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Summary

It is known that if B, is a standard Wiener process then

+

t\)1 [

sup, 11minfh+0+(3t+h'3t)h = 1 a.s. Here this is sharpened to

2
P(gt: Tim 1nfh+0+(Bt+h'Bt)h 2 =1)=1, and

1
P(zt: B > h? yh ¢ (0,qa) for some o > 0) = 0.

t+h Bt

A number of other theorems of the same flavor are proved. Our results

for the critical case for slow points are not aS complete as the above.
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T. Introduction

If B, is a one-dimensional Brownian motion defined on a complete

t
probability space, consider the sets of one-sided and two-sided slow

points defined by

sT(c) = {(t,w)|t > 0, =A > 0> [B(tth)-B(t)| <c/h ¥0 <h <}

S(c) = 5*(c) n S7(c) (c > 0).

In Davis [5] and Greenwood and Perkins [7] it was shown that

=fp if c<1 a.s.

(1.1) NOIO)
0 if ¢ > 1

(Here A(w) denotes the w-section of Ac [0,»)xQ.) A related result concerns

the times of rapid increase of B, defined by

I+(c) = {(t,w)|t > 0,32 >0 >B(t+h)-B(t) > ¢/h v0 <h < a}(c € R).
In [5] one of us (Davis) shows that

=0 if c¢c>1 a.s.,
(1.2) 1(c) (w)

$#P if c< 1
thus answering part of a question of Knight [8, p. 148]. 1In this work
we attempt to refine results Tike (1.1) and (1.2) by studying the critical
cases, ¢ = 1. One of our theorems settles the rest of Knight's question,
A number of the theorems of [5] and [7] were unified and extended in
Perkins [9], where it was shown that for certain random sets A c [O,m)xQ

(including a1l sets of the form A]XQ where A] is Borel measurable),



(1.3) dim(A n ST(c)(w)) = dim(A(w)) - ale) a.s.

and in particular
70 if Ao(c) < dim(A(w)) a.s.

(1.4) An ST(c)(w)
=9 if ay(c) > din(Au))

Here dim denotes Hausdorff dimension and Ao(c) may be described in terms

of the zeros of certain special functions. The reader is referred to
Proposition 1 of [9] for a precise description of those constants.

(Ao(c) = AO(-c,c) in the notation of [9]). For our purposes, it suffices

to know that Ao is a continuous, strictly monotone function of c whose values

are easy to approximate. If
L= {(t,w)lB(t,w) = O}s

then (1.4) yielded (Corollaries 6 and 8 in [9])

=9 if c<3'(1/2) ~ 1.3069 a.s.

(1.5) Zn st(e)(w)
F0if s (1/2)

=9 if c<ag'(1/2) a.s.

(1.6) s(c)(w)
FPAf c>agl(1/2)

Originally, (1.5) appeared in [7], and the first half of (1.6) appeared in
[5]. In examining (1.1) - (1.6) in the appropriate critical cases one can

consider the sets S+(c) and I+(c) or the slightly larger sets

s*(c*) = {(t,u) [T, |B,.,-B,|hE <c} = n s*(d)
hogt THROTT = dc
o+, - . -+ +
I'(c7) = {(t,0)|1im (B, -B)h= > ck = n I'(d).
+ d<c

h-0



Leaving aside the general results (1.3) and (1.4) for the moment, the
discerning reader will be able to pose at least 8 questions concerning
the state of affairs in the various critical cases. We will not obtain
a perfect score.

In section 2, fairly elementary arguments are used to show that
I+(1~) # @ a.s. but I+(1) = P a.s. (Theorems 2.3 and 2.4). Knight's
original question [8, p. 148] was to find a function g such that
lim (B(t+h)-B(t))g(t) < 1 for all t and equals 1 for some t a.s.
EvidZﬁt]y g(t) =t7F is precisely such a function.

An important tool in previous studies of slow points is the tail

behaviour of the stopping time
_ 1
T(c) = inf{t > 0] [B(t)| > c(t+1)=}.

Breiman [4] showed that

An(c)
lim t 0

toreo

P(T(c) > t) = K(c).
To obtain finer results we study the slightly larger times
_ 1
T lasc) = inf{t] [B.| > o + c(t+1)%}, o >0, ¢ > 0.
In section 3 we show that there is a K(a,c) such that
P(T, (0sc) > t) < K(asC)t™! for all t » 0.

This theorem plays an important role in the study of S+(c) and S+(c+)
in sections 4 and 5, respectively. Theorems 4.1 and 4.3 are improvements
of the corresponding results in Perkins [9] (i.e. the precise formulations

of (1.3) and (1.4)), but they are not as sharp as one might hope. They



leave open a fundamental problem that we have not been able to resolve:

Question. Is S+(1)(w) #0 a.s.?

We use Theorem 4.1 to show (Corollary 4.5) that S+(1)(w) is at most
countable a.s. A direct argument similar to those in [9] proves that
S (AO](1/2)) N Z(w) = @ a.s. (Theorem 4.7), thus improving (1.5).

In the case of S+(c+), our results are much more precise than (1.3)
and (1.4). To describe an analogue of (1.4) for deterministic sets we

need some notation.

Notation. # = {y]|d ¢ > 05 y: [0,e] + [0,») is strictly increasing,
continuous and y(0) =

If x>0, let

Meype H|11m p(27™ ])w( )'] < 27My.

If y ¢ ¥ and Ac [0,), y-m(A) denotes the Hausdorff y-measure of A
(see Rogers [10, p. 501). O

Note that (log 1/t)Yt* € ¥* for all » > 0, y € R:but that y € #
and y < x implies that 1im _ y(t)t™ = 0.
t
Theorem 1.7. Let A be an analytic subset of [0,o). Let ¢ € [Oue).

. rgle)
1T if T ye¥ ™ > y-m(A) >0

+, +
P(An S (c)(w) #0)= Anlc)

0 if vypeu’ ymA) =0 . O
This is obtained as a corollary to a corresponding result for random
sets Ac [0,=)xn (Theorems 5.2 and 5.3). Several other corollaries are

derived from these theorems. For example, it is shown that S+(1+)(w) is a.s.



uncountable, S+(A6](1/2)+) N Z(w) # P a.s., (Corollary 5.4 (a), (b)), and

s*(x61(1/2)+) n S'(AB](1/2))(w) # 0 a.s. (Theorem 5.9). (Thus improving

(1.1), (1.5) and (1.6), respectively.)

Assume (9, &, Fys Bt’ 045 PX) is a Brownian motion process, i.e., Bt
is distributed as a Wiener process and the above Markov process is a
Hunt process in the sense of Blumenthal and Getoor [2, p. 48]. We write P
for P0 which will be the underlying measure unless indicated otherwise. If

S and T are non-negative random variables, then

[[S,T1] = {(t,w) € (05=)xQ|S{w) < t < T(w)}

and

[[S1] = {(S(w),u)|w € @, . S(w) < «}.

We use K, K K1,... to denote constants whose value may change from

O’
line to line, and B(X) denotes the Borel o-field of X.

2. Points of Increase

The following elementary lemma will be used throughout this work.

Lemma 2.1. Let {Ti]i > 1} be a non-decreasing sequence of stopping times

and define N = min{i|T1 > 1} (min P = =). Let Ai € J; 2 . assume
i

(2.1) P(A; [ ) = p for some constant p,
i-1 :

and put TO 0. Assume {Ti'T1-1li > 1} are i.1.d. and each Ti—T1_1 is independent

of & .
Tiq

Then



(a) For any ¢ > 0 there is a §> 0 such that
_-l N-] .
E(T])p <8 P(uU Ai) > 1-¢.
i=1
(b) If in addition Ti'Ti-1-i KO for some K0 € R. then for any ¢ > 0

there is a § = 6(e,KO) such that

1 N
E(T])p > 6 > P(_U_IA_i) < g.
'l:
N-1 k
Proof. (a) P(_U]Ai) z_P(.U]Ai) - P(N<k) (keN)
1= J=
> 1-0-pR BT (by (2.1))

> 1-e PRk E(T)).

Now let k = [(E(T])p)'é] ([x] is the greatest integer of x) and note that
E(T])p'1 < & implies
N-1

P(U
i=1

1
-5 2 i
A'i) > 1-e § =+ -82,

(b) As {i <N} e Ir. o it follows from the bound on Ti'Ti-1 that
iz ;

1

E(N) < (1+Ko) (E(T;))7".  Therefore if E(T)p™! > 57,
N k
P(UA-i)iP(U A'i) + P(N > k)
i=1 i=1

1

| A

pk + (]+KO)(k E(T]))—

| A

pk + (1+K0)6(kp)_1.

' 1
The proof is completed by letting k = [&3p 1]. 0



Lemma 2.2. If
T = inf{t > 1[By < 1nfS§JBs - 1+ /1,

then 1im tP(T > t) = K ¢ (0,=).

Tt

inf_ B_ then

Proof. Ifm s<1°s

_l =

B,-m.+1 .
VT, )

(2.2) PO(T > tlz;) = P

where

ES
2

T = inflt|B, < (t+1)%).

Lemma 10 (a) of Perkins [9] states that for x > 1

PX(T > t-1) = t™ (u(x) + r(t,x)) vt>1,

o 2
where v € L°([1,»), e

Ir(t,x)| <K e
for some positive constant, A, independent of . It follows from (2.2) that
272

PO(T > t) = t V[ fu(xr1) (2/mFe™ /2dx + e(t)]
0

where
w 2 2
le(t)] < t™ Kée(X+]) I4ex/2 4x. o
Theorem 2.3. I+(1)(w) =0 a.s.
That is, for a.e.w there is no t > 0 and A > 0 such that
(2.3) B(t+h)-B(t) >/h for 0 < h < A.

Proof. For each n € IN define a sequence of stopping times

{T3]i = 0,1,...3 by



Tg =0

™, = infit > ™0 + B, < inf B -n"Z4(t-TEIA(T™H1)

i+l i nl"t n n, 1's i i
i <s =Tty

If N = min{i|T? > 1} we claim that

n.n P

Fix A > 0. A scaling argument shows that the i.i.d. random variables
{T?-T?_1} are equal in law to (T/n) A 1, where T is as in Lemma 2.2.

Therefore Lemma 2.2 gives as

n_-n n_.n -1 -1, N
BT T ) (PTG g > a)70 2Ky [ £ dtne)

KOA log n

for some positive constant KO' Now (2.4) is a consequence of Lemma
2.1 (b).
Assume t ¢ I+(1) N [0,1] satisfies (2.3) for some Ao > 0. Then

no.n . n n
t e [Ti’ T1+]) for some 1 < N . We now show that Tig~Ty > 8. Let

m = inf B_.
se[Ts,Ti+1/n] S
n, 1 mn .
Case 1. t ¢ [Ti t o Ti+1)' Then if s € [0,a],

1 T o1 1
B(t+s) > B(t) + s® 3_m+(t-T?)2-n 2 + 58 (since t < T?+1)

n: -1
> mb(t+s-T1)% - n'2

Case 2. te [TQ, T? + %J. If s € [0,A], then

1
2

1 -
B(t+s) > B(t)+s® > m + (s+t-T?)2 - n=<.



In either case we get T?+] > t+a z_T? + A. Therefore if

17(1) = {(t,w)](2.3) holds},

{IZ(U(w)n [0,1] # #} = {max T3-T3 , > A}
i<N
n

The theorem now follows easily from (2.4). O

Theorem 2.4. I+(]-)(w) jsa.s. dense. That is, with probability one there is

1

a dense set of times t such that 1im (B(t+h)-B(t))h & = 1.
+
h-0

Proof. It suffices to show I+(1')(w)n[0§1] #0 a.s., as a scaling argument

would then show I+(]_)(m) is a.s. dense. If A, a >0, ce R, let

1
P c™ P(It ¢ [Aa,a) 2 BS > B, + c(t-s)® vs € [0,t]).

A, t

A scaling argument shows that PA c is independent of a. Fix ¢ < 1. We

claim that
(2.5) Tim_ P =1,
a0t BsC
that is
1 ,
(2.6) P(Et € (0,1) 3 B, > B+ c(t-s)® vs e [0,t]) = 1.

The above probability is greater than
1
P(@t € (0,1) 2 B Z.Bt + c(s-t)2 vs e [t,t+1])

by a time reversal, and this probability was shown to be positive in
Davis [5, Thm 3.1]. A scaling argument shows that for any ¢ > 0 the prob-

ability in (2.6) equals

1
Pat € (0se) 3 B, > B, + c(t-s)®  vs € [0,t]).
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The Blumenthal 0-1 law implies that this probability must be one.

Let c, 1-1/n and fix e > 0. By (2.5) we may choose ALY 0 such

2,2

that P, > e © /7" and Ay < 1/2. Inductively define a sequence of
n>-n

stopping times by T0 = 0 and

. 1
Tipq = inflt > Toha, S (1-T0) [B. > Bitcy ((t-s)®  vs € [Ty,tI} A 1.

(It is easy to check that T1+1 is a stopping time because T1+Ai+1(]'Ti) is.)

T

Then, if B, = Br, . - By for a stopping time T, we have, on'{Tn_] <1},

P(T, < ]lng-ﬁ)(w) Pt € [4,(1-T _1(0)), 1-T () 3

Tp-1(0) - Tpq(w) 1
B > B, +c (t-s)*  vs & [0,t])
=P > e 82/n2
Anscn - ‘
This gives
(2.7) P(T. <1 wn) > expi-c [ Lo} = expl-c’n?/6}.
n=1 n

Let T=Tim Ty < 1. Ifw € (T, <1 vn}and t € [Ty,Tyy ), then
%
B(t) 2 B(Tiyq) + cipq(Tiyqt)

i L
2 B(Tiip) + Ciup(TiapTan)® + Cpug (Tyq-t)°

|v

1
B(Tisp) * C4q(Tyup tl

1
_

B(T

|v

j#n) 441 (Tjept)

1
> B(T) + c1.+](T-t)2 as n - w.

1
Therefore 1im _ (B(T+h)-B(T))h™® > 1 on'{Tn <1 vn} and so (2.7) shows that
h-0

1°(17) n [0,1]1 # @ a.s. By symmetry the same is true of I"(17) n [0,1].
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The second statement of the theorem is now immediate from Theorem 2.3. 3

3. A Hitting Time Estimate

In this section we bound the tail of the distribution of the stopping

time
_ 1
Tu(a,c) = inf{t| lBt] > a + c(t+1)2},
We will need a comparison Temma for reflecting (at 0) Brownian motion. Bramson

[3, Lemma 5] showed that if h(t) < g(t) are C] functions then for x < h(0),

and any real number y,
(3.1)  PX(B; <y|Bg <h(s) ¥s <T) > P'(B; < y[B <g(s) ¥s<T).

Uchiyama [12, Lemma 2.4] proves this result by first proving a related

inequality for the simple symmetric random walk (by an induction on time)
and then using Donsker's invariance principle. Uchiyama's argument goes
through with only minor changes to give us the following version of (3.1)

for |B| (Proposition 3.1 below).

Notation. If h: [0,») - [0,»), let

T, = inf{t] [B,| > h(t)} (inf P =),

Proposition 3.1. Let h,g: [0,») ~ (0,) be C] functions such that

h(t) < g(t) for all t. If |x| < h(0), then for ally > 0,
X X
P (IBtl S.YITh> t) > P (lBtl 5'y|Tg >t). O

Also required are simpler comparison theorems concerning different
starting points (Lemmas 3.3 and 3.4 below). We include a proof of Lemma

3.3 as it is short.
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Lemma 3.2. Let'{XnIn = 0,1,...} denote a reflecting simple symmetric random

walk and Tet P* denote the probability measure P(- XO = x). If h is a function

from the nonnegative integers N, to [0,=), Tet

Ty, = min{n Z.len >h(n) 3.

Then, whenever x-x' is an even non-negative integer (x,x' € Hﬂb),
(3.2) PAX, < ¥ITp 2 n) < P* (X <y[T, = n)

for.a]] y > 0, provided that both conditioned on events have positive

probability.

Proof. Fix n. Let 20’21""’Zn’ denote simple symmetric reflecting random walk
conditioned not to exceed h(k) at time k for all k = 0,1,...,n. We will

show for k = 0,1,...,n, that
(3.3)  P(Z <y|Zg=x) <P(Z, =¥[Zy=x"), y >0,

by induction on k. The case k = 0 is immediate. We use the fact that,

since Z only makes jumps of magnitude one,
P(Zpq 2 Y12 = m) > P(Z) 4 < ¥|Z, = m2)

for all y and all m. This and summation by parts gives (3.3) for k = j+I
given (3.3) for k = j. Note that (3.3) for k = n is (3.2). O
A routine weak convergence argument now gives us
1 .
Lemma 3.3. If h: [0,x) -~ (0,~) is a C function and x' < x < h(Q), then

P18, <yIT, > t) <PX(|B,] <y|T, >t) W >0. O
t h t h
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A similar argument shows:

Lemma 3.4. If h is as above, then PX(Th > t) is non-increasing in

x € [0s=). O
-t/2,,.t . . .
e B(e"-1) is an Ornstein-Uhlenbeck process starting

at By, and with generator -]é-dz/dx2 - %—xd/dx. If o(c) = inf{t| Ith > ¢}

Recall that Xt =

then (see Greenwood-Perkins [7, Lemma 3 and Proposition 4]) for any |x| < c,
PX(Xt € dylp(c) > t) converges weakly to a symmetric distribution n° on

[-c,c] satisfying

(3.4) Po(X, € dylo(c) > £) = n_(dy)
and )

-\ t
(3.5) Po(c) > t) = O .

The distribution e is the stationary initial distribution of X conditioned to
stay in [-c,c].
Theorem 3.5. There is a co?sgant K(a,c) such that for all a, ¢ > 0,

-aa(c ‘
PO(Tu(a,c)Z_t)_i K(a,c)t 0 for all t > 0. Moreover K(o,c) may be chosen
so that sup{K(a,c)|a <N, 1/N < ¢ < N} < =, for each N > 0.

Proof. Define Xt as above and Tlet

o(asc) = inf{t] [Xe| > ¢+ ae~t/?

.
If

T(c) = inft| [B,] > c(t+1)%1,

then T(c) = *(€)_1 and T, (e,0)= ep(“’c)-l, and so it suffices to show

| -ta,(c)
(3.6) P o(asc) > t) < K(asce O .
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n .
We first establish the above bound for P C(p(oc,c) > t). Note that

n/2

(3.7) PnC(IX(n)I < ylp(a,c) > n) Pnc([B(en-l)I < ye ITH(a,c)> e-1)

PnC(IB(en~1)| f_yen/le(c) > e"-1) (Prop. 3.1)

| A

n
P ¢(|X(n)| < yle(c) > n)

= ([yy])  (by (3.8)).
MWPWXMam)>nH[Mam)>n)=?lﬂ(ﬂtlicﬁw%(um) vt < 1)
0

n
P C(|X(n)] € dylo(a,c) > n).

The above integrand is non-increasing iny € [0,«) (use Lemma 3.4) and so

(3.7) and an integration by parts leads to
n n 1
P “(o(a,c) > n+1|o(a,c) > n) <P C(IXtI <c+ ae'i(t+n) vt < 1)

n - -
<1-P S(e(c) < 1-e™2PC(sup  [X| > croe™E

1:<e-n/2
(3.8) -3 (C)(]_e'n/Z) -
<1-(1-e O J(1-PS( sup [ | < (crae™?)
tfp‘n/z
x(1+-%e'n/2)»,
t

where W, = X, + 1/2 é )gds is a Brownian motion and we have used (3.5).

0f course PC could have been used instead of P¢ above. bdowv

P swp W] < (crae ™) (14 LeVD))
t<e-n/2
O(sup Wy j_en/4(2a+c)e-n/2)

t<I

< P

5_(2a+c)e'n/4.
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Substitute the above in (3.8) to get

-xo(c)+xo(c)e'n/2

P C(o(asc) > mHl[p(asc) > n) < e +(dar2c)e™™ 2,

An easy computation now shows

nc n-1
P “(o(a,c) > n) I
i=0

nC . .
P “(p(asc) > i+t1]p(asc) > 1)

Ko(oa,c)e'-ko(C)n

in

where Ko(a,c) is bounded if a,c and c'] are uniformly bounded, implying

nc __ >L0 (C)T - — e oy - [
P “(p(asc) > T) 5_K](a,c)e ~, where K1(a,c) is bounded if @, c, and ¢

are uniformly bounded.

Assume now that c ¢ [NTI,N] and o € L0,N] for ™ ?ﬁXed.r'Let'ﬁxTU)'De The
first time Xt hits zero, and let T be a fixed positive number. Now Lemma 3.4
and the definition of X, imply that if 0 <s < T and v o = POIX¢] 5_c+ae't/2,

s <t f_Tle=r) then Yp,s < Vy,s if |y| < |r|. Thus Y0,0 5-EYXS,S <Y0,s°

Now Py(TX(O) < ola,c)) is easily seen to be nonincreasing for y € [04e).
Using this fact and the Strong Markov Property for X, and putting Yo.s - 1ifs >T,
we get

Nc

(3.9) PnC(D(GsC) > T) E-ZYO,SP (1,(0) € ds, Ty(0) < p(a,c))

X
n : -1 : R
> vg,0P (Ty(0) < o(asc)) > vp.07 (Ty(0) < plase)In [N 12,8121,

Now it is known that nc(dx)

= KCM(-AO(C), 1/2, x2/2)e'xz/2 dx, where M is the confluent hypergeometric
function and Kc is an integration constant (see, for example, the proof of
Proposition 1 in [9]). Therefore c »-nc[-N’]/Z,N']/Z] is continuous and
positive for c € [N'1, N] and in particular is bounded away from zero.

Finally,
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-1 -1
PV 2T (0) < olane)) > PN /3T (0) < 00N > 0.

X

The required estimate follows from this, the previous comment, and (3.9).

4. Slow Points

Consider now the problem of refining (1.3). More precisely we will

try to improve the following results from [9].

Theorem A ([9, Theorem 12]). Assume A c [Q,w)xg and for some d > 0 there
are sequences of stopping times'{S?, T?|1,n € N} such that
Ac 1.EJ_O][[SZ.]., T?]] for all n and |
(1) 1m0 - MY = o
o i=1
Then dim(A(w) n S+(c)(w)) j_d-xo(c) v 0x<c<=a.s., where a negative

dimension indicates the set is empty. O

Theorem B ([9, Theorem 15]). Assume there are optional sets Ak<: [0,0)xQ

o

such that Ak(w) is a.s. closed and A = Ak' Then
k=1

din(A(s) 0 S7(c)(0)) > dim(A(s)) - 25(c) Ve € (0s=) as. O
Actually Theorem A is slightly stronger than Theorem 12 in [9] (also

see the subsequent remarks) but the same proof works with only minor changes.

If A >0, let SZ(C) = {(t,u)| |B(t+h)-B(t)|h'% < c for all h € (0,a]}.

Notation.
We let Qa(t) = t%, and if q <0, ﬂa-m(A) denotes the cardinality of A if

A is finite and », otherwise. O

The following result refines Theorem A.
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Q’d_)\o(c)'m(A(w) n S+(C)(w)) =0 a.s. V0 <cC <=,

In particular if (4.1) holds with d = Ao(c) then A(w) N S+(c)(w) = P a.s.

(b) Assume the hypotheses of Theorem A but instead of (4.1) suppose only that

(4.2) lim E(_z](T? - 5?)d) < =, and sup1>1|T?—S?] < K(n), where K(n), n > 1,
Moo = z

are constants approaching Oas n &PPPOO\QJ/\QS (mt‘md'tj-

Then for a.a.w and for all ne€ N,

(4.3) ﬂd_ko(c)-m(A(w) n S:_](c)(@)) < w.

In particular if (4.2) holds with d =_10(c) then A(w) N S+(c)(w) is

countable a.s.

Proof. (a) If A >0 and S < T are stopping times, suppose t € [S,T] n SZ(C).

For each u € [T, S+a] we have

W[

IB(u) - B(T)| < |B(u)-B(t) |+|B(£)-B(T)| < c(u-t}F + c(T-t)

IA

c(u-S)% + c(T-S)Z.

A

Therefore

P(LS,T) n SZ(C) 7 QIET)(N) < P(|B(v)] c(v+T—S)%(m) + C(T-S)%(w)

IA

v < 4-(T-5)(w))

(4.2) . ,
= P([B(v)] < c(v+1)2+c Vv < a(T-S)(w)"'-1)

aqlc)
) °

< K(T(w)-S(w (Theorem 3.5),

where K depends on (a,c).

n

Choose stopping times Si 5_T? as in the statement of the theorem. Then
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® d-a,(c)
e L (T3 OS] T sy () W) # )
P N .
< KECL (T-53)%) (by (4.4))

-0 as n » o,

Therefore @, -m(A(w) N Sf(c)(w)) = 0 a.s. and the proof is completed
by Tletting A + 0.
(b) The proof of (4.3) is obvious from the previous argument. If d = Ao(c),

(4.3)means that A(w) N S+_](c)(w) is a.s. finite, implying A(“),n S+(c)(w)
n

is a.s. countable. [

Corollary 4.2. Let c ¢ (0y,»). If Ac [0,») satisfies Qd-m(A) = 0 then w.p.1

wd-xo(c)(A N S+(c)(w)) = 0. In particular if d =‘A0(c), then A N S+(C)(w) =@ a.s.

If P -m(A) < » then An S+(c)(w) is a.s. countable.

Ag(c)
Proof. Immediate from the above. O

The proof of the following refinement of Theorem B is essentially the
same as the proof of Theorem 15 in [9]; the only difference is that

Corollary 4.2 above is used in place of Theorem 13 (a) in [9].
Theorem 4.3. Assume § € ¥ and o > Ao(c) satisfy

¢ -a-1
(4.5) [2(t)t™% 'dt < » for some e > O.

0

Let {A} be a sequence of optional subsets of [0,2)x0 such that An(w) is

A . Then

a.s. closed and set A = n
1

n

HC 8
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{w|@-m(A(w)) » O}c:'{mlwq_ko(c)—m(A(w) n s (c)(w)) > 0}  a.s.
In particular if (4.5) holds with o = Ao(c) then
{o]P-m(A(w)) > 03 < {w]Alw) 0 ST(c)(w) # P}. O

A similar result, but with both the hypotheses and the conclusion weakened

will be given in the next section (Theorem 5.8).

Corollary 4.4. Let c € (0,») and A be an analytic subset of [0,o). IfQ

is as in Theorem 4.3 and @-m(A) > 0, then Qa_A (c)—m(A N S+(C)(w)) > 0 a.s.

‘In particular if (4.5) holds with o =_10(c), and P-m(A)>0, then A N0 S+(c)(w)#¢ a.s.

Proof. There is a compact set K< A such that @-m(K) > 0 (see Rogers

[10, p. 122]). The result is now immediate from Theorem 4.3. O

Theorems A and B are immediate from Theorems 4.1 and 4.3, respectively.
For example, we can find a single null set outside of which the conclusion
of Theorem 4.3 holds simultaneously for all rational (a,c) satisfying
a > Ag(c) and for all the functions P*(t) = t*(log 1/t)_2. This gives us
Theorem B. Nonetheless, there is still a "gap" between Theorems 4.1 and
4.3. Neither result settles the still unresolved question: Is S+(1) =0 a.s.?
However, an immediate consequence of Corollary 4.2 is (take A = [0,h) in

Corollary 4,2, and let n » «}

Corollary 4.5. S+(]) is at most countable a.s.v{:

Since §,-m(Z(w)) = 0 a.s. (recall that Z is the zero set of B),
2
Theorem 4.7 (a) suggests that Z(w) n S+(Aa](1/2)) = P a.s. The hypotheses

of this result, however, require that we cover Z by stopping times,
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M =:
—

= 1
[[s}.731] so that 1im £( } (T3-ST)%) = 0. Recall that -
L0l ST

i N i=

for some universal constant c, where L0 is the

n_cMz 0 0
E((T]-5]%) 2 ¢ £ -L0) :

Ty st
lTocal time of B. (In fact much more is true -- see Barlow and Yor [1]).
It is now easy to show that there are no stopping times satisfying the
above conditions. Nonetheless we now give a direct proof that
Zn S+(A6](]/2)) = P a.s., similar to the earlier argument showing that
I+(1) =@ a.s.

The proof of the following lemma is elementary.

Notation. TB(x) = 1'n'f{t|Bt = X}.

Lemma 4.6. If ¢ > 0, there are positive constants KJ, K5 such that

KE | x |2 EX(T,(0)At) < KE|x 2
1 IX[t% < ER(Tp(0)At) < K5|x]|

whenever t/x2 > e. O

Theorem 4.7. Z(w) N S+(A6](1/2))(w) =@ a.s.

Proof. Let ¢ = A61(1/2)@u 1.3069...). For each n ¢ IN, inductively define

stopping times {S?, T?]i € N3} as follows:

, -1.L
Sp = 05 T{ = infit > S7| ]Bt—BSn] > c(t-sPn™)E5 A ($3+1), and

1

| n - n
Let
' , 1
T =inf(t] By > c(t+1)2} A n.
S = inf{t > T|B.t = 0} A (T+n).
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A scaling argument shows that the i.i.d. random variables {S1+] S?Ii € N,

o}

are equal in Taw to S/n and the i.i.d. random variab]es'{T?—S?]i € INO}
are equal in law to T/n. Therefore
1 c(t+1)F
- +1)8 _ , . _
E(sT,q-sT) 207! fECUEH R (r (o)At )1 (ten)P(T edt):

" T(t<n) (t+1)2 (t4n)E P(T € dt)  (Lemma 4.6)

il 1
> K n'§£ S2Pp (TiS)dS.

“lgs [9, Lemma 10 (a)]

_n
_>_Kn2fS
1
_1
=Kn?#® log n.

If o € (051), then

1
P(T?-S? > 8]F ) = P(T > m) = P(n.a) <K n=.
51 A
E(S S )

i+1

11m———P-(—n—’—)-— 11mKlogn-m

Therefore
Lemma 2.1 shows that if Nn = mih{i]S? > 1}, then
(4.6) max 70 - s7 %o

i<N

='n
Fix a € (0,1) and let

A= fo|lt,t+11n Z(w) 70 vt <1}

Suppose o € A and to € Z(y) N SZ(c)(w) n [0,1]. The definition of A implies
_ . n_ ... n o n .n
that for all i < No» S5 = inf(t > Ti—llBt = 0} and therefore ty € [Si ’Ti ]

for some 10 < Nn' Ifue [tb,t0+A], then
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1 n _"I 1
[Bu—BSn] = |B,| = IBu—Bto| < c(u-ty)? f_c(u-510+n )2,
i
0
and therefore T? -S?' > &. It follows that
0 0

AN {o]Z(w) 0 Sy(c)(w) n [0,1] # B} < {max T9-ST > & for all n).
' “i<N
—nN

As the set on the right is null by (4.6), we obtain

P(Zn S(c) #0) < P(A®) < 1.

A scaling argument and the Blumenthal 0-1 Taw now shows that

P(ZnsST(c) #0) = 0. O

In [7] and [9] sets of asymmetric slow points were also considered,

i.e., sets of the form

1
2

. 1
$¥(cyscp) = {(t0)| @b > 03 B(t+h)-B(t) € [cqh®, c h?]
V0 <h <A} (-=<cpscy <)

Actually theorems A and B were proven for sets of this form where exo(c) is
replaced by Ao(c],cz), the Targest eigenvalue of

2/2

7 0" (x) = 3 xp' (x) = -2(x)s v € LALepcp]s €% dx)

S|

v(ey) =0 if [c ] <o

(then Ao(c) = AO(—c,c)).

In [7, Theorem 19] it was shown that

# O a.s. if agleqscy) < 1/2 Voo Sy <6y
57(c15¢,) (0) N Z(w)

@ a.s. if Ao(c],cz) > 1/2

w.
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The proof of Theorem 4.7 in fact goes through in the asymmetric case and

shows

+ .
S (c],cz)(m) N Z(w) = @ a.s. if Ao(c],cz) = 1/2 and |c1| < o, |c2| < w,
We mention this because it is interesting to note that
ST(0,@) () N Z(u) # 8 a.s. and Ay(0,=) = 1/2.

The first statement is clear as S+(O,w) N Z is the countable set of the

starts of positive excursions and for the second see Proposition 1 in [9].

5. On the size of S+(c+)

, . . . . +, + .. .
In this section we obtain more precise results for S (c ), similar in

spirit to those obtained in the previous section for S+(c). Recall that

s*(ch) = ((t,o) [T |B,, -B, |h™Z
c {{t Ih__>8+| t+h tl ic}:
and
W =y e u[Tim (2 (2™ <27,

1
N-co

We first give sufficient conditions (Theorem 5.2) and necessary
conditions (Theorem 5.3) for a random set A< [Q,m)xQ to intersect S+(c+).
These conditions extend to points which are simultaneously slow for 2
independent Brownian motions and this independent Brownian motion allows
one to estimate the size of A N S+(c+)(w) itself (Theorem 5.5). Theorem 1.1
and the other results concerning S+(c+) mentioned in the introduction
follow as corollaries,

In order to accommodate an independent Brownian motion B' we enlarge
our probability space. Start with a Brownian motion B and a probability

space for which (91,31,3l,8t,9t,P¥) is a Hunt process and let
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(92,32,3§,B£, %,Py) denote another such space We will work on
« (x:¥)y = e XY
(2,3,PV ) = (Q]XQZ, FFys PxP ),

where 3]x32 denotes the usual completion of I3, with respect to the

measures {P*xPY} and P*xPY is the extension of P*xPY. Let'{Et},
respective]y'L&t}, denote the filtration obtained by completing
{ELX{Q,QZ}}, respective]y'{Elxai}, in the usual way. Let'{3£} denote

the larger fi]tration‘obtained by comp]eting'{31x3%}.- Our primary concern
is with the original Brownian motion, B, and hence with the filtration
{Et}. We abuse the notation slightly by considering B as a Brownian motion
on (Q,E,Et,PX). PX will denote P(X’O) and the underlying measure is under-

stood to be P = P0

uniess otherwise indicated.
Define S+l(c) and S” (c) as before but with B' in place of B. We
often write Si(c)(w]) for Si(c)(w) and s¥ (c)(wz) for Sil(c)(w), where

w = ((U-l ’wz) for some w_i € Q_i-

Lemma 5.1. If vy ¢ ﬂkg(for some A > 0) then there is a @ in #” such that

lim |, w(t)Bt)7! = 0.
t-0

ER
‘Proof. If A =0, p(t) = v(t)® does the job. If A > 0, then
V(2]
(Tog (n+]))w( =1 < {Tlog n)y(2” ) for large enough n, say n > N, Define
@ on [0,2 ] by setting a(2™" ) (Tog n)y(2™"), #(0) = 0, and then

extending @ by linear interpolation. O

Theorem 5.2. Let'{An} be a sequence of (ék)-optional sets such that

An(w) is a.s. closed, and Tet A= U A..
n=1
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aglc)
(a) Ifyed’ (0 < ¢ < =), then

Ho|y-m(A(w)) > 01 < {mlA(w) n S+(C+)(w) # 0} a.s.

+ 1
(b) If y € ux9(F)'x°(c ), then

olv-m(A(w)) > 03 < {u]Aw) 0 $Te)(w) n st ()W) £ p

and A(w) n ST(cH) () n st (c')(w) # P} a.s.

Proof. We only prove (b) as the proof of (a) will then be clear, It suffices

to show that

wle-m(A(0)) > 03 LolAn S*(e) n st ()W) # 03,

as the other inclusion follows by symmetry. We may and do assume
Ao(c) + Ao(c')_i 1.
We assume first that for each w, A(w) is a closed subset of [0,1] and

~ will show

(5.1)  {o]e-m(A(w)) = =} < fo]A n s*(c) nsT () (w) # 1.

We may, and shall, assume ¢ is defined on [0,1]._ Let'{cjlj =0,1,2,...}
decrease strictly to ¢' (the exact values of'{cj} will be specified later)

and define g on (0,2™) by
L —-— --
g(u) = c;(uh)® if u e [2M 1 o8y 5 =0,1,2,...

Let U = inf{t| |B'(t)] > g9,(t)3 A 2", Then for k € {0,...,n-1},

(2]

k+1 Ky _ : 5 k ok+1
(5.2) P(U »27"|U > 2°) = épy(|3t_2k| < ¢ (B+1)F vt e [29,271])
dun’k( )s

where
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"Kdy) = p([B'(24)] € dyju; > 24y.

Proposition 3.1 and Lemma 3.3 imply that

T1(2
(5.3) " K([0,y7) > P ""‘k'](_lekl <ylTle, 1) > 29).

As the integrand on the right side of (5.2) is non-increasing (use Lemma

319 we can use (5.3) and integration by parts to obtain

n

Cc
k+] |U > 2k) > P n-k-1

k+]!

P(U_ > (T(eyq) > 2IT(e, ) > 29)

> z_ko(c“'k']) (by (3.5)).

A similar, but simpler, argument shows that

oky 5 0le)
P(T(c) > 2 |T(c 2°) > 2 .
Combine these results to see that
S () N (TS
P(T(e) A U, > 2 T(e) Ay 5 26 5 2707 Ol g,

Equality here would have simplified things. We use random stopping to achieve
the same effect. Let Vn G'{Zk|k = 0,1,...,n} U {«} denote a random variable

whose distribution satisfies

Z‘AO(C)'XO(Cn_k_])

P(V > 2 vV > 2 ) = - , k=0,...,n-1
n ¥ P(T(c)AU, > 271 |T(c)Al, > 2¥)
( ) TP Ky
P(V = o) = 1- P(V. =27).
n o P

By enlarging our original space (91,3],3i5P¥), if necessary, we may assume

there is a sequence of independent Ko-measurable random variables



27

'{V?[n € N, i € IN}, independent of B and B', such that V? is equal in
law to V. Let A' = AU [[2,»)), and define én on (0,1) by

- J: —‘o- -!
5,(t) = cy(es2™7 if te [2797, 270, g =02

If Do = inf{t > 0} (t,w) € E} denotes the debut of a set Ec [0,«)x0 define

E
sequences of stopping times as follows:

no_
S7 = Da:
n _ oo n o ~ n n, ,-Ny3
Ty = inf{t > S IBt—BSnl > g, (t-83) or IBt—BSn|> c(t-S.+2 )%}
i i
A (ST + (V) A 22T
s =D .

.+ .
M anrrre))
A scaling argument shows that the i.i.d. random varijables {T?-S?Ii ¢ N}

are equal in law to Z'n(U A T(c) A V), where V_ is independent of U_ and
n n n n

T(c). If wn = Un A T(c) A Vh then the definition of the law of Vn guarantees

that
-An{c)-2n(c ) .
(U z_2k+1|wn >k =2 0 0*"n-k-1" "gop k € {0,...,n-1}, giving
n-1
-kan(c)- ) an(cy)
~ k 0" j2pk 01
(5.4) P(W, > 2%) =2 - P@ A T(c) > 1), k=0,1,....n
-(ag(e)+ag(c'))
Let §(t) = t v(t), d; =,A0(c')-xo(c1) + 0, and
e \ g ®onen
N, = max{i[S; < 1} < N\ = min{m| } (Tj—Sj) > 1.

j=1
Then
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N

ralc)a,(ct)
E( Z (T3-s2)) < E(N )E((T] m 700 n_on

Zo(c)+ﬁo(c ) : “n(ﬁo(c)+30(c'))

2141 p((w 27MAT))2

E(W )" E(w

) 2n(] rgle)-2p(c'))+ nz1 fI(2 u 2k+1)2(k+1)(xo(c)+xo(c'))

¢(2k+]'n)dP

n(xy(c)+rg(c'))

+2 p(IP(H, > 2") + p(2"M]

n Ky k-1
s P(W > 27)2
[kzo (W, > 2%) | ]

n-1
n(]-ko(c)-ko(c'))[n-l 2(k+])AO(CI)-1Zn_k;]x0(ci)
k=0

< K2

(241" 427 ]

-1
n -kAO(C)-?Z Agles)+k
APk T T by (5.8))

n-1 n-1
d. 0 (n-k)(AO(c)+x0(c')-1)+_Z d,

L
K[ g 21=n'k 1@(2'(n-k))] . [ z 2 1=n-k 1]
k=0 k=0

|A

21
n 120d n —(1=3(c)- Ao(c ))-1zod
<KL} 2 P2 ML) 2 ]

2=0 =0

li]

- d.

<k j2 10 gy,
2=0

Now choose C ¥ ¢'so slowly that

d; 2 [2(3+1)77 + Tog(p(2™3")p(27) 1) 1(10g 2)7".
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This is possible since T?ﬁ%éw.¢(2'j"])¢(2—j)"]_§ 1. Then
%=1
L4, :
2 7T <Tpmeh”

and therefore

N

n ©0.
E( J w(Tl-s]) < kp(1) ] 272
i=1 ) 2=0

It
~

By Fatou's lemma we have

N

n n <n
(5.5)  lim J y(T-s]) < = a.s.
Mo 151

Fix w so that (5.5) holds and y-m{(A(w)) = . Choose n t = so that
N N

My ne N Ny e M
B w(Ti -S; ) remains uniformly bounded in k. As A(w) < U [Si T 1,
i=1 | i=]
one must have a A = A{w) > 0 such that

n, n
max Tik-Sik > A vk,
i<N
Nk

n, n
< Nn satisfies Tik—Sik > A, then by taking a further subsequence we

If i
K= "ng K

n
may assume Sik > tO' It is easy to check that
k

ty € A(w)nS+(c)(m)nS+ (C'+)(w) and the proof of (5.1) is complete for
A(w) a closed subset of [0,1].

In general we may assume that An<: [[O,n]]. By Lemma 5.1 there is a

ﬁxp(¢)+xo(c')

V€ satisfying 1im N w(t)@(t)‘] = 0.- By the above we may
t-0
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fix w outside a null set so that (5.1) holds for each An with v in place
of v. If y-m(A(w)) > O then ¢—m(An(w)) > 0 for some n and hence
m(A () = = (5.1) implies that A (w)nS*(c)(w)ns™ (c'*)(w) # 0 and the

proof is complete. O

The next result gives sufficient conditions for AﬂS+(c+)(w) to be

a.s. empty.

Theorem 5.3. Let Ac [Q,w)XQ be 8([0,))xF-analytic, and let c,c' € (0,=).

rplc) n

(a) Assume for each y € ¥ 9 . there are (é%)-stopping times S? < T

(i,n € IN) such that ¢(T?-S?) is defined and

(5.6) Ac U [Is,T31] for each n, and Tim E( J 4(T-s})) = 0.
: :

i= (T E

Then A N S+(c+)(w) =0 a.s.

rgle)+aglct) .
(b) Assume for each y € # © . there are (g%)-stopping times

satisfying (5.6).

Then A N S+(c+) N S+I(c'+)(w) =0 a.s.

Proof. It suffices to prove (b) as (a) will follow by simply assuming
c¢' = » throughout the argument. Iff{cj}j>0 is a sequence decreasing to c,

Tet

+ _ 1

S ({cj}) =" {(t,w)|] sup .IBt+h'Bt]h 2 < ¢ for j = 0,1,...3..

0<h<2™

We claim it suffices to fix such a sequence'{cj} and a corresponding
sequence'{cj} decreasing to ¢' and then show A N S+({cj}) n S+I({cj})(w) =
a.s. (S+.({cj}) is defined using B'). Indeed if AN Sf(c+) n S+'(c'+)(w) 0
with positive probability, then by the Section Theorem (see [6, p. 64]) there
is a random variable R ¢ [0,~] such that [[R]] c AN S+(c+) n Sfl(c'+) and
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P(R < ») > ¢ > 0. Define random variables Xj and Yj by

-1
sup (|BR+h-BR|h 2)ve, ifR <=

0<h<2™J
Xj_ .
c+27Y ifR=w
_1
sup  ([Bp,,-Bplh™®)ve' if R <=
y. = ) 0<h<2™d
J .
c'+27Y if R = .
Then {Xj} and {Yj} decrease a.s. to ¢ and c¢', respectively. An

elementary argument shows there are sequences {cj} and {cj} decreasing to

¢ and c¢', respectively such that

: P(Xj j_Cj and Yj < cj Yy € EJO) > 1-¢/2.

Therefore

+ +i, ,
P(S ({cj})nS ({cj})nA(w) #0) > P(R < =, lei ¢ and Yj < ¢

Vi€ Ny) > e/2.

This proves the claim.

Now fix sequences {cj} and {cj} as above and define functions 9, and
én on [0,2"-1) by

vl

9 (u) = c te(u+l)

W=

gp(u) = cpves(uel)

Let
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Un = inf{t] ]Bt] > gn(t) or |B£| > én(t)} A (zn_1),

and write c/ﬁ for c[/ﬁ]. Then

P(Uy = 2%1) < P([, f-cn+cyﬁ(U+1)% wu < 2"
(5.7) « P[B! | 5_c$+cyﬁ(u+1)% fu < 2™
< Ko(zn-/ﬁ;])'XO(C/H)QAO(CQH) y 2_(n-/ﬁ)(AO(C/EJ¥>0(C}EQ)-

where K is independent of n (by Theorem 3.5). Now define y: [0,1] -+ [0,)
by Tletting

Loy = 5 P Ggle Rlagelg)

p(0) =0

n=1,2,3...

and extending § by linear interpolation. As $(2°") decreases to 0 as n - w,

i aole)gle’)
it is clear that p € ¥. In fact ¢y € ¥ ° because

. . ~xn(c)-aq(c')
Tim sz " e <2 0T 0
N0
which is easily verified because Ao(ci) and Ao(c%) increase to Ao(c) and
: i rple)tag(c?)
Ao(c') respectively. Let g(t) = ¢(2t) ¢ o .

Let {S?, T?[i,n € IN} be stopping times satisfying (5.6), and let

; -._ -. - ; -I- -u
42 if 27971 <t < 279 and g(t) = eyt if 27 Ty <o,

g(t) = C <

If t € [S1(u), Ti(w)1 N S+({Cj})(w), then for each h € [0,1-(T}-sT)1,
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B(TRen)-B(T | =< [B(T+n)-B(6)] + [B(T)-B(1)]

g(Ti+h-t)+g(Ts-t)

| A

| A

n on n .n
g(h+T]-53)+g(T]-s1).
.. . n n +!
Similarly if t ¢ [Si’ T1] ns ({cj}) then
1 n 1 n ~ n -Ny,~>/+N N
B (T3+h)-B" (T]) | < g(h+T5-s1)+g(T5-s).
Therefore on {wIT?-S?(w) € (me'l, 27™31 (me N) we have

n -n + +! .
P([S;,T;1n 'S ({cj}) ns ({cj}) # Q|3T9)
i

< P(|B(h)| < g(h+2™™M+g(2™™), [B'(h)| < g (h+2™M+g(2™™ vh € [0,1-27"])

P([B(h)| < g, (h) and [B'(h)| <@ (h) vhe [0,2-1])  (scaling)

= m_
P(Um | 2°-1)

K9(2”™  (by (5.7) and the definition of ¥)

|A

= k(@™ 1) < Kk p(ri-sh).
It follows that there is a constant K such that
PLST.T0T 0 s¥(te3) n ST (cetn) # 0 18 ) < K p(Th-sT),
J J M= i~
i

as this is trivial if T?-S? > 1. Therefore
P(AS™((c;1) 0 ST (1651 (w) # B) < E( T PAIST.TRI N S (ee)) 0
'l:

+,
S ({cj}) # ﬂ[ST?))
< K E(

i

Ho~1 8

]w(T?—S?>)

+0 as n-»oo. O
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Theorem 1.1 is now an easy consequence of Theorems 5.2 and 5.3.

Proof of Theorem 1.1. Let A be an analytic subset of [0,~). Assume

rnlc) _
that y-m(A) > O for some ¢y € ¥ 0 . By Rogers [10, p. 122] there is a

compact subset K of A such that y-m(K) > 0. Theorem 5.2 now shows that
KnsH(cH(w) #0 a.s. L

Assume now that y-m(A) = O for each y € ¥ 9 -, The stopping times
in (5.6) may now be taken to be constant times. Therefore Theorem 5.3

implies that A N S+(c+)(w) =0 a.s. O

Recall that Z denotes the zero set of B.

Corollary 5.4. (a). S+(1+)(w) is an uncountable dense subset of [0,») a.s.

(b) S+(A61(%J+) N Z(w) is dense in Z(w) a.s.

Proof. (a) Suppose S+(1+)(w) is a.s. countable. Then there are random
variables {Rj|j e N} (O j_Rj < «) such that S+(]+)(m) and :g][[Rj]] are
indistinguishable subsets of [0,x)xq (see [6, p. 167]). By Lemma 5.1

there is a @ € ﬁT.such that Tim +t¢(t)'] = 0. Then P-m is not a o-finite
measure on [0,1] (see Rogers [18j0p. 797) and so there is an uncountable
collection of disjoint compact subsets of [0,1], {Aili € I}, such that
ﬂ-m(Ai) = «» for each i1 (see Rogers [10, Theorems 57 and 59]). As

I=y(ic IIP(Rj € Aig > 0 for some j € IN}

is a countable set we may choose TO € I-I.  Therefore we have
P(S+(1+)(w) N AT ) = 0, a result that contradicts Theorem 1.1 since
0
g-m(A; ) = =. It follows that S*(1") n [0,1] is uncountable with
0

probability p > 0 (here we are using the non-obvious fact that
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{wlS+(1+)(w) n [0,1] is uncountable} € & -- see [6, p. 163]). A scaling
argument now shows that S+(1+)(m) N [0,e] is uncountable with the same
probability, p, for each ¢ > 0. The 0-1 law shows that p = 1.

The fact that S+(1+)(w) is a.s. dense is obvious.
(b) If y(t) = (2 t Tog log 1/t)%, then by Taylor and Wendel [11],
y-m(Z n [0,t]) = Lg(B) for all t > 0, a.s., where L%(B) is the local
time of B. It follows that if @(t) = (t log 1/t)% € H%;then w.p. 1 for

any rationals 0 < r <s,

Z(w) N [rys1#0 = B-m(Zn [r,s]) = =.

Apply Theorem 5.2(a) to the countable collection of optional sets
{zn [[r,s]]]0 < r < s rationals} to conclude that w.p. 1 whenever 0 <r <s

are rationals then

Z(w) n [rys1# 0= 208705 (1727 () n [rs1 £ 0. O

We next use the independent Brownian motion B' to estimate the size
of Alw) N sT(c)(w) for certain random sets A € B ([0,=))x3x{B,02,1.
Note this is no real restriction on A as we are interested in the Brownian

motion B on the original (91,3],31,P]).

Theorem 5.5. Let ¢ € (0,») and o z_xo(c). Let A ¢ ﬁ([O,w))xﬁ]k{ﬂ,Qz}.
(a) Assume A = H An where An is (Et)-optional and An(w) is a.s. closed.
If y € ¥%, then %wlw—m(A(w)) > 0} < {wlﬂu_xo(c)(AﬂS+(c+)(w)) > 0} a.s.
(b) Assume for each y € #” there are (é%)-stopping times S? 5_T? such that

® n —n .
Ac U [[Si’Ti]] for each n and 11mn+wE(.

p(13-s%)) = 0. Then
i=1 i

it~ 8

1
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a-1i,(c)
v-m(A(w) N S+(c+)(w)) =0 VWV €EH. 0% a.s.

Proof. (a) If a = Ao(c), this is just Theorem 5.2 (a). Assume o > Ao(c)

and choose c¢' so that Ao(c)+xo(c') = a. Theorem 5.2 (b) implies that for all

w1 outside a P?-nu11 set N],
I P S 0
(5.8) w-m(A(w1,w2)) > 0= AS (¢ )nS (c )(w],wz) 7 P for Py-a.d.w,.

The measurability condition on A allows us to write A(w]) for A(w],wz).
Fix wq ¢ N], If w—m(A(m])) > 0, then (5.8) and Corollary 4.2 imply that

/N (C.)—m(A(w])nS+(c+)(w])) > 0. Note that in applying Corollary 4.2,
0

A(w1) n S+(c+)(w]) plays the role of the deterministic set A and we work
wfth the Brownian motion B'. As xo(c') = a-AO(c) this completes the proof
of (a).

(b) If o = Ao(c), this is immediate from Theorem 5.3 (a). Assume xo(c) < g
and choose c¢' so that xo(c) + Ao(c') = o. By Theorem 5.3 (b) we may fix

] outside a P? null set so that
+, + +', 4+ 0
Alw) 0 ST (wg) N ST (M) (ay) = 0 for Pr-a.a.w,.

Now apply Theorem 1.1, using A(w1) n S+(c+)(w]) as our deterministic set

and B' as our Brownian motion. We obtain w-m(A(w]) n S+(c+)(w])) = 0 for
Ao(c') : u—xo(c)
every ¢y € H . = H . O

An immediate corollary to (a) is

Corollary 5.6. For all c>1, 0 (S+(c+)(w)) >0 a.s. I
= 1—A0(c)
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Our final objective is to refine (1.6) on the existence of points
which are simultaneously slow from the left and right. Although we have
not been able to decide whether or not S(A61(1/2))(w) is empty, Theorem
5.9 below settles this question for S(A61(1/2)+)(w) and in fact goes a
little farther.

The following result is undoubtedly known in greater generality but
as we could not find it in the literature, we include a proof of the

simple case we need.

Lemma 5.7. Let (Q,%,P) be a probability space and let &* denote the
universal completion of &. Assume An € B8([0,»))x& is such that An(w) is

closed for each w. If y € ¥ and A= U A then {w|p-m(A(w)) = 0} € &*
n=1

and if P(y-m(A(w)) = 0) = 1, there are %*-measurable random variables
noon. * rreh on A SN oy L
{sy, Ti]i,n € N} such that Ac 1_L=J1[[S1-,T1.:I:I and 11mn+mE(iz1¢(T1-Si)) = 0.

Proof. Assume first that A(w) is compact for each u. Let {Sjlj € N}
be an enumeration of all the finite sets of open intervals with rational

endpoints. Define a sequence of functions on @ by

Yow(lI])  if Alw) < U 1
IeS; - leS. -
J J
X.'(w) =

J o otherwise.

(Here |I| denotes the length of I.) Then {wixj(w) = »} is the projection

onto 0 of A\( U Ixq) and hence is in &* (see [6, p. 43]). Let
IeS.
J

= j j 7 = = i 1 2-n i = o
Sj {(ui,vi)|1 1,...,nj} and let J, m1n{J|Xj < 27" (min @ ).

On {w|Jn(m) < »} define
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Jn
u. if i < n
i - Jn
n _
S_i_
1 if1>n
Jn
J
Vin if i <Ny
n
o -
j
1 if1>n
Jn

and on {|J (w) = =}, let (S3,T7) = (0,=). Then {y-m(A(w)) = 0} = n

{Jn<°°} € &*,
n=1

Assume now that n{Jn(w) < »} is a set of probability one. On this set we have
n

for all n

p(Th-sd) < 2"

Z

i=1

and hence E( ) w(T?-S?)) ~0 as n >, It is clear from their definition
i=1

that {S?, T?} are universally measurable and Ac U [[S?,T?]].
i=1

In the general case we may assume A = % An where An(m) is compact for
=0

each w. It is now obvious that {y-m(A(w)) } € &%, Assume this set has

probability 1. By the above there are universally measurable random variables

™, T i,n,m e W) such that A < u.[[s3°™, T3°™17 and

E( ¢(|T?’m45n’m|))_i 2"""M " One now has Ac Ui n[[S?’m, T?’m]] and

i

II.L\/J 8

i=1

Vim E(J; (137™-s5")) = 0. O
Mo i

Theorem 5.8. Assume {An} is a sequence of {Et}-optiona1 sets such that

An(w) is a.s. closed and Tet A= U A

If o > ay(c) and there is a y € ¥
n=1

n’
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a-ko(c)

such that P(y-m(A(w)) > 0) > 0, then there is a f € ¥ - such that

P(B-m(A(w) N S*(c)(w)) > 0) > O.

Proof. Choose c¢' so that o = Ao(c') + Ao(c). Theorem 5.2 (b) implies
that A N S+(c) N S+I(c'+)(w) # @ with positive probability. Now apply
Theorem 5.3 (a) to the Brownian motion B' on (Q,E,E%,P), using A N S+(c)
as the g([0,»))xF-analytic set. That result shows there is a

2ole!) _ amngle)

P e and an ¢ > 0 such that whenever {Si,Tili € IN} are

Eé-stopping times satisfying AnS+(c) c U [[Si’Ti]] then
i=1

B(
1

No~18

Q(T1~Si)) > e. In particular this is true whenever S, and T, are
1

36-measurab1e random variables. Now apply Lemma 5.7 to the @([O,w))x&é
measurable set A N S+(c). Note that the hypotheses of that result are

satisfied since we can write A N S+(c) = U An N S+_1(c). Therefore one
n=1 n

sees that P(@-m(A N S+(c)(m)) > 0) >0. O

Theorem 5.9. If c,c' € (0,») satisfy Ao(c) + Ao(c') = 1, then
S+(c+) NS (c')(w) #9 a.s., and is therefore a.s. dense. In particular

with probability 1 there is a t > 0 such that

Tim |B(t+h)-B(t)|h=

= x(']](vz) (~ 1.3069)
h-0

but there is no t > 0 for which

Tin [B(t+h)-B(t) ™2 < a5 (1/2).
h-0

Proof. The previous theorem with A = [0,») and a = T show there is a

1—A0(c') i Ao(c)

v EH H such that ¢-m(S™(c')(w)) > O with positive probability.
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Now apply Theorem 5.2 (a) with A = S (c') to conclude that

S (c') n S+(c+)(w) # @ with positive probability (note that A = U S'_](c')
n=1 n

so that the hypotheses are met). A scaling argument and the Blumenthal
0-1 Taw shows this probability must be one. The second statement is
immediate from the above and (1.6) (the latter is also an easy consequence

of Theorem 4.1 (a)). 0O

A similar argument yields

Theorem 5.10. If c,c' € (0,») satisfy Ao(c) + Ao(c') = 1/2 then
sT(ch) n S(c'") n Z(w) # P a.s. In particular w.p. 1 there exists t > 0

such that B(t) = 0 and

1 -
T [B(t+h) |h2 = 25 (1/4) (= 1.65...)
hs0

but there are no t such that B(t) = 0 and
— _L -1

T [B(t+h) [h2 < a5’ (1/4).
h-0

Proof.

As A = Z satisfies the hypotheses of Theorem 5.8 with a = 1/2, there is

%-XO(C') + .
ay € such that P(y-m(Z N S (c¢')(w)) > 0) > 0. By reversing B

from 7y, = inf(t|LI(B) > N} we can conclude that P(y-m(Z n S™(c')(w)) > 0) > O
(see the proof of Theorem 7 in [9]). An application of Theorem 5.2 (a) now
shows that Z N S (c') N S+(c+)(w) # P with positive probability and hence with
probability one. See Proposition 1 of [9] for the estimated value of

x61(1/4). O
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