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SUMMARY

Admissibility and Minimaxity Results in the Estimation Problem of Exponential

Quantiles.

The estimation problem of the quantiles £ + bo of an exponential
distribution with unknown location-scale parameter (£,0) is considered. We
establish the admissibility of the traditional (best equivariant) estimator
for quadratic loss when nl < b<1+nl where n is the sample size. For
b>1+n! aclass of minimax procedures is found. This class contains
generalized Bayes rules and one of them is shown to be admissible within the

class of scale—equivariant procedures.



1. Introduction and Summary

Let X],..+,%y, N 2 2, be a random sample from an exponential distribution
with unknown location-scale parameter (£,c). We consider the statistical
estimation problem of a quantile 6 = £ + bo. Clearly if p, 0 < p < 1, is the
order of this quantile, then b = -log p. It is assumed that the loss is
quadratic, (§ - )2 072, where 8 is an estimate of 6. This loss function is
invariant under location and scale transformations.

The estimation problem of exponential quantiles is of importance in
reliability theory, life testing and related subjects. Many papers have been
dedicated to practical aspects of this problem (see, for instance, Epstein and
Sobel (1954), Epstein (1962), Ali, Umbach and Hassanein (1981), Saleh (1981),
Ali, Umbaéh and Saleh (1982)).

From a theoretical point of view this problem is interesting since the
best equivariant estimator of a quantile which is linear function of unknown
location and scale parameters, is always minimax but typically inadmissible.
In the case of a normal sample, for example, this estimator is inadmissible
if b# 0 and adﬁissible if b = 0 (see Zidek (1971) and Rukhin (1983)).

Rukhin and Strawderman (1982) established the inadmissibility of the best
equivariant estimator 8, of an exponential quantile for which either b > 1 + n-1
or 0 £ b< n‘l, where n is the sample size. They exhibited a class of
procedures which have risk uniformly smaller than that of §,. However all
these procedures coincide with 8, with positive probability and none of them
can be admissible. A similar result was obtained by Rukhin and Zidek (1984) in
the case of several independent exponential samples.

In this paper we show that in the case n! < b<1+nl the estimator 8o
is admissible. In the case when b > 1 +n~l we construct a class of minimax

procedures which are different from §5 with probability one. Some of these



are generalized Bayes rules. An explicit formula is given for a minimax
generalized Bayes estimator which is admissible within the class of all scale-
equivariant procedures.

Heuristically the admissibility result for 8, in the case nl <p<1+nl
is due to the fact that it is generalized Bayes not only with respect to the_
uniform (right Haar) measure over the group of linear transformations of real
line, but also with respect to many other prior distributions. Some of these
distributions are considerably less "flat" than the uniform one, so that they
can be "better approximated" by probability measures. The latter fact is known
to be responsible for admissibility (see Stein (1965), Brown (1979)). Thus
our admissibility proof is just a slight modification of the standard one for
the one-dimensional location parameter (see Blyth (1951), Stein (1959) and
Farrell (1964)). The non uniqueness of the uniform distribution as a prior
happens also in many other problems involving‘location—scale parameter. This
phenomenon leads to many surprising admissibility results for traditional
estimators of functions of £ and o for normal and exponential samples.

The above mentioned admissibility result along with the admissibility
within the class of scale-equivariant procedures is given in Section 4. 1In
Section 3 we study the form of generalized Bayes estimators and prior
distributions which generate the estimator 65. In Section 2 a class of minimax
procedures when b > 1 + n~l is constructed. The paper is concluded by a

discussion of some open problems in Section 5.



2. A Class of Minimax Quantile Estimators

Let x =min j ¢ y<n X3, YF nl g Xy = X Then (x,y) is a version of a
minimal sufficient statistic, and its distribution has density o~ 2p((x-£)/c,y/c)

where
p(x,y) = n? exp{-n(x+y)}y""2/T (n-1) (2.1)

for x,y » 0 and p(x,y) = 0 otherwise.

Any equivariant estimator § which depends only on x and y must be of the form
§(x,y) = x + cy for some constant c. It is easy to see that the best choice of ¢,
which minimizes the risk of such estimator, is ¢ = a = b -n"1l. This best
equivariant estimator §,(%,y) = X + ay is known to be minimax, but inadmissible
for a > 1 or - n~l < a < 0. Due to the structure of the exponential distribution it
is convenient to study the minimaxi;y for £ » 0 separately. Thus we call an
estimator § to be minimax (admissible) for £ > 0 if it is minimax (admissible)
when the parameter space is restricted to {(£,0), € > 0, o > 0}, It was noticed
by Rukhin and Strawderman (1982) that the minimaxity of the estimator &(x,y), x > 0
for £ > 0 implies the minimaxity of §1(x,y); 81(x,y) = 8(x,¥), x > 0; = §5(x,y),

X < 0. In this Section we obtain a class of procedures which are minimax for

£ > 0 when a > 1. Hence a class of minimax rules is obtained for all &.
We study scale-equivariant estimators § of the form
§(x,y) = xtay - 2ay f(y/x), x > 0 (2.2)

where f is a positive measurable function.
Theorem 1. For a > 1 an estimator § of the form (2.2) is minimax for £ > 0 if

for some positive p , £(z)(1 + z~1)P ig a nondecreasing function of z, z > 0,

0 < f(z) (1+ z~1)P < F, (2.3)



and
af < (a-1) min[1, p(n+2p+l) (n+p)™L (n+p+1)~1]/(n+1). (2.4)

Proof. Iet n = nt/o. Then the risk function R(%,0;8) of any procedure (2.2)

depends only on n, so that one can put 0 = 1. For n > 0

As(n) =R (n,85) - R(n,$)

4a [n?r(n-1)]71 [ £y/x)[x-n + ay(1-£(y/x)) - bn]
n,yv>0

vy exp{-(x+y-n)} dxdy

da[n? T(n-1)]"1 e" [ £(z) 21 (1+z)™n2
0

[(l+az(1-£(z)) [ e u™l au
n(l+z)

(bn+n)(1+z) [ e™U ul du] dz. (2.5)
n(l+z)

Because of (2.3)

Ag(n) > 4a [nr(n-1)]71 e [ £(z)z"1 (1+z)~N-2
0

[(1+az(1-F (1+z71)P) [ e vyl aqu
n{l+z)

- (bn+n)(1+z) [ &4 u" du]dz.
n(l+z)
To establish the inequality Ag(n) > 0 or to prove the minimaxity of § we
use Lemma 1 from the Appendix which was used earlier in similar problems by

Baranchik (1970) and Strawderman (1974).



To apply Lemma 1 write the integral in the preceding expression as
p .
fg(z)h(z)dz where g(z) = f(z) (1+z'1) . We need first to show that h changes
sign at most once from negative to positive.

t

Denote Pﬁ(t) 1t 4., +thnt=e" [e ¥ u" du/m!, and

8

2(z) = h(z) (1+Z)h+p'zz]“m—pen(]+z)/Pn+-|(n(1+z)).

It suffices to show that &'(z) > 0 if 2(z) > 0. The latter inequality means that

p
(bn+n) (1+2)P (n(142))/L(n+1)P (a(142))] < 1 + az{l SF(ezT) ). (2.6)

. : ' 2
Since for all t,P,(t) P () < Pr(t),

one has g (z) > O if

o _1.7P 1. R
(o) P (n(142)/L(0#1) Py (a(12))] < al1ZFO42T) T (19p(142) H1. (2.7)

Inequality (2.6) implies (2.7) if
L --l‘p
1 < a[1-"F(p+1) (1+277) ]
or :
a“F(p+l) < a-l. (2.8)
This. inequality is met because of (2.4) and Lemma 1 is applicable. Thus it remains

to be shown that
(n(z)dz > 0.
0 .

Using the easily verifiable formula {



(m+1) fe UMy )m+1 du
n
= [ zm(1+z)'m'2 [ eV WM 4y dz
0 n(1+z)
one sees that (2.8) means that
(a-1) (n+p+1) -1 f e” ‘ _n)n+p+1 du
n .
+ (np) T e u P (ue)Pay
n
- a _-F(n+2p+-|)—] f e” —Zp( )n+2p+1d
n
-1

e ¥ uP(y-r )n+p du > 0,

-(an+t+1) (n+p)

S8

which follows from Corollary to Lemma 2 and (2.4).
Corollary 1. The estimator suggested by Rukhin and Strawderman (1982) with
f(z)=max[0,a~1 —vanz]/[(n+1)a] is minimax for & > 0 if

a > 14n/(2(n+1)) + n(1/8+(n+1)1/2/(n41).

Indeed it is easy to check that f(z)(1+z'])p is increasing if p 5_an/(a—])=pd.’
Also af = (a-1)/(n+1), and
min[1, po(n+2p0+1)(n+p0)'] (n+p0+1)']] =1 if pg - np, - n(n+l) < 0. This
inequality follows from the condition of Corollary 1

Corollary 2. Assume that for positive z, af(z) = (a-1)V™ P(v)/Q(v),
v = z(1+z)'], for a positive m, m < n+l and some positive functions P and Q.

The corresponding estimator (2.2) is minimax for £ > 0 if
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0<p=m-max v [Q(v)/Q(v) = P*(v)/P(V)] | (2.8)
0<vsl . \ e
and
P(1)/Q(1) < 3p/[2(2n+1) (n+1)]. (2.9)

Indeed condition (2.8) guarantees that vPE(z) is a nondedreasing function

of z, and condition (2.9) implies (2.4)..



3. Generalized Bayes Estimators of Exponential Quantiles.

Let A (§,0) be the density of a (generalized) prior distribution over (£,q)
with respect to right Haar measure dg do/¢. Also let 1 = ng/oc and t = no~1.
We shall denote by A(n,t) the density corresponding to this transformation.

The Bayes estimator §p(x,y) has the form
Sp(x,y) = [[I€ + bolo™® p((x-£)/0,y/0)\(E,0)dEde/o
/[fo™% pU(x=E) /5, y/0) ME,0) dE do/o

= [[ (n +bn) e ~tEYIM y(q, 1) 171 Gt an

n<tx
/[ [ et \(n,£) 1 dt dn. (3.1)
n<tx
u t=x tx
Let K(u,t) = e™¥ [ e A(n,t) dg. Then | (n-tx) e" A(n,t)dn = - [ eU¥K(u,t)du,
so that
Ll tx
§p(x,y) = x + [ e7t¥ t N~lipnr(tx,t) -e~tX [ U K(u,t)duldt
0 00
/ [ Y 0 R(tx,t) dt. (3.2)
0

Of special interest to us will be prior densities of the form

2¢n) t* , £ >0 . (3.3)

Aln,t)

In this case

u
e™U [ e g(n)dn to = K(u)te,

=00

K(u,t)



and with z = g/x

© t/Z
Sp(x,y) = x+y [ 7t enta-llbnK(t/z) -e~t/Z [ &UR(u) du] 4t
0

-C0

00

/ [ e7t thte g(t/z) dt.
0

Thus the generalized Bayes estimator has the form (2.2) with

® ' t
f(z) = [ &2 0%l [aty k(t) - (an+1) K(t) +e7C [ oU R(u) dqu] gt
0

-—Q0

/ [2az [ &7tZ tnta giiygeg.
0

An alternative formula for £(z) is derived by integration by parts

b t
£(z) = [ e tMo-liag R(t) + atk*(t) - ot [ ey k-
0

-0

(u) duldt

/[2az [ &7tz tnta gii)ge). (3.4)
0

Clearly the best equivariant estimator §,(x,y) = x + ay corresponds to the.

choice £ = 1, a = 0, R(u) = 1. However there are many other prior densities for

which 6 is. the generalized Bayes procedure.

It follows from (3.2) that 6p(x,y) = X + ay if and only if
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tx
ety 11 [bn R(tx,t) - e7tX [ &l K(y,t)duldt

=00

o— 8

ay [ e7tY N g(tx,t)dt
0

i

a [ ety thlnk(tx,t) + txK” (tx,t) + tKC (tx,t)]dt .
0 u

This identity holds for all positive y if and only if

u

K(u,t) - €U [ &S K(s,t)ds
=aluk +t K] . (3.5)
u t

It is easy to see that with d@ = 1/a, K(u,t) = e U ud1l ¢, u> 0
K(u,t) = 0, u < 0 solves (3.5) and in this case ép(x,y) = x + ay for x > 0.
Moreover-if d 31, &o‘isrgeneraiized Bayes also with respect- to the-prior

distéibutién with density

An,t) = (d-1) e 092t , 0 > 0, x(n,t) = 0, n < O.

We formulate the results as

Theorem 2. The generalized Bayes estimator g of an exponential quantile

£ + bo corresponding to a prior density A(n,t), n =ng/o, t = n/c has the form
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(3.2). Ifd=1/a>1and A(n,t) = e 182 &, n > 0; A(n,£) = 0, n < O,
then for x > 0, Sg(x,y) = x + ay.
In the remainder of this Section we consider the generalized prior

density (3.3) with

1
2q(u) = 2(u) = (a-1) [ e™US g*l R(s)as , u>0, (3.6)
0
n
where R(s) = I 1 sK (1-s)K . Then
k=0
1 0
RK(u) = w e™U + (a-1) [[e™US —e~U] g0~1 R(s) (1-s)"1 ds, u > 0, w = [ ete(t)at,
0 -0

and the form of the generalized Bayes estimator can be derived from (3.4) and
Lemma 3 of Appendix. We define coefficients ry so that the polynomial terms
of degree less than n in (A.3) vanish,

ak rx = rp-1 (a(n-k)+1) "k = l,...,n,rO =1, and we choose constant

0 0
2 = [ et R (t)dt = w + [ teb 2(t)dt, so that the polynomial term of degree n

vanishes as well:

2= wao - (a-1) (w-rp)(nta) + (a=1)2 (rp + £p-1)

n-1
+ (a-1)(n(a-1) + 1-a) £ 1ry B{a +k, n- k) ,
k=0
k. 1.0
Pe = (n - i+a"")/kl, k= T,...n,r =1, - (3.7)

=1
|

Let Q(v) = [ t"%C K(t/z)dt [v* © (n+e+1)]7)

O— 8
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n-1

e=1 - [rn(1+(a—1)(n+a)_]) + Lo rR'B

(oc+k,n-k)]/w

1T - v/w.

Theorem 3. Let the generalized prior density A(n,t) be of the form
(3.3) with 2(n) given by (3.6) and (3.7).

Then the corresponding generalized Bayes estimator s, has the form (2.2) with

2af(z) = (a-1)"*! (e w - (a-1)r, Tog v)/Q(v), (3.8)

v =z/(1+z).

Furthermore, 6a is minimax for & > 0 if

n |
3(a-1)(ry = (nta+l) I 1y Bla+k, n-k+1))2 > 8(2n+l)(n+l) y ¥y
k=0

and w is defined by (3.13).

Proof. Formula (3.8) follows directly from (3.4) and Lemma 3 of Appendix, and

the minimaxity result follows from Corollary 2 to Theorem 1. Indeed

o(v) = [ thte et R(t/z)dt [v® T (n+a+D)]™

0

o(1) = K(0) =w

and

0 (1) = —aw - (n+a+l) K*(0)

1
= (+l)w - (a-1)(n+a+l) [ %71 R(s)ds
: 0

= (n+l)w - (a-1)g.



v Q7 (v)/0(v) = [ntl+a(l-v)]/(1-v)

- v(l-v)~2 [ tntatl o=tz g(p)ge/ [ et o tZ g(e)at . (3.9)
0 : 0

which is easily seen to be non decreasing in v. Therefore |
023:{v T QW) + (a-1) ry/(ew-(a-1)r,, log v)]

=07 (1)/Q(1) + (a-1) ry/(ew).
Because of Corollary 2 the corresponding estimator is minimax for £ > 0 if

0<p=n+1-07(1)/0(1) - (a-1) rn/(ew)

(a-1) [q -rp/el/w (3.10)

and

< 3p/[2(2n+1)(n+1)]. ' (3.11)

m

Inequality (3.10) means that

rn/q<€ r
and inequality (3.11) means that

e < 3(a~1)(g-ry/e)/[2(2n+1) (n+1)w)
= 3(a-1)(g-rp/c) (1-)/[2(2n+1) (n+1)y].

These two inequalities hold for some ¢ if

€2[2(2n+1) (n+l)y+3(a-1)q] - 3e(a-1) (ry+q)+3(a-1)r, < 0
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which happens if

3(a-1)(ry~q)2 > 8(2n+l)(n+l)yry . (3.12)

Recall that here

n
g=(n+a+l) I 1 Bla+k, n-k+l)
k=0
and
' n-1
Y = rp(l+(a-1) (n+a)7l) + & 1 Bla+k, n-k).
k=0

If (3.12) is satisfied then the value of ¢ =1 -y/w (or w) in (3.12)

generating a minimax estimator is found from the formula
e=3(a—l)(rn+q)[2(2(2n+l)(n+l)Y+3(a—l)q)]_l . (3.13)

Remark. It is easy to see that condition (3.12) is met for sufficiently

small positive a.
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4, Admissibility Results

We start here with the following result.

Theorem 4. If 0 < a < 1 then §,(x,y) = x+ay is an admissible estimator of
exponential quantile &+bo.

Proof. If §, were inadmissible then there would exist § such that for all

& and o

R(§,0;6) < E(El°760)
with strict inequality for some g,, oo Notice that we can assume that £5 > O.
Indeed if §o(X,y) = d(x+c,y)-c, then

R(E,O;(Sc) = R(E+c,0;8).

Thus §, also improves upon §4 and is strictly better than § at €5 * C, which is
positive for large c.

Because of the continuity of the risk functions to prove the admissibility
of 8, it suffices to find a sequence of positive densities Ap(E,0), € >0,
such that

Jf Ap(E,0)dE do/o < o
and as m +> »
¥ = ff [R(Ero'rso) - R(£,0,6p) 1 A\y(&,0)dE do/o + O

where §;, is Bayes estimator with respect to Ap.

A straightforward calculation shows that with p(x,y) defined by (2.1)

Iy < ff(so(xly) - Gm(XIY))z dXdy
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[[o™4 DU(X=E)/6,9/0)Aq(E ,0)dE do/o

= n72[I(n-1)1"1 [[f[185(x,9)-8p(x,¥)12 e~ (X+y)tn
0<n<tx

x yN=2 ¢n Am(n,t)dtdn dxdy .

Here we used our previous notation n = ng/o, t = n/o. The traditional
condition would be Ay(g,0) > 1 but in this case the desired limiting relation is
false. Making use of Theorem 2 we put in the case 0 < a < 1

Ag(n/t) = e nd=2 t h(t) , n>0,d=1/a vhere h, are positive

differentiable functions, f hp(t) t~1 gt < w, hy(t) + 1 asm > =,
0
Orie obtains frem (3.2)

§p(x,y) = x - ay = a [ e t(z+]) ¢nd po(e/x)at/[ e t(Z4) ¢ndd poe/x)at,
0 0

- Thus with a generic constant C independent of m

Pm = Cff [I e—t(z+l) gn+d hI; (t/X)dt]2 yn—2 x~N—2
0

[J e~t(z+l) ¢n+d p(t/x)at]~! dy dx
0

< Cffy"2 x 12 gy ax é e~t(z+l) ¢n+d [h; (£/x)12/hy (t/x) dt

=cf vIh (v)12/hy(v)dv.
0 m

Now we can specify the choice of functions h; by putting

hp(v) = [1+(log v)2/m]1-1,
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Then -

[+

f b () dv/V~=~} [1 + u2/m]»"l du < e«
0 —00

and

oo

[ vih® (9)1%/hp(v) dv
0 m

=amwl/2 [ 2 23 3d >0 asmo> o,
0
Thus if 0 < a < 1, 1y + 0 and Theorem 4 is proven. In the case a = 0 §4 is
generalized Bayes with respect to any density of the form A(n,t) = A(t), and in

the case a = 1 with respect to any density of the form A(n,t) = A(n/t). Slight

modifications of Blyth's (1951) admissibility proof prove our Theorem in these cases.

Theorem 5. For o = 1 the estimator §, defined by (3.8) is admissible for £ > 0
within the class of all scale-equivariant procedures.
Proof. It suffices to show that there exists a sequence of positive

integrable functions 2p(n), n > 0 such that

Iy = (f) [R(n,8,) = R(n,8p)] 2p(n)dn » O, (4.1)

(=]

where 8, is the estimator which minimizes [ R(n,8)4p(n)dn. It is easy to see
0

that
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§p(X,y) =y [[ (n+bn)vn e V{1+2)4n g (n)an av
n<zv

/[ v+l emv(l+z)n g (n)dn dv, z = x/y .
n<av

Comparing this formula with (3.1) we notice that 8y is the generalized Bayes
estimator corresponding to the prior density A(n,t) = &y(n)t. If one defines
Lm(n) by formula (3.6) for a = 1 + m~1, then

Lp(n)dn = (a-1) [ s/ IR(g)ds < = ,
0

oO-— 8

and using a calculation similar to that done in Lemma 3 and Theorem 4 one can prove
(4.1). We do not give here details since the conclusion of Theorem 5 can also be
obtained by extension of Zidek's result (1973) to the case of exponential

quantile estimation. According to this result the generalized density %(n) t
generates an admissible (for £ > 0) procedure within the class of all equivariant

estimators if

oo

[ 22l an ==
1

In our case &(n) = (a-1) [ e NS R(s)ds ~ (a-1)rp/n as n + », so that
0

the integral above diverges.

5. Open Problems.
An interesting unsolved problem is the question of admissibility of the

estimator (3.8). Even its admissibility in the class of all scale-equivariant
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procedures (2.2) for arbitrary positive a seems to be difficult to establish;
Indeed the relationship between Bayes rules corresponding to a prior density
(3.3) and the rules which minimize [R(n,8) %£(n)dn for a # 1 is not evident.

Another intriguing question is the largest amount of relative improvement

r=As(n)/R(n,8,) for minimax estimators §. Because of (2.5) for n > 0

r = daf[eY(1*2)4N £(z) [zy-n + ay(1-£(z))~bn]
Zy>n

x y! dzdy / [n? T'(n-1)(n"2 + a?n~1)],

and for a fixed value n = ng the function f, which maximizes this quantity in the ‘
class (2.2) has the form

2af5(z) = max{0,a+z - [ (by+ny)y? e~Y(1+2)gy
no/2

/[yl emy(1+2) gy,
no/z

In this case

r=4a e [f fg (z) y™1 eY(1*2) 4y dz / [nr(n-1)(n"2 + a2 n~1)].
Zy>n

For instance, when no = 0,2af,(z) = (a-1) max{0,(1-nz)/(n+l)},
and

-1

n
r = (a-1)2 T(n+2) [ (1-nz)2(1+z)™2 dz / [n2(n+1)2 T(n-1)(n~2 + a2 n~1)]
o

= (a~1)2[1-2(n/n+1))N /((n+1) (a2+n~1)) .
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The choice of generalized priors leading to minimax estimators of location
—-scale exponential parameters also remains largely an open problem. It is not
difficult to show that prior densities (3.3) produce tail-minimax estimators 6nly if
2(n) ~ C/In|* as |n| » = (in which case f(«)= 0). One may conjecture thgt‘the prior
densities corresponding to minimax Bayes estimators of the scale parameter ¢ also
generate minimax estimators of quantiles £ + bs. However this coﬁjetture is false.
In fact, Brewster (1974) has found a minimax estimator of ¢ for quadratic loss. This
estimator coincides for positive x with the generalized Bayes estimator for the
prior density.A(E,o) =1, &£>0; =0, £ <0. The resulting quantile estimator has

the form (2.2) with

£(z) = (a=1)zM[a((1+z)" - 2]l , z >0 ,

and it is not minimax for & > 0.



Appendix

We give here three technical Lemmas needed to prove Theorem 1 and Theorem 3.

Lemma 1. Let X be a random variable taking values in an interval I, and let

g be a non-decreasing nonnegative function defined over I. Assume that h is a

function which changes sign at most once from negative on I and such that

E h(X) » 0. Then

E g (X)h(X) > O.

Proof. ILet c = sup{x: h(x) < 0}. Then (g(x)—g(c))h(x) is nonnegative for

~all x from I and
E g(X)h(X) > g(c)Eh(X) > 0.
Lemma 2. For all positive p and t

e~U yP(u-t)N*Ptl qu

t~— 8

n(n+p+l) (n+p)~L [ e™W uP(u-t)™MP du

t
J
> pl(n+1) (n+p)1~L [ =W u2P (u-t)"*+2P+L qu
! |
and
(n¥l+t) [ ¥ u™P (u-t)"P qu /

t
< [ U uPH (u-t)ntp gy,
t : '

(A.1)

(A.2)
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Proof. Inequality (A.1) means that [ €U (u+t)™P uM*P [u-n(n+p+l) (n+p)~L
0
- pl(n+l) (n+p)1~1 WPt (u+£)7P] aqu > o.

It is easy to check that for a fixed t the function

h(u) = u - n(n+p+l)(n+p)'l —p[(n+l)(r1+p)]"l uP+l(u+t)'P changes sign only once
for u > 0. Since the function g(u) = uP(u+t)™P is increasing, (A.1l) will follow
from Lemma 1 if we Show that

[ e ulfu - n(n+p+l) (n+p)~L - pl(n+l) (n+p) 1~ WPl (utt)~Pldu > o.
0

The latter inequality is equivalent to an evident one:

[ &0 uPHL (uit)P qu < (ntl)! = [ e7U utl gu,

0 0

Inequality (A.2) also follows from Lemma 1 with the same function g and
h{u) =u-n- 1,

Corollary. For all positive p and t

(a-1)plr+p+l) (n+1) (n+p) 171 [ ™8 u™2P (u-t)n+2p+l gy
t

< (a-1) (mip+)7L [ e™U uP (u-t)PH qu
t

+ (n#p)~! [ e uPH (u-£)M*P qu
t

- (an+l+t) (ntp) 7L [ U P (u-t)P du.
t
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Lemma 3. Iet for t > 0

1
K(t) = we~t(a-1) [[e"tS —e7t] so~1 R(s) (1-s)7! as ,
0

n
where R(s) = 1y sk (1-s)07k |
k=0

0
Then with v =z/(1+z), & = [ et K (t)dt,

t
ghta—l o=tZ[5 o R(t)+a t K" (t)-e"t [ S K’ (s)dsldt

-—C0

o“— 8

T'(n+a+l)z N (1+z)"

(L (a-1) [w-rpy = (a-1) rp(nta)™d

b

n-1
(a-1) T rB(at+k, n-k)]
k=0

+

v [(wae - £) (n+a)™L - (a-1) (w-rp)

+ (a=1)2 (nta)™L (ry + 1r-7)

n-1
(a-1) (n(a-1) + l-a)(n+a)~l I nB(atk, n-k)]
k=0

+

- vl 1og v (a-1)2 rn - VP log v (a-1)(rp-1 — an rn)(n+oz)'l

n-1
+ (a-1) = VK Bla+k, n-k) (n+a)™1 [rp_j(a(n-k)+1l) - ak rl} (A.3)
k=1
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and

[ thte e=tZ R(t)dt = T(ntatl)z ML (1+z)7@
0

x {~v"1 109 v (a-1) ry

n-1
+ vl (y-(a-1)r, (nt+a)™! - (a-1) T 1xy Bla+k, n-k))
k=0

n
+ (a-1) % vK B(a+k, n-k+l) (rp + rp-1)},ro] = O.
k=0
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Proof. Using integration by parts one obtains

t .
H(t) = a a K(t) +a t K°(t) - et [ &S RI(s)ds

—00

waa-21 et + [w-R(1)] (a-1) t et

1
[(aa - 1)(a-1) - (a=1)t] [ [e~St —e~t] T(s) (1-s)~! ds
0

+

1
(a-1) [ [e7St —e7t] T (s)as
0

1
ala-1) t [ e St 1(s) ds,
0

+

where T(s) = s 1 R(s). A straightforward calculation shows that

[ el otZ g(t)dt = T(n+atl)
0

{(waa-2) (1+z)™ 1% (n+a)~l + (a-1) [R(1) - w] (l+z)~n—o-l

b

1
ala-1) [ T(s) (s+z)™ o1 gg
0

+

1
(a a=1)(a-1)(n+a)"L [ T(s) [(s+z)™ % - (1+z) 0% J(1-s)~L ds
0

-+

1
(a-1)2 [ T(s) [(s+z) "L — (14z)™M0"1] (1-g)"L gs
0

1
(a=1) (na)™L [ 7 (s) [(s+2)™1"@ — (14z)-n-a] (-
0

s)-1 gs.



By using integral representation of beta function one obtains for k <n

l B
é setk-l (1-g)nk-l[(g4z) "0 ~ (1+z)"N"0)ds

= B(a+k, n-k)[zKT (1+z)~%K — (1+z)~a-N]

and by letting k tend to n one obtains

1
és“+n‘l[(s+z)'“‘“ - (1+z)™ 09 (1-g)"1 gs

= [log(l+z)-log z] (1l+z)~o™M |

1
Also for k < n, [ sotk=l (1-g)yn—k-1l[(g+z) N—0~1 _ (14z)~N~a-lygg
0

= B(a+k+l, n-k) zKN (1+z)-a-k-1

+ B(a+k, n-k+l) zKD=1 (1+z)-0k

-B(a+k, n-k) (1l+z)~o-n-1

and

26
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=1 (gtz)M"0"L _ (147) "% 1)(1-5)71 as

oY

{log(1l+z) - log z + [(n+a)z] "1} (1+z)—on-1,
Using these formulas we deduce that

f ghta-l otz g(t)at = I'(nta+l)
0

X {(waoz—JL)(r1+oz)'l (1+z)™ N~ + (a—l)(rn—w)(1+z)—n-a—l

n
rala-1) T 1x Blotk, n-k+l) zKn=1 (Lez)7ok
k=0

+(a0-1) (a-1) (n+a) "L [, (log(l+z)-log z) (1+z)~%™

n-1
+ I 1y Blatk, n-k) (2K (1-z)"%K — (1+z)7oM)]
k=0

— (a-1)2[rp(log (1+z)-log z +((n+a)z)~1) (14z)~e 1

n-1
+ I rp(Blatktl, n-k)zK™n (1+z)~o~k-1
k=0
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+ Bla+k, nk+l)z&k N1 (1+z)-a-k -

- B(a+k, n-k)(1ltz)~en-1)]

~(a-1) (nta)"L[(rn(nta-1)-rn-1 )

x (log(l+z)-log z +((n+a-1)z)~1)(L+z)~o™D
n-1

+ I nelatk-1)(B(a+k, nk)zKD (1+z)70K
k=0 - .

+ Bla+k-1, n-k+1)zKn1 (1+z)-a—k+l
~ Bla+k-1, n-k+1)(l+z)~oN)
n-2

~ 1 n(nk) (Blatktl, nk-1)zKNHL (14z)—a-k-1
k=0 |

+ Blatk, n-k) zK (l+z)—ek
- Bla+k, n-k)(1ltz)™"®)]}.

The first formula of Lemma 3 follows now after some calculation, and the

second one is proved analogously. It fo]) ows also that

w Gt aq-]
Qlv) = é tn+ae-tk(t/z)dt[v r(n+?+1]
Co= -(a-])rnvn+] Tog v
S | n-1 .
+ D-(a-D) (e - (@) Ty Blatk, n-k) V!

+

n < k
(ai])kzo B(a + k, n=k+1)(r, + rk_])v ,
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