
(7.5) f(x-8) = (1-clp(x-0) + £ (X532, c = .15

for which o is the pdf of N(0,1) and the variance for-this distribution
is (1-c) + 16¢c = 3.25.
In the tables, the efficiency (EFF) of a procedure.y, given

—~

parameter 9, is defined by

(7.6) EFF (v) = Pe(cs]w)/Ee(Slw)

where Ee(S|¢) is the expected selected size.
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Discussion of the Tables:

For Table 1 and Table 2 (equal distances Case).éﬁg va1ue_Qf.P* is
.99 and .90 respectively, the common sample size n = 5; and k = 5. If
the k populations have normal distributions with the unknown parameter
configuration (6, 6+A,...,8 + (k-1)a) and common vg}iance one, then
from both tables the performance based on either‘EEe efficiency or
the expected selected size is

*
(7:7) wB > wB > wM,

if the'PP*-condition is considered; and _

(7.8) b Y T

under the P*-condition.
When‘the true distrigﬁtfbns are not normal, but the Togistic,
Laplace or the gross error model, the simulation results are very
close to the normal case. This suggests the four procedures.are
reasonably robust. From Table 2 all efficiencies are 1arger»than the
corresponding ones in Table 1. This is to be expected because the
Va]ue of P* is smaller in the second table. |
For Table 3 and Table 4 (sﬁihpége‘case) EHé value of P* is
.99 and .90 respectively, the common sample size n = 5, and k = 5.
I% the k populations have normal distributions with unknown parameter
configurations (8,...,06, 6+a) and common variance one; then from
both tables the performance is the same as the equal distances case.
Note that in both equal distances and s]ippage cases when av/n > 1,
that means the largest population mean and the second‘1argest population
mean are not very close, the Bayes-P* selection procedures wB and wB*,

with respect to the locally uniform priors, always satisfy not only the

PP*-condition but also the estimated P(CS) > P*, and the expected



selected size of the Bayes-P* procedures is much less than the

h
selection procedures wA and wMED.

For example, in the normal equal
distance case, P* = .99, k = 5 and a/n = 4, we have

E(S]wMED)

- E(S[s®) = 361 L
In the normal slippage case, P* = .99, k = 5 and Av/n = 4, we have

" MED
- )

E(s[sMEP) - E(s|¢B) = 1.460.

8. DISCUSSION: ;

" The Bayes-P* selection procedures wB énd'&BT_are highly-
efficient and have the following advantages.

a. These procedures can Bgréﬁp1ied to any family of distributions, even
their mixtures, and do not need equal sample size for each
population.

b. Good prior information will not be ignored. Even under non-
informative situation, they perform well.

c. They are robust in terms of the loss function. Wewgo not even
need to specify or to know ihé éxaﬁt form 6% tﬁé loss function
before we make a decision. There will automatically be a Bayes
decision procedure under the control caondition and the assumptions
given by Theorem 3.3. and Theorem- 3.4.

d. The weight or contribution of each population -in the selected

-~

subset is known.
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e. Based on the simulation results of Section 7, Bayes-P* selection
procedure is robust if the true family of distributions. for each

population is symmetric.

The only disadvantage in using the proposed selection
procedures is that the computation of the poSterior probabilities
needs more work than that for the classical selection procedures
for which necessary constants are available
in published tables; however, this disadvantage can be offset
By the use of computers. In fact, we need.not evaluate all pi‘s,

but only a few of the large ones. =
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TABLE 1 , -

Efficiency (EFF) and expected selected size (ES) (based on simulation) .

*
of wB s wB, ¢M and wMED, under normal assumption, when the unknown means of
the k populations are 6,6+A,...,0+(k-1)A; the common variance = 1, common

*
sample size n = 5 and the prior for wB and wB is the locally uniform prior.
The numbers in the paranthesis are the standard errors of the corresponding
estimates. -

—

k=5, P*=.99

B NORMAL LOGISTIC LAPLACE GROSS ERROR
a/n EFF. ES EFF ES EFF ES EFF ES

B* 0.2754 3.7545 0.2712 3.7522 0.2755- 3.7220 0.2689  3.8065

v (.0029) (.0241) (.0026) (.0234) (.0029%, (.0241) (.0032) (.0253)

B 0.2567 4.0900 0.2532 4.0810 0.2575 4.0440 0.2498 4.1500

.5 v (.0027) (.0262) (.0023) (.0251) (.0027) -{.0260) (.0030) (.0273)
M 0.2144 4.7680 0.2135 4.7710 0.2164 4.7550 0.2151  4.7680

v (.0016) (.0173) (.0014) (.0167) (.0018) (.0183) (.0019) (.0190)

MED 0.2103 4.8480 0.2048 “4.9080 0.2036 4.9340 0.2004 4.9910

v (.0016) (.0149) (.0005) (.0098) (.0006) (.0089) (.0002) (.0030)

B* 0.3798 2.8759 0.3752 2.8759 0.3724 2.8629 0.3647 2.9178

v (.0044) (.0247) (.0041) (.0236) (.0041) (.0238) (.0040) (.0236)

B 0.3469 3.1710 0.3441 3.1680 0.3420 3.1470 0.3349  3.2120

1 v (.0042) (.0273) (.0040) (.0264) (.0038) (.0261) (.0038) (.0262)
M 0.2659 4.0340 0.2722 3.9550 0.2680 3.9970 0.2648 4.0410

v (.0028) (.0285) (.0031) (.0289) (.0028) (.0286) (.0030) (.0286)

MED 0.2407 4.3600 0.2411 4.3470 0.2277 4.5490 0.2211  4.6230

v (.0022) (.0251) (.0023) (.0247) (.0019) (.0223) (.0012) (.0189)

B* 0.5807 1.8753 0.5990 1.8340 0.5847  1.8667 -0.5748 1.8913

v (.0061) (.0161) (.0065) (.0167) (.0061) (.0163) (.0060) (.0160)

B 0.5318 2.0810 0.5484 2.0330 0.5313 2.0770 0.5283  2.0900

2 ¥ (.0062) (.0189) (.0066) (.0193) (.0061) (.0185) (.0061) (.0188)
M - 0.4473 2.4680 0.4638 2.4140 0.4485 2.4560 0.4406  2.5120

v (.0053) (.0218) (.0059) (.0227) (.0052) (.0219) (.0053) (.0224)

MED 0.3928 2.8020_ 0.3880 2.8310 = 0.3785 2.8210  0.3643 2.8750

v (.0046) (.0245) (.0046) (.0241). (.0036) (.0206). (.0027) (.0183)

B* 0.8877 1.1931 0.8773 1.2121 0.8943 1.1813 0.8829 1.2030

v (.0058) (.0104) (.0059) (.0108) ~(.0056) (.0101). (.0059) (.0107)

B 0.8455 1.3090 0.8338 1.3330 0.8555 1.2890 0.8445 1.3110

4 v (.0073) (.0146) (.0075) (.0150) (.0072) (.0143) (.0073) (.0146)
M 0.7635 1.4750 0.7488 1.5070 0.7697 1.4620 0.7480  1.5060

v (.0079) (.0160) (.0080) (.0162) (.0079) (.0159) (.0079) (.0160)

MED 0.6730 1.6700 0.6528 1.7090 0.6345 1.7350 0.6112  1.7810

v (.0077) (.0164) (.0075) (.0158) (.0071) (.0144) (.0066) (.0135)
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TABLE 2 | S

Efficiency (EFF) and expected selected size (ES) (based on"simulation) -

B*
of v~ wB, ww and wMED, under normal assumption, when the unknown means of
the k populations are 6,6+a,...,6+(k-1)a; the common variance = 1, common

sample size n = 5 and the prior for wB
The numbers in the paranthesis are the standard errors of the corresponding
estimates. ' -

——

k =5, P* = ,90

*
and wB is the locally uniform prior.

iy NORMAL LOGISTIC LAPLACE GROSS ERROR
Av/n EFF ES EFF ES EFF ES EFF ES

1,JB*" 0.3788 2.3686 0.3917 = 2.3955 0.384Q 2.3927 0.3857 2.4DhR9
{.0071) (.0226) (.0068) (.0226) (.0066) ~-(.0227) (.0066) (.0233)

B 0.3568 2.7630 0.3663 2.7810 0.3549 - 2.8160 0.3554 2.8110

5 ¥ (.0064) (.0265) (.0061) (.0265) (.0058) (.0265) (.0058) (.0269)
M 0.2729 3.9520 0.2733 3.9950 0.2705 4.0130 0.2646 4.0360

¥ (.0044) (.0328) (.0044)- (.0326) (.0041) (.0326) (.0040) (.0327)

MED 0.2513 4.1420 0.2513 4.2710 0.2366 4.4640 0.2224 4.6450

v (.0035) (.0308) (.0034) (.0292) (.0031) (.0272) (.0020) (.0217)

B* 0.5799 1.7930 0.5826 1.7638 0.5682 1.8109 0.5555 1.7912

v (.0082) (.0188) (.0081) (.0182) (.0079) (.0185) (.0078) (.0173)

B 0.5278 2.1140 0.5318 2.0990 0.5157 2.1610 0.5040 2.1300

1 v (.0079) (.0233) (.0080) (.0232) (.0075) (.0236) (.0073) (.0218)
M 0.4023 2.8930 0.4069 2.8680 0.3959 2.9290 0.3907 2.9080

¥ (.0064) (.0324) (.0065) (.0325) (.0063) (.0316) (.0063) (.0308)
MED 0.3544 3.2480 0.3566 3.2910 0.3274 3.4000 0.3196 3.4260

v (.0057) (.0332) (.0060) (.0342)  (.0047) (.0308) (.0038) (.0284)

B* 0.8288 1.2584 0.8167 1.2736 0.8242 1.2586 0.8274 1.2614

ki (.0070) (.0109) (.0070) (.0108) (.0069) (.0104) (.0070) (.0111)

B 0.7728 1.4570 0.7565 1.4890 0.7577 1.4880 0.7697 1.4700

2 v (.0082) (.0169) (.0082) (.0167) (.0081) (.0167) (.0082) (.0174)
M ~ 0.6524 1.7770 0.6318 1.8320 0.6418 1.8070 0.6363 1.8170

v (.0082) (.0206) (.0080) (.0207) (.0082) (.0210) (.0081) (.0208)
MED 0.5840 2.0056 0.5694 2.0400° 0.5533 2.0480 0.5393 2.0630

¥ (.0081) (.0239) (.0077) (.0228) (.0070) (.0206) (.0065) (.0190)

B* 0.9811 1.0284 0.9821 1.0266 0.9847 1.0229 0.9796  1.0296
v (.0025) (.0039) (.0024) (.0037) (.0023) (.0035) (.0027) (.0040)

B 0.9670 1.0660 0.9685 1.0630 0.9750 1.0500 0.9675 1.0650

4 v (.0039)  (.0079) (.0038) (.0077) (.0034) (.0069) (.0039) (.0078)
M 0.9160 1.1680 0.9170 1.1660 0.9295 1.1410  0.9335 1.1330

v (.0059) (.0118) (.0059) (.0118) (.0055) (.0110) (.0054) (.0107)

MED 0.8417 1.3180 0.8625 1.2750 0.8850 1.2300 0.8910 1.2180

v (.0074) (.0149) (.0071) (.0141) (.0067) (.0133) (.0065) (.0131)
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TABLE 3 | ¢

Efficiency (EFF) and expected selected size (ES) (based on"simulation) -

*
of wB s wB, wM and wMED, under normal assumption, when the unknown means of

the k populations are §,6,...,0+A; the common variance = 1, common

. : , ! * \
sample size n = 5 and the prior for wB and wB is the locally uniform prior.

The numbers in the paranthesis are the standard errors of the corresponding
estimates. -

——

k =5, P* = .99

- NORMAL LOGISTIC . LAPLACE GROSS ERROR

Avn EFF ES EFF ES EFF ES EFF ES
B* 0.2278 4.1757 0.2201 4.1722 0.2269 4.1552 0.2262 4.2047
¥ (.0025)  (.0202) (.0023) (.0193) (.0025) *(.0208) (.0025) (.0222)

B 0.2190 4.4940 0.2129 4.5150 0.2178-7 4.4880 0.2187 4.5090
5 ¥ (.0021) (.0214) (.0019) (.0202) (.0021) (.0218) (.0022) (.0227)
M 0.2032 4.9360 0.2021 4.9360 0.2043 4.9170 0.2044 4.8840
v (.0005) (.0089) (.0007) -(.0096) (.0011) (.0109) (.0013) (.0136)

MED 0.2031 4.9370 0.2008 4.9730 0.2009 4.9790 0.2000 4.9990
v (.0011)  (.0094) (.0004) (.0053) (.0003) (.0050) (.0001) (.0010)

B* 0.2448 4.0727 0.2488 4.0381 0.2432 4.0505 0.2446 4.1141
v (.0021)  (.0208) (.0025) (.0219) (.0023) (.0210) (.0025) (.0221)

B 0.2297 4,3970 0.2344 4.3710 0.2291 4.3720 0.2302 4.4350
1 v (.0017)  (.0218) (.0021) (.0235) (.0019) (.0219) (.0022) (.0229)
M 0.2045 4.9190 0.2057 4.8870 0.2044 4.9060 0.2062 4.8820
¥ (.0006) (.0100) (.0009) (.0126) (.0007) (.0108) (.0012) (.0130)

MED 0.2033 4.9190 0.2039 4.9380 0.2009 4.9670 0.2006 4.9880
v (.0007) (.0104) (.0010) (.0096) (.0005) (.0063) (.0002) (.0037)

B*  0.3015 3.6352 0.3132 3.5174 0.3079 3.5926 0.3002 3.6828
¥ (.0040) (.0280) (.0044) (.0292) (.0044) (.0289) (.0044) (.0291)

B~ 0.2765 3.9780 0.2849 3.8680 0.2806 3.9430 0.2752 4.0390
2 ¥ (.0038) (.0302) (.0041) (.0312) (.0041) (.0310) (.0042) (.0311)
M 0.2254 4.6700 0.2290 4.6210 0.2305 4.6280 0.2319 4.6310
v (.0026) (.0230) (.0028) (.0239) (.0031) (.0249) (.0034) (.0250)

MED 0.2153 4.7680 0.2144 4.8030 0.2079 4.8880 0.2024 4.9700
v (.0016) (.0183) (.0020) (.0176) (.0014) (.0133) (.0009) (.0074)
B* 0.6415 1.9744 0.6361 2.0027 0.6404 1.9671 0.6519 1.9470
v (.0092) (.0312) (.0092) (.0319) (.0091) (.0308) (.0092) (.0316)

B 0.5908 2.2360 0.5869 2.2560 0.5874 2.2350 0.5988 2.2120
g Y (.0097) (.0360) (.0097) (.0363) (.0096) (.0356) (.0097) (.0365)
M 0.4715 2.9100 0.4696 2.9500 0.4738 2.9150 0.4701 2.9310
v (.0093) (.0445) (.0094) (.0451) (.0094) (.0447) (.0093) (.0451)

MED 0.3556 3.6050 0.3376 3.7610 0.3124 3.9140 0.2931 4.0280
v (.0074)  (.0428) (.0072) (.0420) . (.0063) .(.0398) (.0055) (.0371)
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TABLE 4

Efficiency (EFF) and expected selected size (ES) (based Qnisimulatiqn)

B B . :
of v~ , v, w” and wMED, under normal assumption, when the unknown means of
the k populations are 6,6,...,6+A; the common variance = 1, common

sample size n =25 and the prior for wB and wB*
Thi_nu?bers in the paranthesis are the standard errors of the corresponding
estimates. :

—

k=5, Px=.90 L

is the locally uniform pribr.

NORMAL LOGISTIC LAPLACE " GROSS ERROR
Av/n - EFF ES EFF ES EFF ES EFF. ES
B* 0.2660 2.7314 0.2767 2.7754 0.2721 2.7695 0.2749 2.8053

v (.0061) (.0224) (.0062) (.0220) (.00%9) (.0228) (.0059) (.0243)
wB 0.2536 3.1510  0.2650 3.1960 0.2626 _3.1810 0.2641 3.2170

5 (.0053) (.0257) (.0056) (.0253) (.0054) (.0265) (.0054) (.0281)
M 0.2151 4.4790 0.2248 4.4960 0.2241 4.4600 0.2191 4.4670

v (.0026) (.0258) (.0031) (.0257) (.0031) (.0269) (.0030) (.0277)
MED 0.2103 4.5330 0.2164" -4.6500 0.2121 4.7440 0.2037 4.9190

v (.0023) (.0241) (.0024) (.0213) (.0023) (.0202) (.0011) (.0114)
B¥ 0.3532 2.5723 0.3591 2.5943 0.3558 2.6086 0.3460 2.6783

v (.0067) (.0236) (.0068) (.0237) (.0069) (.0240) (.0064) (.0246)
B 0.3207 2.9760 0.3321 2.9970 0.3288 3.0260 0.3212 3.0840

1 v (.0057) (.0265) (.0061) (.0271) (.0061) (.0273) (.0059) (.0281)
M 0.2442 4.2790 0.2490 4.2880 0.2487 4.3190 0.2440 4.3280

v (.0034) (.0302) (.0041) (.0307) (.0039) (.0308) (.0045) (.0321)
MED 0.2378 4.3550 0.2351 4.4700 0.2177 4.6950 0.2093 4.8580

v (.0032) (.0277) (.0033) (.0267) (.0021) (.0207) (.0019) (.0162)
B* 0.5418 2.1015 0.5553 2.0727 0.5412 271065-  0.5381 2.1113

v (.0082) (.0252) (.0083) (.0256) (.0082) (.0255) (.0084) (.0261)
B 0.4829 2.4640 0.4998 2.4140 0.4874 2.4540 0.4854 2.4620

2 ¥ (.0080) (.0299) (.0083) (.0304) (.0082) (.0302) (.0082) (.0307)
M. 0.3546 3.5630 0.3607 3.5430 0.3562 3.5710 0.3462 3.5960

v (.0072) (.0415) (.0075) (.0425) (.0075) (.0419) (.0070) (.0413)
MED 0.3159 3.8080 0.3045 3.9580 0.2736 4.2210 0.2550 4.3540

v (.0062) (.0390) (.0060) (.0390) (.0052) (.0346) (.0041) (.0311)
B* 0.9129 1.1682 0.9037 1.1849 0.9261 1.1434 0.9191 1.1547

k¢ (.0056) (.0124) (.0059) (.0129) (.0053) (~.0117) (.0057) (.0126).
B 0.8787 1.2770 0.8664 1.3040 0.8948 1.2410 0.8912 1.2510

4 v (.0072) (.0176) (.0074) (.0182) (.0068) (.0168) (.0069) (.0173)
M 0.7689 1.6630 0.7709 1.6680 0.7931 1.5820 0.8033 1.5530

v (.0094) (.0317) (.0095) (.0322) (.0091) (.0298) (.0090) (.0299)
MED 0.6261 2.2180 0.6523 2.0910 0.7060 1.8970 0.7192 1.8350

¥ (.0103) (.0407) (.0102) (.0388) (.0100) (.0369) (.0099) (.0350)




* .
For‘procedureswB and wB and the parameter configurations

TABLE 5

(.5,1,...,.5k) of k Poisson populations, this table gives the

values (based on simulation) of the probability or selecting the
population with parameter .51, i

30

= 1,...,k and the expected selected ‘

L
size ES. The prior distribution for each population is t(1) = A 2.

. p*
k .99 .95 .90 .75
* * * ° *
B B B B wB; B B B

B 933 1.000  .966  .990  .950 . .990  .946  .990
>l 2 | 670 .820 .450  .670  .324 ° .490  .110  .190-
£s |1.663 1.820 1.415 1.660 1.274 1.480 1.005  1.180
1 .998  1.000 .990  1.000 967 1.000  .929 1.000
52| -4 .850 338 .630 .321 510 .171 .280
3 | .205 .33 .120 .130  .065 .110  .021 .050
ES | 1.944 2.180 498  1.760 1.354 1.620 1.121 1.330
1 .988  1.000 981 1.000 .966  .990  .911 .950
2 | .754  .820  .560 730 .250  .400 175 .290
413 | .39  .490 .070 .140  .067  .100  .025  .050
4 | .075 .110 .041 .060  .024  .040 0 0
£s | 2.187 2.420 1.653 1.930 1.316 1.530 1.112 1.290
1 .996  1.000 .981 - -.990-  .985- 1,000 .950  .980
> | 737 .850  .503  .650  .367  .550 " .128  .260
s |3 | .35 .40 102 .160  .133 210 .013  .030
4 | 067 .090 .015 .030 .013  .020  .006  .010
5 0 0 .006 .010 0 0 0 0
ES |2.154 2.410 1.607 1.840 1.498 1.780 1.097 1.280
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TABLE 1

Efficiency (EFF) and expected selected size (ES) (based on

* &
simulation) of wB > w s lpM and ¢'1ED, under normal assumpt1on when:

the unknown means of the k populations are 6 e+A,...,e+( '—I)a,
the common variance = 1, common sample size m = 5 and the prior for

*
q;B and q;B is the locally uniform prior. The pumbers on tha

paranthes's are tke stamdw;d; errggs of the correspondirg @stim LS.

NORAML LOGISTIC l.AFLACE GROSS ERROR
EFF kS EFF ES EFF . ES- EFF ES

jﬁ* 0.27%8 X.,754% 0.2712 3.7522 0.2735 3.7220 0.268%9 3.8040
(L0029 (L,0241) (,0026) (.0234) (.0029) (.0241) (,0032) (.0233)
0.0567 4.0900 0.2532 4.0810 0.25705 4,0440 00,2498 4.1500
C.O027) (.0R42) (.0023) (,0231) (,0027) (.0260) (.0030) (.0273)
0.2144 4.7680 0,2135 47710 0.2164 4.7550 0.2151 4.7680
L0016 (L.0173) (.0014) (.0167) (.0018) (,0183) (,001%9) (.0190)

' qﬁeo 29103 4.8480 0.2048 4.9080 0.2036 4.9340 0.2004 4.9910
L0016) (.0149) (L,000%) (,0098) (.0006) (,0089) (,0002) (.,0030)
ﬁPLO A798 2.87%9 0.373 2,8759 0.3724 2.862%9 0.3647 22,9178
(e0D044) (.0247) (00041) (.0236) (.0041) (,0238) (.0040) (.0238)
0.346% 3.1710 0.3441 3.1680 0.3420 3.1470 0.334%9 3,2120
CLO042) (,0273) (.0040) (.0264) (,0038) (,0261) (.0038) (,0262)
D.2659 4,0340 0.2722 3.959850 0.2680 13,9970 0.2648 4.0410
(L.0028) (.028%) (.0031) (.028%) (.0028) (.0286) (.0030) (.0286)
E%o?40? 4.3600 0.2411  4.3470 0.2277 4.5490 .-0.2 211 4.6230
(.0092) {0251 (000??) (.Q”4:) (0019 (. 0223) (FOQIH) {(.0189)

_“m“mm_«wMﬁrmu_**_“_"“ww~"““_-“___

»ﬁ 00180f J(ﬂ7;3 oou??o 1.8340 0.3847 1.8667 0.5748 1.8913
(L0061 (L0161) (L0065 (0167 (.0061) (.0163) (.0060) (.0160)
WB 0.5%318 2.0810 0.5484 2.0330 Ooh 343 2.0770 0.5283 2.0900
(.0062) (,0189) (.0066) (01933 (,0061) (,018%) (.0061) (.0188)
0.4473 2.4680 0.44638 2.41430 0»4485 2.,4580. 0.4406 2.5120
(oOQﬁK) (.0?16) 0059 (.0227) (.0052) (.0219) (,0053) (.0224)

qﬂe 0.3928  2,8020 0.3880 2.8310 0.3785% 2.8210 0.34643 2.8750

oow4n; ( 0145 <0004n7 (.00417 (.003&) (s 0”06) (.0027) (.0183)
'WB* 0. an;; !.1911 0.8773 162101 0.8943 1.1813 To.8829  1.2030
CLO0058) (L0104 (L0059) (L0108 (L,0056) (0101 (,0059) (,0107)

’wﬁ 0.8455%  1.3090 0.8338  1.3330 0.858%  1.2890 0.8443 1.3110
<,0973> (.0146) (L0075) (L0150) (,0072) (.0143) (.0073) (.0146)

\qﬁ 0 74635 1.4750  0,.7488  1,%070 0.7697 1.4620 0.7480 1.5060
uO:?) (01603 (L,0080) (.0162) (.0079) (.0159) (.0079) (,0140)
yww o 6730 1.6700 0.6528 1.7090 0.634% 1.73%0 0.6112 1.7810
ﬂOx?) k«0164) (,onx Y (.0158) (.00?1) (.0144) (.0066) (013%)
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common variance
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TABLE 2

Efficiency (EFF) and expected selected size (ES) (based on

simulation) of wB
the unknown means of the k populations are 6,6+A,...

MED

and y , under normal assumption, when

,0+(k-1)a); the

1, common sample size n = 5 and the prior for

* .
¢B and q;B is the locally uniform prior. The nwmbers im the earamthes\s
are the standard errovs of the correspending estrmares.
k =5, p* = .90 g

) MOFAML lﬂﬁf T[C lAPIﬁPL GROSS ERROR

EFF 4 EFF ES EFF . E8 EFF ES
'ﬂﬁﬁvehrﬂﬂ 3»&68& G397 ?«3955 Q. 3840"M.3927 0.38537 2.408%9
(L0071 C.0226) (L0068 (.0226) (.0066) (S0227) (.0066) (.0233)
ﬂ@ 0. 354648 2.7430 0.3663 2.7810 0.3549 2.8160 0.3554 2.8110
L. 00648 (LO0065) (L0061 (.026%) (L005B)Y (,0265) (.0058) (.0269)
_Qﬁgﬂoﬁ7?9 TLRED0 0 D.R7ITT 9950 0.270%  4.0130 0.2646 4.036460
L0044 (L0328) (.0044) (L0X26) (.00481) (.0328) (.0040) (,0327)
i &% 251% 0 4.,1420 00?"3? 4,7710 0.2366 4.:4640 0.2224 4.6450
UOK%) { 0708) 0054) £ ??”) (.0031) (.0272)Y (,0020) (.0217)
qP*W;;??? !019’0 OquMS 1»;&‘? 00,5682 1.810% 0,5%55% 1.7912
\;00&’) (L0188 (L0081 (LO182) (.0079) (.0185) (.0078) (.0173)
. ﬂﬁ G S.1140 0 0.5318  2.0990 0.51%7  2.,1610 0.5040 2,1300
(40”/91 L0323y (L0080 (L0232 (L0075) (,0238) (.0073) (.0218)
LA0DE  DL.R930  0.4069  2.8680 00,3989 2,9290 0.3907 2.9080
(900643 (L0224) (L.0065) (L0325) (.0063) (+0316) (.00463) (,0308)
D,.3544  F.24R0  0.3%6E  F.2910  0.3274  3.4000. 0.3196 .4260
(eOQSY§ (+G§3") (»QO&Oﬁ (L O342) (;QO47ﬁ”(eQ30§J”(«0038) {.0284)
qﬁ 0«6“98 I;JUP4 L Slé 1.,27346  0.8242 1.25988 0.8274 1.2614
L0070 (L0109 (,0070) (.0LO08)Y (,0069) (,0104) (.0070) (.0111)
: ﬂﬁ 0«/?’3 1,4570  0.7%65 1.4890 0.7577 1.4880 0.7697 1.4700
L0082 (L0189 (LO0B2)Y (L,0167) £.0081) (.0147) (.0082) (,0174)
M 0;0:’4 Le7770  0.,6218  1.8320 0.6418 1.8070 0.6363 1.8170
g L0082 (L0206) T.0080) (.0207) (,008B2) (.,0210) (.0081) (,0208)
DL ERA0 2.00%0 0.54694  2.0400  0.553%F 2,0480 0.35393 2.0630
(0081 (.023%9) (oOO/?) (0228 (.0070) (. 0?06 {,Q0069) (.Q190)
—(»B Wof\l1 1.0R284 0»9§ 1 1»0’6& bo?84/ 190”“? 0.9796 1.0296
CLO07%) (L0039 (.0024) (LO037) (.0023) (.0030h) (.0027) (.0040)
800?&?0 1,0660 0,968% 1.0630 0.975%0 1.09500 0.9675 1.0650
L0039 (L007F9) (L.0038) £L.0077) (.0034) (.008%9) (.003%) (.0078)
ﬂ#MOv?léO L. 1680 0.9170 1.1660 0.929%5 1,1410 0.9335 1.1330
CLO0N9Y (L01IRY (L.0099) (L0118 (L0055 (.0110) (.0084) (.0107)
’ Vﬁwﬁoﬂa‘? 1.,3180  0.862% 1.275%0 0.88%0 1.2%00 0.8910 1.2180
1.0074) oUO/l) (00141) (rOOé?) {0133 (.0065) (.0131)
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C
TABLE 3 B
2 Efficiency (EFF) and expected selected size (ES) (based on
A *
::(I simulation of wB . wB, u‘;M and anED, under normal assumption, when
e _ the unknown means of the k populations are 6,...,6,6+A; the common

variance = 1, common sample size n = 5 and the prior fbr wB and

* .
wB is the locally uniform prior. The iumbers im +he paranthesis are

the standavd errors °F e CQYYQSPC))A\\,,\? e:h«\wq.’.es -
k = 53 P* = .99

HOhﬁML lDCT i TIC lAFIﬁFE GROSS ERROR

T EFF  E FF

\%EH‘ $.,2278 41757 0.2201 4.
(o

EFF ES EFF ES

L
1722 0.2289 4.,1552 0.2262 4.2047

(L0025 (L0202 (00233 Q193 (.0020) 5302085 (0020 (.0R222)

1%3 G.,2190 4.4940 0.212%9 4.59150 0.2178 44880 0.2187 4.5090

N L0071 {.0214) (L0019) (.0202) (.0021) (L0218) (.0022) (.0227)
T \#V? 02032 4.7360 L2021 4.9360  0,2043  4.9170 0.2044 4.8840
_ 549065) {0089 (.0007) (.00986) (.0011) ( 0109 (.0013) (.0136)

\¥MhD CEORL O 4.F3IV0 0 0.2008  Bi9730 0.2009 L9770 0.2000 4.9990

L0011 (L,00%94) £.0004) (L008H3) (L0003) (.00:0) (.0001) (,0010)

\PB* 0.2448 4.0727 0.24B8 4.0381 0.2432 4.0603 0.2446 4.1141
(L0021 (L.0208) (.0025) (.0219) (.0023) (.0210) (,0025) (.0221)

\?B Q2297 4,3970  0.2344  4.3710 0.2291 4.3720 2302 4,4350
CoOOLTY (L0218) (L0021) («0D238) (.0019) (,0219) (.0022) (.0229)

%ﬂ% O.2045  4,.9190  0.2057  4,8870 0.2044 4.%060 00,2062 4.8820
(0004 (010603 (L0D09) «ﬁlﬂé) (+0007)Y (0108 (.0012) (.0130)
%ﬁmp 0,203% 4.9190 0.2039 LIV 02009 4.9670 02006 4.9880
(00073 (.01040 (.0030) (+Q076) (L0005 (L0063 (.0002) (,0037)

e

Q%B* 03013 3.43582 0 132 3.G174° 0 3079 F.O9246. 0.3002 3.6828
(0040 (.0280) 0044) {0292 (.,0044) (.0289). ( 0044) (,0291)

LPB 0«?7uu FP7EQ O( 49 R.BHB0 0.2806 F.9430 0.2752 4.0390
L0238 (L0302 (. 0041} (0312) (.0041) (.0310) (,.0042) (.0311)

%M4 Q«Eﬁﬁ# 4.6700  D.2290 44,6210 02305 4.46280 0.,2319 4.6310
(L0024 (L0230 £.0028) (,0239) (.003k) (.024%9) (.0034) (,0250)

'%PED D, 2153 4.7680 0.2144 44,8030 00,2079 4.8880 ,0.2024 4.9700
L0014 (50185) f”OﬁdO) (01763 (30014) (.0133) (.0009) (.0074)

A

L%B* 0.6415% 1.9744 0D.63861 2.0027 0.,6404 1.9871 0.6519 1.9470
(0092 (LOF12) (L0092 (.0319) (.Q091) (.0308) (.,0092) (.0314)

'KPB 0.5908  2.2360 0.5869 2.2560 0.5874 2,2350 01,5988 2.2120
) (o0097) (LO360) (.0097)Y (0363) (009467 (.Q356Y (,0097) (,03463)
#’ \PM 0.471% 2.9100 0.4696 2.92%00 0.4738 2.9150 0.4701 2.,9310
_ (O093) (.044%5) (L0094) (0451 (.0094) (.0447) (.0093) (.04051)
#ﬁwb 0. 38586 3.6050 O«WW?& 37610 0.3124 3.9140 0.2931 4.0280
. (00743 (.0428) (.0072) (04203 (.0083) (.0398) (.0055) (.0371)
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simulation of ¢
the unknown means of the k populations are 6,...

variance = 1, common sample size n = 5 and the prior for v

is the Tocally uniform prior. The mumbers (m #e pa
fMSﬁmmﬂemP<gﬁw

Ge2640
(0061
0.25364
(. Q053)
D.21%%
(. 0026
021063
L0023
Q. E532

(. 0067)
0,3207

Q057
0.32442

Q034
0.2378

(0032

N.5418

(. 0082)
04829
(. 008G)
G.B544
{0072
03159
(o O062)
0.912%
. O086)
D.8787
C.00732)
0.7689
L 00594)
Q.63261
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TABLE 4

Efficiency (EFF) and Expected selected Size (ES) (based on

27314

(.0224)
1310
. 0257)
4.4770
(.0258)
4.5330
(.0241)

28723
{0236
29760
(. 0263)
4. 2790
{0302
4. 3550
. Q277)

243015

(. 0232)
2440
(.029%9)
3.85630
(. 0415)
38080
{.03%07
1.1682
{,0124)
1.2770
(01761
1Le&a630
(.0317)
22180

B*

] 3 ? 7 -.’,’) 7
(. 0062)
02650
00563
0.2248
{00313
0.2164

(.0024)

0,3591

(. 0068)
0. 3321
(004610
024590
£.0041)
0.2351
(. 0033)

0,.,3003
{.0083)
0.4998
(.0083)
0#3607
(.0075)
O+3043
{.0060)

0.9037

{.Q0059)
G.8664
(. 0074)
0.7709
(. 0095)

06523

> wB, wM and v

LOGIETIC

MED, under normal assumption when

,0,6+A; the common

*
B and wB

ramthes's are
correspomdimg esti'wates.
.90 g

. Pr=

GROSS ERROR

EFF ES

LAFLACE

EFF ES

27704 00,2721 ;?.76?5 0.,2749 2.8053
(402200 (L0059 1.0228) (,0059) (.,0243)
31260 0.2626 3,1810 0.2641 3.2170
(L0203) (,0034) (0265 (.0054) (.0281)
4.4960 0.2241 4.44600 0.2191 4.4670

TCeHR2B7) (L0031 (L,0269) (L0030 (.0277)
4.6500 0.2121 4.7440 0.2037 4.9190
(.0213) (.0023) (,0202) (,0011) (.0114)

0.3460
(.0044)
0.3212
(.0059)
0.2440
(20307) (,0039) (.0308) (.0045) (.,0321)
44,4700 0.2177 44,4930 0.2093 4.8580
(0R67) (00213 (+020721.4.0019) (.01462)

2.6783
(.0246)
3.0840
(.0281)
4,3280

0.3558
(. 0069)
0.3288
(0061
0.2487

2,594%
(. 0237)
29970
(.0271)
4,2880

2.6086
(.0240)

3.0260
(.0273)

4.,3190

20727
(.0256)
2:4140
(.0304)
Z. 5430

0.0412 22,1065 - 0.5381 2.1113
(.0082) (0283 (.0084) (.02&1)
0.4874 2.4540 0.48%54 2.4620
(.0082) (03023 (.0082) (,0307)
0. 3562 3.5710 0.3462 32.5960
(.0420) (L.0075) (,0419) (,0070) (.0413)
37580 02736 4.2210 02550 4,3540
(0390 (0052 (.0346) (.0041) (,0311)

1.1849  0.9261 1.1434 0.9191 1.1547
CLQ129) (.0053) (.0117) (.0087) (.0124)
1:3040 0,.8948 11,2410 0.,8912 1.2510
(.0182) (.0068) (.0168) (.0069) (.0173)
164680 00,7931 1.5820 0.8033 1.55%30
(L0322 £.0091) (L.0298) (.0090) (.0299)
2:.0910  0.,7060 1.8970 00,7192 1.83%0

CUL03) 0407 (0102 (L038B)Y (,0100) (.0347) (.0099) (,0350)



