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3.1 INTRODUCTION

In the course of his Mathematical Contributions to the Theory of

Evolution, Karl Pearson abandoned the assumption that biological populations

are normally distributed, introducing the Pearson system of distributions to

provide other models. The need to test fit arose naturally in this context,

and in 1900 Pearson invented his chi-squared test. This statistic and others
related to it remain among the most used statistical procedures.

Pearson's idea was to reduce the general problem of testing fit to a
multinomial setting by basing a test on a comparison of observed cell counts
with their expected values under the hypothesis to be tested. This reduction
in general discards some information, so that tests of chi-squared type are
often less powerful than other classes of tests of fit. But chi-squared tests
apply to discrete or continuous, univariate or multivariate data. They are
therefore the most generally applicable tests of fit.

Modern developments have increased the flexibility of chi-squared tests,
especially when unknown parameters must be estimated in the hypothesized family.
This chapter considers two classes of chi-squared procedures. One, called
"classical" because it contains such familiar statistics as the log Tikelihood
ratio, Neyman modified chi-squared, and Freeman-Tukey, is discussed in
Section 3.2. The second, consisting of nonnegative definite quadratic forms
in the standardized cell frequencies, is the main subject of Section 3.3.
Other newer developments relevant to both classes of statistics, especially
the use of data-dependent cells, are also treated primarily in 3.3, while
such practical considerations as choice of cells and accuracy of asymptotic
approximate distributions appear in 3.2. Both sections contain a number of

examples.



Tests of the types considered here are also used in assessing the fit of
models for categorical data. The scope of this volume forbids venturing into
this closely related territory. Bishop, Fienberg and Holland (1975) discuss

the methods of categorical data analysis most closely related to the contents

of this chapter.



3.2 CLASSICAL CHI-SQUARED STATISTICS

3.2.1 Simple Hypothesis

To test the simple hypothesis that a random sample X]""’Xn has the
distribution function F(x), Pearson partitioned the range of Xj into M cells,
say E],...,EM. If N],...,NM are the observed number of Xj's in these cells,

then Ni has the binomial distribution with parameters n and

p; = P(Xj falls in Ei) = é' dF(x) (3.1)
i

when the null hypothesis is true. Pearson reasoned that the differences
Ni—npi between observed and expected cell frequencies express lack of fit
of the data to F, and he sought an appropriate function of these differences
for use as a measure of fit.

Pearson's argument here was in three stages: (i) The quantities Ni—npi
have in large samples approximately a multivariate normal distribution,
and this distribution is nonsingular if only M-1 of the cells are considered.
(i1) If Y = (Y],...,Yp)' has a nonsingular p-variate normal distribution
Np(u,z), then the quadratic form (Y—u)'z'](Y-u) appearing in the exponent of
the density function has the xz(p) distribution as a function of Y. Here of
course u is the p-vector of means, and r is the pxp covariance matrix of Y.
(ii1) Computation shows that if Y = (N]—np],...,NM_]-an_])', this quadratic

form is



which therefore has approximately the XZ(M—1) null distribution in large
samples. This is the Pearson chi-squared statistic.

This elegant argument will reappear in our survey of recent advances
in chi-squared tests. Pearson reduced the problem of testing fit to the
problem of testing whether a multinomial distribution has cell probabilities
P; given by (3.1). This problem, and the statistic Xz, do not depend on
whether F is univariate or multivariate, discrete or continuous. But if F is
continuous, consideration of only the cell frequencies Ni does not fully use the
information available in the observations Xj' Thus the flexibility and

relative lack of power of X2 stem from the same source.

3.2.2 Composite Hypothesis

It is common to wish to test the composite hypothesis that the distribution
function of the observations Xj is a member of a parametric family
{F(+|e): o in Q}, where o is a p-dimensional parameter space. Pearson
recommended estimating ¢ by an estimator én (a function of X]""’Xn)’ and
testing fit to the distribution F(-]én). Thus the estimated cell probabilities

become

p;(0,) = g_dF(Xlén)
1

and the Pearson statistic is

Pearson did not think that estimating ¢ changes the large sample distribution of



X2, at least when én is consistent. In this he was wrong. It was not until

1924 that Fisher showed that the Timiting null distribution of Xz(én) is not
XZ(M—l), and that this distribution depends on the method of estimation used.
Fisher argued that the appropriate method of estimation is maximum
1ikelihood estimation based on the cell frequencies Ni' This grouped

data MLE is the solution of the equations

M N, api(e)

1 =
121 pi(e) 3, = 0, k=1,...,p (3.2)

obtained by differentiating the logarithm of the multinomial 1ikelihood
function. Fisher noted that the Log Likelihood natio statistic
M N

. log i
i=1 | Py

is asymptotically equivalent to X2. He further observed that an estimator

asymptotically equivalent to the grouped data MLE can be obtained by choosing
6 to minimize Xz(e) for the observed Ni' This mindimum chi-squared estimator

is the solution of

N. 2api(e)
=0, k=1,....p. (3.3)

M
7 1
1'='1§p1'(6) 98y

Let us denote either estimator by én‘ Then Xz(én) is conceptually the
Pearson statistic for testing fit to F(-]én), the member of the family
{F(x|6)} which is closest to the data if the Pearson statistic is used as a
measure of distance. Fisher showed that the Pearson-Fisher statistic

Xz(én) has the XZ(M—p—]) distribution under the null hypothesis, no matter



what 6 in @ is the true value. This is the famous "lose one degree of
freedom for each parameter estimated" result.
Neyman (1949) noted that another estimator asymptotically equivalent

to 8, can be obtained by minimizing the modéfied chi-squared statistic

[N;-np; ()17

1 N;

><
no
1=

i
This minimum modigied chi-squared estimator is the solution of

p;(e)  ap.(e)

1 N 98y

=0, k=T1,....p. (3.4)

Since for the purposes of large sample theory under the null hypothesis this
estimator is interchangable with the previous two, call it also én to
~minimize notation. Neyman's remark is important because equations (3.4)
are‘more often solvable in closed form than are (3.3) and (3.2).

EXAMPLE. Consider a chi-squared test of fit to the family of density

functions

(1 + ox) -1 <x <1 (3.5)

N —
I
I

f(x|e) =

with @ = (-1,1). This family has been used as a model for the distribution of
the cosine of the scattering angle in some beam-scattering experiments in

physics. For cells E; = (ai_], aij with



we have
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It is easily seen that neither (3.2) nor (3.3) has a closed solution, while

(3.4) has solution

M
2 2
i 1Z](ai—ai-])(ai'ai—1)/Ni
L % (a%-a_1)2/N
_i='l .i -i-] ‘i

Substituting this value in the Pearson statistic produces an easily computed
test of fit for the family (3.5) using XZ(M—Z) critical points.

But even the minimum modified chi-squared estimator must often be
obtained by numerical solution of its defining equations. If cells
E. = (ai_], a1] are used in a chi-squared test of fit to the normal family

i

F(xluwo) = o(*22) o <X <o

(o is the standard normal distribution function), then

a.-u a; 71U
pi(s0) = a(——) ~o(—1=1—).

It takes only a moment to see that none of the three versions of én can be

obtained algebraically, so that recourse to numerical solution is required.



Most computer libraries contain efficient routines using (for example)
Newton's method to accomplish the solution.

This circumstance calls to mind Fisher's warning that his "lose one
degree of freedom for each parameter estimated" result is not true when
estimators not asymptotically the same as én are used. For example, in

testing univariate normality we may not simply use the raw data MLE's

X =1

X.
"

1 J

Ih~1

2}1/2

~ .1 n S
o {ﬁ' Z (Xj-X)

J=1

in the Pearson statistic. Chernoff and Lehmann (1954) studied the consequences

of using the raw data MLE én in the Pearson statistic. They found that

2/\
(

X en) has as its 1imiting distribution under F(-|8) the distribution of

2 P 2
x(M-p=1) + ) A (e)x (1), (3.6)

Here XZ(M—p-1) and X§(1) are independent chi-squared random variables with
the indicated numbers of degrees of freedom. The numbers xk(e) satisfy

0 j_xk(e) < 1. So the large sample distribution of Xz(én) is not X2 and
depends on the true value of o. All that can be said in general is that the
correct critical points fall between those of xz(M—p—]) and those of XZ(M—l).
These bounds often make Xz(én) usable in practice, especially when the number

of cells M is large and the number of parameters p is small.
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3.2.3 A Family of Statistics

We have already mentioned the Pearson chi-squared, modified chi-squared,
and log likelihood ratio statistics. Another statistic recommended by some
statisticians is the Freeman-Tukey statistic

M
12 - g ,Zi{N]/z ~ (mp) V22,

; i i
Cressie and Read (1983) have systematized the theory of classical chi-squared
procedures by introducing a class of test statistics based on measures of
divergence between discrete distributions on M points. If q = (q],...,qM)
and p = (p],...,pM) are such probability distributions, the directed divergence

of order A of g from p is

A

M
Aoy -]
1" (q:p) = 175177'121 95 [(qi/pi) 1.
1* is a metric only for » = - 1/2, but is a useful generalized information
measure of “"distance" for all real A. If N is the vector of cell frequencies
Ni’ and p(e) the vector of probabilities pi(e), the Cressie-Read statistics

are the divergences of the empiric distribution N/n from the estimated

hypothesized distribution p(én),
R (s,) = 2n T (/n:p(s,)).

If 1% is defined by continuity at » = -1, 0, this class includes XZ(A=]),
62(x=0), FT2(»= -1/2) and X2(r= -1).
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These statistics are all asymptotically equivalent to Xz(en) under

F(.leo) for any estimator én such that n]/z(én-e is bounded in probability.

o)
Moreover, the "minimum distance" estimators of e derived from the statistics
R* are all asymptotically equivalent under the null hypothesis to the grouped
date MLE and minimum chi-squared estimators. So if én is any of these
estimators and x is any real number, Rx(én) has the XZ(M-p-1) Timiting null
distribution. The Cressie-Read statistics remain asymptotically equivalent
under contiguous alternative distributions, but not under alternatives
distant from the hypothesized family.

If the Cressie-Read family is taken as a completion of the class of

statistics equivalent to X2

in Targe samples, there remain the practical
problems of use for finite n. How large must n be before the asymptotic
distribution theory is trustworthy? How many cells should be used, and how
should they be chosen? Which of these statistics should be used? We now

turn to these questions.

3.2.4 Choosing Cells

An objection to the use of chi-squared tests has been the arbitrariness
introduced by the necessity to choose cells. This choice is guided by two
considerations: the power of the resulting test, and the desire to use the
asymptotic distribution of the statistic as an approximation to the exact
dsitribution for sample size n. These issues have been studied in detail for
the case of a simple hypothesis, i.e., the case of testing fit to a completely
specified distribution F. Recommendations can be made in this case which may
reasonably be extended to the case of testing fit to a parametric family

{F(-]e) 1.
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Mann and Wald (1942) initiated the study of the choice of cells in the
Pearson test of fit to a continuous distribution F. They recommended, first,

that the cells be chosen to have equal probabilities under the hypothesized

distribution F. The advantages of such a choice are: (1) The Pearson test

is unbiased. (Mann and Wald proved only local unbiasedness, but Cohen and
Sackrowitz (1975) establish unbiasedness of both X2 and Gz. This is not true
when the cells have unequal probabilities under F.) (2) The distance
suplF](x)-F(x)] to the nearest alternative F indistinguishable from F by

X2 is maximized (Mann-Wald), and X2 maximizes the determinant of the matrix
of second partial derivatives of the power function among all Tocally unbiased
tests of the same size (Cohen-Sackrowitz). (3) Empirical studies have shown
that the XZ distribution is a more accurate approximation to the exact null

2, 62 and FT2 when equiprobable cells are employed (see

distribution of X
Section 3.2.5 for references).

Mann and Wald then made recommendations on the number M of equiprobable
cells to be used. Their work rests on large-sample approximations and on a
somewhat complex minimax criterion, so that it is at best a rough guide in

practice. Mann and Wald found that for a sample of size n (large) and

significance Tevel a, one should use approximately

(3.7)

2n
M=4
%C(a)2

2 % 1/5
where c(a) is the upper a-point of the standard normal distribution. The
optimum is quite broad. In particular, the M of (3.7) can be halved with
Tittle effect on power. Retracing the Mann-Wald calculations using better

approximations, as in Schorr (1974), confirms that the "optimum" M is smaller
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than the value given by (3.7). Since the exact optimum depends on the
criterion, a choice of error probabilities, and of course on the assumption
that the hypothesized F contains no unknown parameters, the practitioner need

not go beyond the following recommendation: Choose a number M of equiprobable

cells falling between the value (3.7) for o = 0.05 and half that value. Since
2/5 2/5

half the value (3.7) is 1.88 n™'~, the choice M = 2n is convenient. This
recommendation is not an endorsement of the use of o = 0.05 (or any fixed o)
in tests of fit. Because (3.7) increases slowly with o, but overstates the
number of cells required, the value for o = 0.05 can also be used when larger
significance levels are in mind.

For small n, accuracy of the x2 approximation to the exact null distribution
becomes of paramount concern. We shall see (Section 3.2.5) that the
recommendations above, especially that of equiprobable cells, are sustained
by this concern. When parameters must be estimated, cells equiprobable
under the estimated parameter value can be employed. This requires data-
dependent cells, a major modern innovation to be discussed in Section 3.3.1
below. Since an "objective" procedure for choosing cells is desireable, all

examples in this chapter will use equiprobable cells with (3.7) for o = 0.05

as a guide to choosing M.

3.2.5 Small-Sample Distributions

The distribution theory of chi-squared statistics (and most other formal
tests of fit) is a large-sample theory. Indeed, Pearson's discovery of X2
rested on the normal Timiting distribution of the cell frequencies. How
usable in practice are critical points or P-values for X2 or R* obtained

from the chi-squared distribution? Cochran (1954) gave a commonly accepted

rule of thumb: all expected cell frequencies np. should be at Teast 1, with
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at Jeast 80 percent being at Teast 5. The availability of inexpensive
computing has led to extensive study of this issue in recent years. Several
recommended papers summarizing this work are Roscoe and Byars (1971), Larntz
(1978) and Koehler and Larntz (1980), and Read (1983).

Each of these papers has a different emphasis. Roscoe and Byars present
a simulation study of the Pearson test of fit to a simple hypothesis and
summarize much earlier work. Larntz (1978) compares the Pearson, log likelihood
ratio and Freeman-Tukey statistics with regard to the accuracy of the chi-
squared approximation. He includes the simple hypothesis case and four
cases in which parameters must be estimated. Koehler and Larntz (1980)

study X2 2

and G when the number of cells M increases with n rather than
remaining fixed. In this case the limiting distribution is normal rather than
chi-squared when a simple hypothesis is being tested (see Section 3.3.4 below).
Read (1983) investigates the famiiy of R* statistics for testing fit to the
simple hypothesis of equiprobable cells, and considers the usefulness of two
improved approximations to the exact distribution.

The consensus of these and other studies is that the traditional rule of
thumb is very conservative, especially when the estimated cell probabilities
are not too unequal. Here are the recommendations of Roscoe and Byars for
the Pearson X2, which may serve as a guide for practitioners.

(i) With equiprobable cells, the average expected cell frequency
should be at least 1 (that is, n > M) when testing fit at the
o = 0.05 level; for o = 0.01, the average expected frequency
should be at least 2 (that is, n > 2M).

(ii) When cells are not approximately equiprobable, the average expected

frequencies in (i) should be doubled.
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(iii) These recommendations apply when M > 3. For M = 2 (1 degree of
freedom), the chi-squared test should be replaced by the test
based on the exact binomial distribution.

Note that the Roscoe-Byars recommendations are based on the average
rather than the minimum cell expectation. Any such rule may be defeated, as
Koehler and Larntz (1980) remark, by a sufficiently skewed assignment
of cell probabilities. They suggest the guidelines M > 3, n > 10, nz/M > 10
as adequate for use of the X2 approximation to the Pearson statistic. These
are somewhat conservative when, as we recommend, cell probabilities are
approximately equal. The Mann-Wald suggestion (3.7) meets both the Roscoe-
Byars and Koehler-lLarntz guidelines. Simulations suggest that when these
guidelines are met, the true o for X2 is usually slightly less than the
nominal o given by XZ. But the true o generally exceeds the nominal o for
R with A not close to 1, often substantially, when approximately equiprobable
cells are employed.

Though these recommendations rest on study of the simple HO case, Larntz
(1978) gives some grounds for adopting them when parameters must be estimated.

The comparative studies of Larntz (1978) and Read (1983) establish
clearly that the X2 approximation is notably more accurate for X2 than for
such common competitors as 62 and FTZ. Read, for equiprobable cells, finds
close agreement between the exact and approximate critical levels of R* for
1/3 <ax<1.5whenn <20 and 2 <M < 6. Only G (x=1) among the more common
members of the R* family falls in this class. Moreover, although increasing
n for fixed M enlarges the class of x for which the X2 approximation is
reasonable, Read finds that as M increases for fixed n, the error in this

approximation "increases dramatically" for values of A outside the recommended

interval.
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Statisticians, including the authors of the papers we have cited, differ
on criteria for an "adequate" large sample approximation. Readers may
therefore want to examine these papers in detail for additional information,

particularly if the use of R* statistics other than X2 is contemplated.

3.2.6 Choosing a Statistic

Since both hypotheses and alternatives of interest for an omnibus test
of fit are very general, it is difficult to give comprehensive recommendations
based on power for choosing among a class of such tests. Asymptotic results
(for the simple HO case) are ambiguous. When M is held fixed as n increases,
all R* are equivalent against local alternatives, and G2 is favored against
distant alternatives (Hoeffding, 1965). But if M increases with n, the Timiting
distributions of R* vary with A under both hypothesis and local alternatives,

and X2

appears to be favored (Holst 1972, Morris 1975, Cressie and Read 1983).
In many practical situations, power considerations are secondary to the
accuracy of the X2 approximation to the exact null distribution. In such
cases, the Pearson X2 is the statistic of choice. Some quite Timited
computations of exact power by Koehler and Larntz (1980) and Read (1983)
shed some light on the dependence of power on the alternative hypothesis and
on the choice of A. Read suggests 1/3 < A < 2/3 as a compromise with reasonable
power against the alternatives he considers. Again X2 fares better than its
common competitors GZ, Xé and FT2.
A different approach that may aid the choosing of a statistic is to

examine the type of lack of fit measured by each statistic. The sample

measure of the degree of Tack of fit accompanying Rk(én) (which measures the

significance of lack of fit) is Rk(én)/n. If G is the true distribution of

the observations Xi’ all common estimators 6, converge under G to a 99 such
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that F(-|e,) is "closest" to G in some sense. When G is a member of the
hypothesized family {F(-|6): e in @}, this is just consistency of 5n' When
G is not in this family and én is the minimum R estimator, %0 is the point

such that p(eo) is closest to the vector m, of cell probabilities under G by

the discrepancy measure IA(ﬂG: p(e)). Moreover, Rk(én)/n converges w.p.1 to

ZIK(nG: p(6y)). For example, Xz(én)/n converges to

(W'i_p'i )2

1P ’

1=

T . -
21 (g p(og)) =
where én is the minimum chi-squared estimator, %o is the point closest to G

by the I] measure, and Pi = Py

1(eo). See Moore (1984) for details of these

results.

A choice of A can be based on a choice of distance measure, and power
against an alternative of interest will depend on the distance of that
alternative from the hypothesis under the given measure. For a specific
alternative, A can be chosen to maximize the distance of this alternative from

{F(+]e)}. This generalizes the conclusions of Read (1983). For general

2

alternatives, we recommend (pending further study) that the Pearson X statistic

be employed in practice when a choice is made among the statistics R, We will

see below that consideration of a broader class of chi-squared-like statistics
will modify this recommendation. But X2 will remain the statistic of choice

when the null hypothesis is simple or when minimum chi-squared estimation is used.

3.2.7 Examples of the Pearson Test

Because of its relative lack of power, X2 cannot be recommended for testing
fit to standard distributions for which special-purpose tests are available,

or for which the special tables of critical points needed to apply tests based



18

on the empirical distribution function (EDF) when parameters are estimated
have been computed. Testing fit to the family (3.5) is, on the other hand,
a realistic application of the Pearson-Fisher statistic Xz(én). The examples
below of X2 applied to the NOR data set are intended only as illustrations
of the mechanics of applying the test.

EXAMPLE 1. Since NOR purports to be data simulating a normal sample
with y = 100 and o = 10, let us first assess the simulation by testing fit
to this specific distribution. The Mann-Wald recipe (3.7) with o = 0.05 and
n = 100 gives M = 24. For computational convenience, we use M = 25 cells
chosen to be equiprobable under N(100,100). The cell boundaries are 100 + ]Ozi,
where Z, is the 0.04i point from the standard normal table, i = 1,2,...,24.
For example, the 0.04 point is -1.75, so the upper boundary of the leftmost
cell is 100 + (10)(-1.75) = 82.5. Table 3.1 shows the cells and their observed
frequencies. The expected frequencies are all (100)(0.04) = 4. When p; = I/M

for all i, we have

N
S|

So in this example,

K =g I (N0

=7 28.

The appropriate distribution is x2(24), and the P-value (attained significance

2

Tevel) of X° = 28 is 0.260.



TABLE 3.1
Chi-squared tests for

normality of the NOR data

Fit to N(100,100) Fit to normal family
Upper Upper
Cell Boundary Frequency Boundary Frequency
1 82.5 3 81.2 3
2 85.9 8 84.8 5
3 88.3 5 87.3 5
4 90.1 8 89.2 5
5 91.6 4 90.7 6
6 92.9 2 92.1 4
7 94.2 1 93.5 3
8 95.3 5 94.6 1
9 96.4 6 95.8 4
10 97.5 1 96.9 6
11 98.5 3 98.0 3
12 99.5 3 99.0 3
13 100.5 4 100.1 2
14 101.5 2 101.1 5
15 102.5 2 102.2 2
16 103.6 7 103.3 5
17 104.7 7 104.5 9
18 105.8 3 105.6 3
19 107.1 1 107.0 1
20 108.4 2 108.3 1
21 109.9 4 109.9 5
22 111.7 6 111.8 6
23 114.1 6 114.3 6
24 117.5 4 117.8 4
25 o 3 ® 3
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To test the NOR data for fit to the family of univariate normal
distributions, an intuitively reasonable procedure is to estimate u,o
by X,o and use cells with boundaries X + 2,0, where z, are as before.
These cells are equiprobable under the normal distribution with p = X
and ¢ = 6. It will be remarked in Section 3.3.1 that the Pearson statistic
with these data-dependent cells has the same large sample distribution
as if the fixed cell boundaries 100 + 102k to which the random boundaries
converge were used. This distribution is ggg‘x2(24), since u and o were
estimated by their raw data MLE's X and o in computing the cell probabilities
pi(X,é) = 0.04. The appropriate distribution has the form (3.6), so that
its critical points fall between those of x2(24) and x2(22). Calculation
shows that X = 99.54 and o = 10.46. The cell boundaries % + Szk and the
observed cell frequencies are given at the right of Table 3.1. The
observed chi-squared value is X2 = 22, reflecting the somewhat better fit
when parameters are estimated from the data. The P-value falls between
0.460 (from x2(22)) and 0.579 (from x2(24)).

For comparison, the same procedure was applied to test the LOG data
set for normality. In this case, X = 99.84 and 5 = 16.51, and the observed

2

chi-squared value using cell boundaries X + oz, is X = 31.5. The corresponding

k
P-value lies between 0.086 (from X2(22)) and 0.740 (from x2(24)). Thus this
test has correctly concluded that NOR fits the normal family well, while
the fit of LOG is marginal. Since the logistic distributions are difficult
to distinguish from the normal family, this is a pleasing performance. In
contrast, the same procedure with M = 10 has X2 = 9.4 for the LOG data, so
that the P-value lies between 0.225 (from x2(7)) and 0.402 (from x2(9)).

Using 3 cells gives X2 = 0.98 and again fails to suggest that the LOG data
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set is not normally distributed. Thus for these particular data, the
larger M suggested by (3.7) produces a more sensitive test.

EXAMPLE 2. The same procedure can be applied to the EMEA data, but
a glance shows that these data as given are discrete and therefore not
normal. Indeed, with 15 cells equiprobable under the N(X,S) distribution

for these data, X2

= 554, Since the data are grouped in classes centered

at integers, a more intelligent procedure is to use fixed cells of unit
width centered at the integers, with cell probabilities computed from
N(X,é). 0f course, X and o from the grouped data are only approximate.
Sheppard's correction for 5 improves the approximation, and gives X = 14.540
and 5 = 2.216. Calculating the cell probabilities and computing the

Pearson statistic, we obtain X2 = 7.56. The P-value lies between 0.819
(from x2(12)) and 0.911 (from x2(14)), so that the EMEA data fit the normal
family very well indeed. The applicability of X2 to grouped data such as

these is an advantage of chi-squared methods.

3.3 GENERAL CHI-SQUARED STATISTICS

3.3.1 Data-dependent Cells

As already noted in Section 3.2.7, the use of data-dependent cells
increases the flexibility of chi-squared tests, fortunately without
increasing their complexity in practice. The essential requirement is

that as the sample size increases, the random cell boundaries must converge

in probability to a set of fixed boundaries. The limiting cells will usually be

unknown, since they depend on the true parameter value %9 Random cells
are used in chi-squared tests by "forgetting" that the cells are data-dependent

and proceeding as if fixed cells had been chosen. Since the cell frequencies
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are no longer multinomial, the theory of such tests is mathematically
difficult. But in practice, the limiting distribution of R* with random
cells is exactly the same as if the limiting fixed cells had been used.

This is true even when parameters are estimated. Details and regularity
conditions appear in Section 4 of Moore and Spruill (1975) for k-dimensional
rectangular cells. Pollard (1979) has extended the theory to cells of

very general shape. Therefore, any statistic, such as the Pearson-Fisher

Xz(én), that has a 6,-free limiting null distribution with fixed cells has

that same distribution for any choice of converging random cells.

A statistic such as the Chernoff-Lehmann Xz(én) which has a ¢ -dependent
limiting null distribution for fixed cells, has in general this same
deficiency with random cells. But if the hypothesized family {F(-|e)}
is a location-scale family, a proper choice of random cells eliminates
this eo-dependency and also allows cells to be chosen equiprobable under
the estimated e, thus matching the recommended practice in the simple
hypothesis case. Such cell choices should be made whenever possible. Theorem
4.3 of Moore and Spruill (1975) is a general account of this. Let us here
illustrate it by returning to the X2 statistic for testing univariate
normality.

When the parameter o = (u,o) is estimated by 6n = (X,G) and cell

boundaries X + Z,0 are used, the estimated cell probabilities are

T 240 2,52
(2“02)“]/2e"(t"X) /ZO'dt

+ z,
Z; 10

o
]

—~
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These are not dependent on (X,S), and are equiprobable if z; are the

successive i/M points of the standard normal distribution. Since this choice

of cells Teaves both Ni and P; unchanged when any location-scale transformation
is applied to all observations Xj, the Pearson statistic (and indeed, any

RX) has the same distribution for all (u,0). The Timiting null distribution

has the form (3.6) but the Ak are now free of any unknown parameter. Critical
points may therefore be computed. Two methods for doing so, and tables for
testing normality, appear in Dahiya and Gurland (1972) and Moore (1971). Dahiya
and Gurland (1973) study the power of this test. The idea of using random
cells in this fashion is due to A. R. Roy (1956) and G. S. Watson (1957, 1958,
1959). We will refer to the Pearson statistic using the raw data MLE and

random cells as the Watson-Roy statistic. Example 1 in Section 3.2.7 illustrated
its use.

Note that the Watson-Roy statistic has e-free limiting null distribution
only for location-scale families, that this distribution is not a standard
tabled distribution, and that a separate calculation of critical points is
required for testing fit to each Tocation-scale family. These statements
are also true for EDF tests of fit. Since the latter are more powerful, the
Watson-Roy statistic has few advantages when F(-le) is univariate and continuous.
Nonetheless, data-dependent cells move the cells to the data without essentially
changing the asymptotic distribution theory of the chi-squared statistic. They
should be routinely employed in practice, and this is done in most of the
examples in this chapter.

3.3.2 General Quadratic Forms

Some of the most useful recent work on chi-squared tests involves the study

of quadratic forms in the standardized cell frequencies other than the sum of
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squares used by Pearson. Random cells are commonly recommended in these
statistics, for the reasons outlined in Section 3.3.1, and do not affect the
theory. A statement of the nature and behavior of these general statistics
of chi-squared type is necessarily somewhat complex. Practitioners may find
it helpful to study the examples computed in Section 3.3.3 and in Rao and
Robson (1974) before approaching the summary treatment below.

Random cells should be denoted by Ein(xl"“’xn) in a precise notation,

but here the notation Ei for cells and Ni for cell frequencies will be continued.

The "cell probabilities" under F(-|6) are

p;(8) = [ dF(x]e) i=1,...,M
E.
;

Denote bytvn(e) the M-vector of standardized cell frequencies having ith component

[N;=np; (6)1/ (np (8)) /2.

If Qn = Qn(X]""’Xn) is a possibly data-dependent MxM symmetric nonnegative

definite matrix, the general form of statistic to be considered is
v (5,) 10V (6, ) (3.8)

when ¢ is estimated by 5n' The Pearson statistic is the special case for
which Qn = IM’ the MxM identity matrix. The large-sample theory of these
statistics is given in Moore and Spruill (1975). The basic idea is that of
Pearson's proof: Show that Vn(én) is asymptotically multivariate normal

(even with random cells) and then apply the distribution theory of quadratic
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forms in multivariate normal random variables. A1l statistics of form (3.8)
have as their limiting null distribution that of a linear combination of
independent chi-squared random variables. References on the calculation of
such distributions may be found in Davis (1977).

To avoid the necessity to compute special critical points, it is
advantageous to seek statistics (3.8) which have a chi-squared Timiting null
distribution. This idea is due to D. S. Robson. Rao and Robson (1974)
treat the important case of raw data MLE's. They give the quadratic form in

NE 2

having the x“(M-1) Timiting null distribution. The appropriate matrix

n)
Qe

), where

Q(e) = 1, + B(e) [J(0)-B(0)'B(8)]1 'B(s)",

J(e) is the pxp Fisher information matrix for F(-|8), and B(e) is the Mxp

matrix with (i,j)th entry

oy (7172 212

1 98 .
J

The Raco-Robson statistic is

— N ¥ N N

R = Vn(en) Q(en)vn(en).
This test can be used whenever J-B'B is positive definite. Since nd

is the information matrix from the raw data and nB'B the information matrix

from the cell frequencies, J-B'B is always nonnegative definite. Notice that

Rn is just the Pearson statistic Xz(én) plus a term that conceptually builds
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up the distribution (3.6) to XZ(M-1). This term simplifies considerably,

since Xﬁapi/aej = 0 implies that

Vn|B=n"]/2 ,\z)l —[\il;Z—T” l\f l_\ll a_gl (3 9)
i=1 Py % i=1 Pi %p
and
- 2 . 1 1 '] t 1
Rn = X (Bn) + (V nB)(J—B B) (v nB) . (3.10)

all terms being evaluated at 6 = o, Further simplification can be achieved

~

in Tocation-scale cases by the use of random cells for which pi(e ) = 1/M.

n
Rao and Robson (1974) give several examples of the use of this statistic, using
random cells in some cases.

Simulations by Rao and Robson show that Rn has generally greater power
than either the Pearson-Fisher or Watson-Roy statistics. Spruill (1976) gives

a theoretical treatment showing that Rn dominates the Watson-Roy statistic

for any location-scale family {F(-|e)}. Since Rn is powerful, has tabled

critical points, and is easy to compute whenever the MLE én can be obtained,

Moore (1977) gives a general recipe for the quadratic form having the chi-
squared limiting null distribution with maximum degrees of freedom when nearly
arbitrary estimators 6n are used. First compute the limiting multivariate

normal law of Vn(é ), which under F(.

n 60) has covariance matrix z(eo) whose
form depends on the large-sample properties of the estimators 5n‘ If z; is

a consistent estimator of the generalized inverse Z(eo)', the desired statistic
is Vn(én)lxavn(én)' The derivation of this Wald's method statistic clearly

follows the Tines of Pearson's original proof. The statistic can be computed
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in closed form more often than might be expected. It is the Pearson statistic

when én = én’ the Rao-Robson statistic when én =8 and can even in some
cases be used when the Xi are dependent (Moore, 1982). LeCam, Mahan and Singh
(1983) have studied these statistics in depth, and show that they have certain
asymptotic optimality properties given the choice of estimator 6n' This
strengthens the case for use of the Rao-Robson statistic when raw data MLE's
are chosen.

If (3.6) can be built up to XZ(M—l), it can also be chopped down to
M-p-1). Dzhaparidze and Nikulin (1974) point out that the appropriate

statistic is

where Vn and Bn are evaluated at 6 = 5n' Zn has the XZ(M-p-1) Timiting

1/2

distribution whenever én approaches 99 at the usual n rate, and can

therefore be used with any reasonable estimator of 6. Computation of Zn
is again simplified by (3.9). As might be expected, simulations suggest

that Zn(é ) is inferior in power to both the Watson-Roy and Rao-Robson

n
statistics.

3.3.3 Examples of General Chi-Squared Tests

EXAMPLE 1. It is desired to test fit to the negative exponential family

f(x|e) = e']e_x/e, 0 < X < o

where 9 = {6: 0 < 9 < «}. Since the MLE of o, én = X, is available, the
Rao-Robson statistic is the recommended chi-squared test. When p = 1, (3.9)

and (3.10) reduce to
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2 2
CoM (Ngemp)® o/ MONG dpy
Ry = ) n D ) de
i=1 P i=1 P
where
2
M dp.
1 i
p=90- 7 L
i=1 Py \ 9

and J, Pis dpi/de are all evaluated at 6 = én’ For a sample of size n = 100,
we will once more use M = 25 equiprobable cells. In this scale-parameter family,
equiprobable cells are achieved by the use of random cell boundaries of

the form zix. From

6™ 1o X/ 4y (3.11)

1l

the condition pi(X) 1/25 gives zy = 0, z,; = = and

= - Tog (1 - %) i=1,...,24.

N
|

Differentiating (3.711) under the integral sign, then substituting & = X, gives

g = U0- ge)log(-52)-(1-5h 109 (11517 = v/

Because of their iterative nature, the quantities v; are easily computed on a

programmable calculator. The Fisher information is J(6) = 9"2 so that
25
D=R[1-25 T V]
i=1
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Finally
25 2
Rig0 = 7 %5 (N.-4)% + (25)2 (I37N;v4)
100 4 i=1 1 100 ]"25Z$5V§

Table 3.2 records z, and Vis from which

25 2

]—2521 Vi =® 0.04255.

For the WE2 data set, X = 0.878. The resulting cell boundaries and cell

frequencies appear in Table 3.2, and

2

2
1 (25)2  (-0.0519)
Rigo = 7(381) + g0~ ~5 oazes

= 87.75 + 0.40 = 88.15

? using the X2(24) distribution. In contrast,

This gives a P-value of 3 x 10~
the EXP data set has X = 5.415, cell boundaries and frequencies given at the

rightof Table 3.2, and

2 2
1 (25)2  (-0.1231)
Rioo = 7(5%) * “1o5~ ~0.04255
= 13.5 + 2.23 = 15.73.
The P-value from x2(24) is 0.898.

Table 3.2 reveals an important practical advantage of chi-squared tests,
especially when equiprobable cells are employed: examination of the deviations

of the cell frequencies Ni from their common expected value (here 4) shows



TABLE 3.2

The Rao-Robson test for the negative
‘exponential family, with 25 equiprobable cells

WEZ EXP

i z1 vi ziX Ni ziX Ni
1 . .0408 -.0392 0.036 1 0.221 6

2 .0834 -.0375 0.073 0 0.451 5
3 .1278 -.0358 0.112 1 0.692 3

4 .1743 -.0340 0.153 1 0.944 2

5 .2231 Z.0321 0.196 3 1.208 5

6 .2744 -.0301 0.241 1 1.486 5

7 .3285 -.0279 0.288 2 1.779 7

8 .3857 -.0257 0.338 3 2.088 2

9 .4463 -.0234 0.392 5 2.416 4

10 .5108 -.0209 0.448 5 2.766 3
11 .5798 -.0182 0.509 1 3.140 3
12 .6539  -.0153 0.574 5 3.541 4
13 .7340 -.0123 0.644 3 3.974 6
14 .8210 -.0089 0.721 5 4.445 3
15 .9163 -.0053 0.804 8 4,962 4
16~ 1.0216 -.0013 0.897 4 5.532 4
17 1.1394 .0032 1.000 16 6.170 3
18 1.2730 .0082 1.118 9 6.893 3
19 1.4271 .0139 1.253 11 7.728 4
20 1.6094 .0206 1.413 7 8.715 2
21 1.8326 ..0287 1.609 5 9.923 7
22 2.1203 .0388 1.861 1 11.481 3
23 2.5257 .0524 2.217 3 13.676 3
24 3.2189 .0733 2.826 0 17.430 6
0 w 3

25 o .1288 ®©
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clearly the nature of the lack of fit detected by the test. In this case, the
Weibull with power parameter k = 2 has far too few observations in the lower
tail, too many in the middle slope of the density function, and too few in the
extreme upper tail. A glance at graphs of the Weibull and exponential density
functions (e.g. on pp. 379-80 of Derman, Gleser and Olkin 1973) shows how
accurately the Ni mirror the differences between the two distributions.

As these examples suggest, the Pearson statistic Xz(én),which is the first
component of Rn’ is usually adequate for drawing conclusions when M is large
and p is small. In this example, the critical points of Xz(én) fall between
%

24). A reasonable strategy is to compute Xz(én)

those of X2(22) and those of
first, completing the computation of Rn only if the results after the first
stage are ambiguous.

EXAMPLE 2. The BAEN data are to be tested for fit to the double-exponential
family

1 Ix-el/e,

f(Xle)'—'?—e—Z-e - o < X < o

Q= {(e],ez): - ® <0y < o, 0 < 8, < w}.

The MLE o, = (e]n,eZn) from a random sample X]""’Xn is

81, = Median (X1""’Xn)

~

]|Xj-e]n|.

[

S|—

G
2n .
J

In this location-scale setting, equiprobable cells with boundaries 01 T 2500,
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will again be employed. Using an even number of cells, say M = 2v, and choosing

the a; symmetrically as NI

+i v-i = Cio where

_ i .
c; = -log(1- V) i = 0,...5v

~

(in particular, a5 = -=> a =0, ay = ») gives pi(en) = 1/M.

Computations similar to those shown in Example 1 yield

ops . N

i - I
Béz(en) = —]/Me2n i=1,.00,v

= 1/M62n i=vtl,... M (3.12)
P: . -C, -C

861 6,) ! (¢, _qe K ]—cke ) i = wrk, vekt]

i “an K= Touisv

-c -c
If d = ¢ _qe k"]-cke K, then
1 0

~ . ~ —A _'l
B(en) B(en) = 05,

0V

~ ~

) -B(s )'B(en) has rank 1

Since the information matrix is 65112, the matrix J(én n

and the Rao-Robson statistic is not defined. (The reason for this unusual

situation is that for this choice of cells, the median is both the raw data MLE
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and the grouped data MLE for e].) The Dzhaparidze-Nikulin statistic is

v 2
LGN N g

This computation was simplified by the fact that B'B is diagonal and the first

term of (3.9) is 0 by (3.12) and the definition of the median.

The BAEN data contain n = 33 observations, for which 5]n = 10.13 and 52n = 3.36.

Table 3.3 contains C;» upper cell boundaries 6

In

+ 0o and cell frequencies

for these data. The statistic Zn is, after some arithmetic,

1

N
=

N
&l

[ew]

3

0

(He~1 —a

i=1

(Ni_3'3)

2

The P-value from x2(7) is 0.426.

O
(D

el
——

—

QWO OIS WRN =

10 1 2
- 33 [2y( 1574y L-1-2828]

7.30 - 1.59 = 5.7]

The Pearson

TABLE 3.3

Testing the fit of the BAEN data
to the double exponential family

| I T |
—OOOOOOO—~

.609
.916
511
.223

.223
511
.916
.609

~

%1, * €%
4.722
7.051
8.414
9.380

10.130

10.880

11.846

13.209

15.538

o«

N B W W— N W D
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2

statistic X° = 7.30 has critical points falling between those of x2(7) and

X2(8), taking advantage of the fact that the grouped data MLE was used to
estimate one of the two unknown parameters. The corresponding bounds on
the P-value are 0.398 and 0.505. The double exponential model clearly fits
the BAEN data very well. Even though an anomaly reduced from 2 to 1 the
difference in the degrees of freedom of the X2 distributions bounding X2,
there is a considerable spread in the corresponding P-values. This is typical
when n (and therefore M) is small. In examples where the goodness of fit
is less clear than here, use of Rn or Zn can be essential to a clear conclusion.
EXAMPLE 3. In testing for multivariate normality, a natural choice of

cell boundaries are the concentric hyperellipses centered at the sample mean
and with shape determined by the inverse of the sample covariance matrix.
These are level surfaces of the multivariate normal density function with
parameters estimated. Equiprobable cells of this form have the advantage of
revealing by the observed cell counts the presence of such common types of
departure from normality as peakedness or heavy tails. Chi-squared statistics
in this setting are computed and applied by Moore and Stubblebine (1981). Here
we consider the special case of testing fit to the circular bivariate normal
family, a common model for "targeting" problems. It represents the effect of
independent normal horizontal and vertical components with equal variances. The
denisty function is

- L txeu)? v,

f(x,y[0) = ——5e 2 S Xy <

2n0

Q={e = (U]:Uzsg): - < HqsHo < 0,0 < 0 < @},
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A ~ A ~

The MLE of 6 from a random sample (X],Y]),...,(Xn,Yn) iso = (“]’”2’0)’

where

R n _ n _
of = i (X.-%)2 + ) (Y.-7)%y.

In constructing a test of fit to this family, it is natural to use as cells

annuli centered at (X,Y) with successive radii cié for

0=0cp<Cy< v <Cyy=<Cy=c-
Thus

E. = {(x.y): C§_152 < (x-R)% + (y-T)2 < c?&z}
The cell probabilities are

p;(6) = [ff(x,y|e)dxdy

£

and calculation shows that pi(én) = 1/M when

¢; = -2 Tog (1- 1)11/2 IR R

The recommended test is based on the Rao-Robson statistic. Differentiating

pi(e) under the integral sign, then substituting 6 = 5n gives



l.—l
|
Qo
s
1
()

12 12
_?Ei_| N2 e AT 2 T 2,
30 12 i-1
= Vi/G'
Hence
0 0 0
B'B|; =15 (0 0 0
6]
o o0 NV

The Fisher information matrix for the circular bivariate normal family 1is

also diagonal,

J(e) = JLQ o 1 o],

“ 0 0 4

so that (J—B‘B)—] is trivially obtained. Moreover, from (3.9) it follows
that

N VA M 5
Vn B=n (O’O’Z1N1V1/G)-

The Rao-Robson statistic is therefore

36
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- 2 - 1 1 _-l 1 1
Rn = X (6n) + (Vn B?(J—B B) (Vn B)
M 2
_n ny2 , w2 (23Ndy)
R s

where

d1.=v1./2=(1-|\]4;) Tog (1-,31;)-(1-%71‘1“) 1og (]'1'1‘71_])'

The 1imiting null distribution is XZ(M-1), while that of the Pearson statistic

Xz(én) has critical points falling between those of X2(M~1) and XZ(M-4). The
Rao-Robson correction term will often be necessary for a clear picture of the
fit of this three-parameter family.

EXAMPLE 4. The negative exponential distribution with density function

f(x|e) = o le™*/0 0<X<w

=1{6: 0 <86 < «}

is often assumed in life testing situations. Such studies often involve not
a full sample, but rather Type II censored data. That is, order statistics

are observed up to the sample a-quantile,

oy < %@ < < Xnal)

where [no] is the greatest integer in m and 0 <o < 1. It is natural to
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make use of random cells with sample quantiles £ = X([nd 1) as cell boundaries.
i

Here go =0, gM = « and

so that the n - [no] unobserved Xi fall in the rightmost cell. Although the
cell frequencies Ni are now fixed, the general theory of Moore and Spruill
(1975) applies to this choice of cells. A full treatment of this type of
problem is given in Mihalko and Moore (1980). Chi-squared tests are immediately
applicable to data censored at fixed points. We now see that allowing random
cells allows Type II censored data to be handled as well.

The Pearson-Fisher Statistic. Estimate 6 by the grouped data MLE found

as the solution of (3.2). That equation becomes in this case

-£. ./6 -£./8
i-1 i
N, Ci-1° “E4€
i -, /6 -£./0
1 o 1 1 e 1

Ho~1=

.i

which is easily solved iteratively to obtain én = én(g],...,gM_]). The test

statistic is

- 2
_ M [N,-np. (6 )]

X“(5,) = 1 L

i=1 np, (6,)
where

N; = [ns;1 - [ns; 4] (nonrandom)
'51_]/9 “Ei/e

p;(e) = e -e (random).



39

The Timiting null distribution is x2(M-2).

The Wald's Method Statistic. A more powerful chi-squared test can be

obtained by use of the raw data MLE of 6 from the censored sample, namely

(Epstein and Sobel, 1953),

~ 1 [n@]
on = a7 (L Koyt (ot DX gy )

By obtaining the 1imiting distribution of Vn(én) and then finding the
appropriate quadratic form, a generalization of the Rao-Robson statistic
to censored samples can be obtained. This is done in Mihalko and Moore

(1980). The resulting statistic for the present example is

. -£ /6 -
_ox=1 i-1""n £./6
vi =0, (g5 qe -£.e Ton
£, /0. M .
_ M-1""n_ 2
D =1-e 1.Z]vi/pi(en).

In the full sample case, o =1, EM-1 = @ NM =0, én = X and the statistic
Rn reduces to the Rao-Robson statistic of Example 1 (with M-1 cells bounded
by the gi).
The motivation for using censored data when Tifetimes or survival times
are being measured is apparent from the EXP data set. The sample 80th percentile

is 9.46, while the maximum of the 100 observations is 39.12. The MLE of & from
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the data censored at o = 0.8 is 5n = 5.471, compared with the full sample MLE,
X = 5.415. Experience shows that the Roscoe-Byars guidelines are not adequate

to ensure accurate critical points from the XZ

distribution in the present
situation, where the np; are random and unequal. Tests of the EXP data will
therefore be made with (a) the full sample using 10 cells having the sample
deciles as boundaries; and (b) the data censored at o = 0.8 using 9 cells with

the first 8 sample deciles as boundaries. A1l cells except the rightmost in

case (b) contain 10 observations. The results are, for the full sample,
Rn =6.132 + 0.0220 = 6.352

with a P-value of 0.704 from X2(9). For the censored sample,
Rn = 5.153 + 0.065 = 5.218

with a P-value of 0.734 from x2(8). These results are comparable to those

obtained for the same data in Example 1.

3.3.4 Nonstandard Chi-Squared Statistics

We have considered two classes of "standard" chi-squared statistics,
the Cressie-Read class based on measures of divergence and the Moore-Spruill

class of nonnegative definite quadratic forms. The Pearson X2

is the only

common member of these classes. All of the Cressie-Read statistics are
asymptotically equivalent to X2 under the null hypothesis when the same (possibly
random) cells and the same estimators are used. But different divergence

measures may be sensitive to different types of divergence of Ni from nps s and
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this fact can be used to choose a statistic when a specific type of alternative
is to be guarded against. The Moore-Spruill statistics differ in asymptotic
behavior under the null hypothesis. The choice of statistic within this class
is most often made to obtain a X2 Timiting null distribution for given estimator
én' (The Cressie-Read statistics have a X2 Timiting null distribution only

for estimators equivalent to the grouped-data MLE, a class that includes all
minimum -R* estimators.)

The theory of these standard chi-squared statistics assumes independent
observations and a fixed number of cells M. Relaxing these assumptions leads
to situations that are incompletely explored, and some other statistics have
also been suggested. In this section we mention a few of these nonstandard

cases.

(a) Increasing M with n. Usual practice is to increase the number of

cells M as the sample size n increases (recall the Mann-Wald recommendation
(3.7)). This practice is not explicitly recognized in the standard theory.
The large-sample theory of the usual chi-squared statistics for increasing M is
available in the case of a simple null hypothesis (Holst 1972, Morris 1975,
Cressie and Read 1983). The limiting null distributions of the R* are normal,
with mean and variance depending on x. The statistics are therefore no
Tonger asymptotically equivalent, and X2 is the optimal member of the class
in terms of Pitman efficiency. The behavior of these statistics when parameters
are estimated has not been explored.

Two possible variations in practice suggest themselves. (1) Allow M to

2/5. Kempthorne

increase with n at a rate faster than the Mann-Wald suggestion n
(1968) proposed the use of the Pearson statistic with M = n equiprobable cells.

Simulation studies suggest that standard statistics with fewer cells have superior
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power except against very short-tailed alternatives. (2) Use a normal rather

than a XZ approximation for the distribution of standard statistics. For X2,

the x2 approximation is generally both adequate in practice and superior to

the normal. The XZ is also easier to use, since it does not require computing

the asymptotic mean and variance. For other R (such as GZ), the X2 approximation

is much less good, and the normal approximation may be superior. See Koehler

and Larntz (1980). But Read (1983) gives an adjustment of the x2

approximation
that js easier to use than the normal and should also be considered.

(b) Dependent observations. Since many data are collected as time

series, tests of fit that assume independence may often be applied to data
that are in fact dependent. Positive dependence among the observations will
cause omnibus tests of fit to reject a true hypothesis about the distribution
of the individual observations too often. That is, positive dependence is
confounded with lack of fit. This is shown in considerable generality

for both chi-squared and EDF tests by Gleser and Moore (1983). If a model
for the dependenceis assumed, it may be possible to compute the effect of
dependence or even to construct a valid chi-squared test using the distributional
results in Moore (1982). But in general, data should be checked for serial
dependence before testing fit, as the tests are sensitive to dependence as
well as to lack of fit.

(c) Sequentially adjusted cells. By use of the conditional probability

integral transformation (see Chapter 6), 0'Reilly and Quesenberry (1973) obtain
particular members of the following class of nonstandard chi-squared tests.
Rather than base cell frequencies on cells E. (fixed) or Ein (X]""’Xn) (data-
dependent) into which all of X1""’Xn are classified, the cells used to classify

each successive Xj are functions Eij of X1,...,Xj only. Thus additional observations
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do not require reclassification of earlier observations, as in the usual
random cell case. No general theory of chi-squared statistics based on such
sequentially adjusted cells is known. O0'Reilly and Quesenberry obtain by
their transformation approach specific functions Eij such that the cell
frequencies are multinomially distributed and the Pearson statistic has the
XZ(M—1) limiting null distribution. The transformation approach requires the
computation of the minimum variance unbiased estimator of F(-]e). Testing fit
to an uncommon family thus requires the practitioner to do a hard calculation.
Moreover, any test using sequentially adjusted cells has the disadvantage that
the value of the statistic depends on the order in which the observations were
obtained. These are serious barriers to use.

(d) Easterling's approach. Easterling (1976) provides an interesting

approach to parameter estimation based on tests of fit. Roughly speaking, he
advocates replacing the usual confidence intervals for e in F(-|e) based on

the acceptance regions of a test of

H]te#eo

with intervals based on the acceptance regions of tests of fit to completely

specified distributions,

Ho*: G(+) = F(+]ep)

Hy*: 6(e) 7 F(-Jeg).
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In the course of his discussion, Easterling suggests rejecting the family
{F(x|8): 8 in @} as a model for the data if the (say) 50% confidence interval
for o based on acceptance regions for HO* is empty. This "implicit test of
fit" deserves comment, using the chi-squared case to make some observations
that apply as well when other tests of HO* are employed.

Taking then the standard chi-squared statistic for HO*,

2
[N-]' _np1 (60)]
np; (84) ’

M
2
X =
%) 121

and denoting by XS(M—1) the upper o-point of the XZ(M—l) distribution, the

(1-a)-confidence interval is empty if and only if
2 2 * .
X“(s) > Xg(M-]) for all e in Q. (3.13)
But if én is the minimum chi-squared estimator, (3.13) holds if and only if

x2(3,) > x2(M-1). (3.14)
When any F(x|e) is true, Xz(én) has the XZ(M-m—1) distribution, and the
probability of the event (3.14) can be explicitly computed. It is less than

o, but close to o when M is large. Thus Easterling's suggestion essentially
reduces to the use of standard tests of fit with parameters estimated by the
minimum distance method corresponding to the test statistic employed. Moreover,
his method by-passes a proper consideration of the distributional effects of

estimating unkonwn parameters.
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3.4 RECOMMENDATIONS ON USE OF CHI-SQUARED TESTS

Chi-squared tests are generally less powerful than EDF tests and special-
purpose tests of fit. It is difficult to assess the seriousness of this lack
of power from published sources. Comparative studies have generally used the
Pearson statistic rather than the more powerful Watson-Roy and Rao-Robson
statistics. Moreover, such studies have often dealt with problems of parameter
estimation in ways which tend to understate the power of general purpose tests
such as chi-squared and Kolmogorov-Smirnov tests. This is true of the study by
Shapiro, Wilkand Chen (1968), for example. Reliable information about the
power of chi-squared tests for normality can be gained from Table IV of Rao
and Robson (1974) and from Tables 1 and 2 of Dahiya and Gurland (1973). The
former demonstrates strikingly the gain in power (always at least 40% in
the cases considered, and usually much greater) obtained by abandoning the
Pearson-Fisher statistic for more modern chi-squared statistics. Nonetheless,
chi-squared tests cannot in general match EDF and special purpose tests of
fit in power.

This relative lack of power implies three theses on the practical use of

chi-squared techniques. First, chi-squared tests of fit must compete for

use primarily on the basis of flexibility and ease of use. Discrete and/or

multivariate data do not discomfit chi-squared methods, and the necessity to
estimate unknown parameters is more easily dealt with by chi-squared tests
than by other tests of fit.

Second, chi-squared statistics actually having a (limiting) chi-squared

null distribution have a much stronger claim to practical usefulness. Ease

of use requires the ability to obtain (1) the observed value of the test

statistic, and (2) critical points for the test statistic. The calculations
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required for (1) in chi-squared statistics are at most iterative solutions

of nonlinear equations and evaluation of quadratic forms, perhaps with

matrix expressed as the inverse of a given symmetric pd matrix. These are

not serious barriers to practical use, given the current availability of
computer library routines. Computation of critical points of an untabled
distribution is a much harder task for a user of statistical methods. Chi-
squared and EDF statistics both have as their limiting null distributions the
distributions of linear combinations of central chi-squared random variables.
General statistics of both classes require a separate table of critical points
for each hypothesized family. The effort needed is justified when the
hypothesized family is common, but should be expended on a test more powerful
than chi-squared tests. In less common cases, or when no more powerful test
with o-free null distributionis available, there are several chi-squared

tests requiring only tables of the x2 distribution. These include the Pearson-
Fisher, Rao-Robson, and Dzhaparidze-Nikulin tests, and others which can be
constructed by Wald's method. Among the chi-squared statistics proposed and
studied to date, the Rao-Robson statistic Rn of (3.70) appears to have generally
superior power and is therefore the statistic of choice for protection against
general alternatives. Computation of Rn in the nonstandard cases most appropriate
for chi-squared tests of fit does require some mathematical work. However, the

A

Pearson statistic Xz(en) with raw-data MLE's is the first and usually dominant
component of R . If Xz(én) jtself lies in the upper tail of the XZ(M—1)
distribution, the fit can be rejected without computing Rn'

The third thesis rests on the exposition and examples in this chapter.

Chi-squared tests are the most practical tests of fit in many situations. When

parameters must be estimated in non-location-scale families or in uncommon dis-
tributions, when the data are discrete, multivariate, or even censored, chi-squared

tests remain easily applicable.
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