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ABSTRACT

Let X, 0 <t < T be a Gaussian process and let L(x) be the local time

of Xt (occupation time density with respect to the clock d< X,X>t) up to time
T at x. Then

co

g(X,)dx, = }T 9(y)dy - 5 [ Lix)dg(x)
X o

O

under certain conditions.
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1. Introduction. The direct connection between the stochastic integrals of a

process Xt and its local time Lt(x) is the Tanaka's formula
(1.1) X,-x)" =(x )++t1 (X )dX_ + % L,(x)

" (Kg-x) =iKg-x é [X,0) \Ng/dhg T 7 LgiXse
The Tocal time Lt(x) satisfies

t
(1.2) Lt(x) = Tim nf 1 1

(XS) d<X,X>s
N> 0 [X , X+H)

where <X,X>S is the quadratic variation of Xt over [0,s]. That is

. 2
(1.3) <X X>_ o= Tim § (X, - X))
s T %ie1 Sy

along any sequence of partitions {sO=O<s]<---<sn=s} whose mesh goes to 0

sufficiently fast. The meaning of (1.2) is that Lt(x) is the occupation time
density relative to the clock d<X,X>S up to time t at x. In the case that Xt
is a standard Wiener process (see [6, p. 101]), then <X,X>s =s, If Xt is a

continuous semimartingale, then <X,X'>s = <XC,XC>s where X© is the local martingale

part of X in the Doob-Meyer decomposition. If X_ is not continuous, then-the-above

t
result needs some modification (see [7, p. 32]). The purpose of this note is to
show that the above result is also good for a Gaussian process whose covariance

function satisfies certain conditions.

2. Integration. Let X, 0<t<T, be a zero mean Gaussian process. We need to define

\ T
the stochastic integral of the type | g(Xt)dXt’ where g is a Borel function. The
0

stochastic integral of a Gaussian process was defined in [4] through the tensor

product of some Hilbert space. A Riemann-Stieltjes type of integration was given



in [56]. We shall use the latter.

Let the covariance function R(s,t) of Xt satisfy the following conditions:

(2.1) R(s,t) is continuous in (s,t) and has continuous first partial derivatives
in {(s,t): O<s<t<T}.

(2.2) There exists a constant C>0 such that, for s#t, |R(s+ds,t+dt)
- R(s*ds,t) - R(s,t+dt) + R(s,t)| < C|dsdt]|.

Then the quadratic variation <X,X>t exists and equals to (see [1])
t
(2.3) <X, X>y = é f(s)ds

where f(t) is a nonnegative continuous function of t which is obtained by

(2.4) F(t) = Tim H2R(t,t) - R(t,t-h) - R(t,t+h)}.
h->0+

Let bC] denote the space of all differentiable functions on R which have

bounded derivatives. If g € bC], then see([5, Thm 3.1, p. 623]).

T
(2.5) | é g(X)dXy = Tim } g(Xy ) (X - X )

exists along any sequence of partitions {t0=0<t1<---<tn=T} whose mesh goes to

0. Furthermore, it is equal to

T Xy ;T
(2.6) [ 9lx)dXy = [T g(y)dy - 5 [ g'(x )d<X,X>(
0 X 0

where 2X,X>t is given by (2.3). However, if g € bCJ, then, unlike the martingales
case which have orthogonal increments, it is difficult to show the existence of
(2.5) in general. MWe shall seek an alternative definition through (2.6).

Let ¢ denote the space of all infinitely differentiable probability density



functions with compact support. For each Borel function h and ¢ € &,let

(2.7) (h*q), (x) = m[ h(x-y)gmy)dy = m[ h(y)¢{mx-my)dy, m > 1.

-C0 -0

Definition 2.1. Let g be a Borel function which is integrable over any finite

interval. If there exists a r.v. Yg such that

;
(2.8) fg = 1im [ (ma)y (1) f(r)de

in some sense for all ¢ € ¢, then we define
X

g(Xy)dX, = [Taly)dy - %—Y
%o

(2.9) g

O —

1

Remark 22. It is clear from (2.7) and (2.8) that if g € bC', then

T
Yg = { g'(Xt) f(t)dt. Hence (2.9) becomes (2.6). Therefore, Definition 2.1
-0

is an extension of (2.5).

3. Formulas. Let us now derive some relations between the stochastic integrals

of X, and the local time Lt(x). First we note that conditions (2.1) and (2.2)

t
imply that

(3.1) E[X-X |2 = F(t) [t-s| + oft-s)

for small |t-s|. Hence, E|Xt-XS[4 Z_C(t-s)2

» 0 <t,s <T, for some constant

C. It is well known that this inequality implies that the process Xt is
equivalent to a process whose sample paths are continuous with probability 1.
Therefore, we can assume that Xt has continuous sample paths with probability 1.

From (3.1), we see that



1

{E\l‘vxt-xslz}_§ £(t) f(s) dtds

—
O——

Then (see [2, Lemma 5.1, p. 276]) the nonnegative monotone increasing process

T
v(x) = é 1(_w,x)(xs)f(s)ds is absolutely continuous w.r.t. the Lebesque:measure

with probability 1. Its Radon-Nikodym derivative L(x) (=LT(x)) exists a.s.

and belongs to iiz(R). L(x) is the local time of Xt up to time T at x.

Lemma 3.7. Let g be a continuous monotone function. If [ L(x)dg(x) exists,

-00

-
then ]"g(Xt)dXt exists. Furthermore,
0

T 1 1
(3.2) [a(X)dX, = )f( g(y)dy - 5 [ L(x)dg(x) a.s.
O -00

Proof. Let ¢ € o3 Then (g*qb'm(x) is a continuous function. Hence

(see [2, (1.2), p. 270])

T ®
(3.3) I {graly (X F(e)dt = [ (g*e)y (x) L(x)dx

o]

[= oI

={ m2g(y) o' (mx-my)dy L{x)dx

-0 ~00

o

= [ [ me (mx-mg) L(x) dg(y)dx = I

=00 =00 m.
Since Xt is continuous, L(x) vanishes outside the range of Xt’ and hence L(x)
vanishes outside some compact set. This fact together with the fact that ()
has compact support implies that the integrand in the Tast integral of (3.3)

has compact support in R2. Therefore, Fubini's Theorem applies. We have



[ = ?‘ 3 ? meg{mx-my) L{(x)dx;dg(y)

-C0

(3.4)

/ 3 [ mg(mx) L(x+y)dedg(y)
Let the support of ¢ be contained in [-K,K]. Then the integral in the brace

of the last term of (3.4) is an average of L, which belongs to L2(R), over

[y- %3 y + %].; Therefore it converges to L(y) for a.e. y. This fact plus the

existence of Tv L(y) dg(y) and the continuity of ¢ imply that

(3.5) Yg = lim I = [ L(y)dg(y)

Moo -
exists for all ¢ € ¢. Lemma 3.1 then follows from the Definition 2.1, (2.9)
and (3.5).

If g is not continuous, we see from the above proof that we need also the

condition

(3.6) L(x) = Tim m [ L(x+y) ¢ (my)dy,

Mo  —=co
fék ¢ € ¢ and x where g(x+)'# g(x-), to get (3.5). Therefore, Lemma 3.1
will hold if the additional condition (3.6) is satisfied. We can apply the

same argument to g which is of bounded variation over finite intervals.

Theorem 3.2. Let g be a real function which is of bounded variation over any

finite interval. If J L(x)dg(x) exists and the condition (3.6) is satisfied,

-0

T
then | g(Xt)dXt exists and the identify (3.2) holds.
0



By letting g(y) = 1[x’w)(y), and noticing that (3.6) is satisfied for

a.e. X €R, we obtain the following Tanak's formula.

- Corollary 3.3. For a.e. x €R, and a.s.

T
3 + 1

= (X0 - X) + é ][x,w) (Xt)dxt t L(x).

Remark 3.4. There are conditions (see [3,pp. 52-53]) such that L(x) is

continuously differentiable in x. Then

(3.7) ? L{x)dg(x) = ? g(x)d L(x).

However, these known conditions are incompatible to the condition (2.1). 1t
remains the possibility to find a condition such that L(x) is absolutely
continuous w.r.t. the Lebesque measure. Then (3.7) can be discussed for Bore]

measurable function 9. And so can

X . [ee]
g(Xy)dx, = fT g(y)dy - %-f g(x)d L(x).
X A

O
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