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Abstract

Consider a general n-way crossed classification in ANOVA with unequal
cell frequencies. We prove that orthogonality of interaction spaces (suitably
adjusted for lower order interaction spaces) holds if and only if the cell
frequencies are proportional. Implications of proportional cell frequencies

to the adjustment of all other effects are also studied.
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1. Introduction.

In textbook treatments of twoway ANOVA under the additivity assumption, the
case of proportional cell frequency is often mentioned as a special convenient
case where row and column effects are orthogonal to each other and need no
adjustments. See Section 4.4 of Scheffe (1959), Section 6.4 of Kempthorne
(1952) for example. The converse of this is also true. See Section 4.2 of
John (1971), for example.

For general n-way ANOVA precise statements on the implications of proportional
cell frequencies are hard to find. A common conception about the case of
proportional cell frequencies is that‘the same analysis can be carried out as

in the usual case of equal cell frequencies. This is not exactly true as

pointed out by Smith (1951) and Lewis and John (1976). For more detailed
study see Mukerjee (1980).

For 3-way ANOVA a set of necessary and sufficient conditions is given in
Theorems 4.5, 4.6 of Takeuchi, Yanai, and Mukherjee (1982). For general
n-way ANOVA, Seber (1964) states a theorem closely related to our Theorem
2.1. However his proof is very sketchy. Jacobsen (1968, Lemma 12) states
a lemma for n-way case essential for the proof of sufficiency, i.e., proportional
cell frequency implies orthogonality. Other closely related works include
Tjur (1982), Pukelsheim (1983).

In this article we prove that the proportional cell frequencies hold if
and only if suitably defined interaction spaces are mutually orthogonal. For
precise statements see Section 2. We also discuss implications of proportional
cell frequencies to the adjustment'of all other effects. In this respect, the
case of proportional cell frequencies is not as convenient as the case of equal
cell frequencies. For precise statements see Section 4.

In dealing with general n-way ANOVA rather elaborate notation is needed
and the notational conventions of tensor analysis are found to be extremely
useful. The n-way ANOVA with single observation per cell is summarized using

tensor notation in Takemura (1982). In the sequel we freely use the notational



conventions and results of Takemura (1982). In principle we follow the
traditional notation of tensor analysis (see Chapter 2 of Sokolnikoff, 1964).
For convenience we deviate from it at several occasions and these differencés
will be mentioned in remarks.

In Section 2 necessary definitions and notational conventions are introduced
and main results are stated. Section 3 js devoted to the proof of the results
in Section 2. In Section 4 we study implications of proportional cell frequency

to the adjustment of all other effects.

2. Notation and statement of results

We begin with a quick remark on generalized least squares. Suppose that
a random vector X € R" has the covariance matrix V. For an observed x consider
(x-§)'V'1(x—§) = min (x-y)'V-](x—y) where X, y are restricted to a prescribed
subspace L. Then ﬁnder the assumption of normality (X4i)'V'](X-X) and Xv-1x
are independently distributed according to certain noncentral xzrdistributions.
See Section 4a of Rao (1973) for détai]. From geometric viewpoint, X is the
orthogonal projection of X onto L when R™ is equipped with the inner product:
(x,'y)v = x'V']y. This generalizes to the case of random tensor in an obvious
way.

Consider a general My X My Xe..X M n-way crossed classification. m; is
the number of levels of i-th factor, i=1,2,...,n. We use variables i, j, k to
denote factors. Let S = {1,2,...,n}. I, J, Kwill be used to denote subsets

of S. For example I ={1],...,12} < S. Levels of i-th factor will be denoted

by greek letters Gis Bis Yi-

e Then an n-tuple og = (a],...,un) denotesna

particular combination of n factor levels. Here ag stands for the multi-index

(a],...,an). For a subset I = {1],...12} of S, ap = {ai],...,aiz} denotes a



partial multi-index where only the levels of factors in I are of interest.
_Now let r(as) = r(a],...,an) denote the number of observations at the combination

of Tevels ag = (a],...,a ). Throughout this article we assume that no cell

n
is empty, i.e., r(ag) > 0 for all ag. Let

R=z=x P(a],...,an) =3 r(as)
%s

be the total number of observations. For convenience we will work with the

relative frequency
(2.1) f(as) = r(as)/R.

Note that f can be regarded as probability function of n discrete random

variables. Marginal frequency in the class a; = (ai see sl ) is denoted by
1 %

fI(aI), namely

(2.2) fI(aI) = I f(a1,...,a ).

uj: J¢I

Writing ag = a; Uo__ we express fi(a;) conveniently as
I

fI(aI) = Zﬁ f(aI U o C)'
a. I
IC

e O o
Let x = X S denote the average of observations in the cell

_ n m
ag = (a],...,an) and Tet x € ® R ! be the random tensor with these elements
i=1 -



¢
X S. Since all interaction terms can be expressed in terms of cell averages,

there is no loss of generality -in considering the cell averages rather than

o
individual observations. Now Var (x S) = oz/r(as) where 02 is the common error

variance. According to the remark at the beginning of this section we equip

m,
R ' with the inner product

i®s

.i

v . [T
(%) =2 [r(ags.oso )/oT x V00 y

=3 [r(ag)/o?1 x Sy S
= (R/cz) P f(as) xOLS yas.

In the sequel we ignore the constant factor R/o2 for convenience and work with
the inner product

(o (X.S

(2.3) (xy)g = T Flag) x °

Remark 2.1. f is a metric tensor in the terminology of tensor analysis but

to avoid double subscripts we do not use the usual notation for f.

m.
Let“T@;%e R ' denote the m; dimensional vector whose elements are all 1's.
i v

Here ms is enclosed in parentheses to distinghish it from a covariant index.

m. m.
Let V? denote a subspace of R 1 spanned by1(ﬁfjf.Let V} =R ', Now for IcS we
i

define the I-effect space MI as



Definition 2.1.

n 1
(2.4) M. = ® V.,
i=1 !

where :
1 ifi. € I,

0 otherwise.
Note that MI is a tensor product of whole spaces and 1-dimensional subspaces

corresponding to the mean. For a characterization of MI see Lemma 3.1. Now

define
(2.5) MI = span{M;: Jc I, J#I.

For IcS we define Lz, the I-interaction subspace adjusted for Tower order

interactions (contained in I), as the orthogonal complement of MI in MI' Namely

Definition 2.2. L% is defined by the following requirements:

oo 2
i) MI and LI span MI’

ii) MI and L% are mutually orthogonal

(with respect to the inner product ( , )f ).



For convenience we express this as

: L _ Y
(2.6) LI = MI/MI'

Now we are ready to state the following theorem.

Theorem 2.1. L% and L§ are mutually orthogonal (with respect to the inner

product ( , )f ) for every I#J if and only if

(2.7) f(a],...,an) = f](a]) - fn(an),

i.e. the frequencies are proportional.

With a slight modification of proof we can generalize Theorem 2.1 as

Theorem 2.2.  Let K = (Kq,...,k,) be a fixed subset of S = {1,...,n}. L*

—i

and Lj are mutually orthogonal for every I#J, I, JeK if and only if

(2.8) fK(ak],...,akz) = fkj(dk])"'sz(akz)'

For interpretation of Theorem 2.1 see the discussion in Section 4.

Remark 2.2. If Icd or Jc 1 then L% and L§ are orthogonal by the construction
of L¥'s. Therefore the assertions of the above theorem. actually concern only

those I, J such that IqJ, Jg1I.

3. Proof.

The proof of sufficiency is fairly simple and this is given first.



3.1. - Sufficiency.

Assume that the cell frequencies are proportional, namely (2.7) holds. We

m,
introduce an inner product ( , )f inR ' using the marginal frequency fi’
i

m.
1

(3.1) (x.y)g = &

fi(a) xX* y*,
i a=1

m. m. o
i 0 0 : : -
where x, y € R . Let Wy =V, = SPanH(mi)/} and'w} = R 1/W1‘ with respect to
(, )fi. Let

:
I
TR =]
=
—

(3.2)

‘where

1 ifi eI,
1 0 otherwise.

m
1)

Then exactly as in Theorem 2.1 of Takemura (1982) we can show that i and EJ

I
are mutually orthogonal for every I#J with respect to ( , )f. Therefore it
~ m.
suffices to show that L; = L% for all I. Note that R ' = V} = W? + w}.

Substituting this into (2.4) we see that MI = span {EJ:J;:I}. Using this relation
in turn in the definition of ﬁI (2.5) we obtain MI = span {EJ: Jc 1, J#I}.
This implies L% = MI/I\~4I = tI' This proves the sufficiency part of Theorem 2.1.
Q.E.D.

To prove the sufficiency part of Theorem 2.2 the following modifications are

needed. We first note
a]...u as

‘Lemma 3.1. Let K = (k],...,k ) €S. x € Mg if and only if x = X

2

depends only on oy = (ak1,...,ak ).
%



Proof. Let M be the set of tensors which have the property stated in the lemma.

Clearly M is a subspace. We want to show that M = MK' Consider a decomposable element

y = y(1)8x.£&y(n)rof M . Then Y5) = I(mj) if Jj¢K and Y(j) for je K are arbitrary.

a-'...cxn OL_, o OLn’ . ‘
Hence y =Y(1) y(z)...y(n) depends only-onr(ak],.{.,ak ). Since
decomposable tensors of this form generate MK we obtain MK cM. However
. _ % o 4 -
dim M, = 7. _, mki dim M hence My = M. Q.E.D.
a

By Lemma 3.1 if x(EMK then X S depends only on Oy o We express this conveniently

as
o,Ua
o K c o.
x> = x K™= x K,
Let x, yEMK. Then
. Ge O
S
(XsY)f =1 f(as) X Yy S
o, O
- K K
=X f(ocKU OLKC) Xy
Oy, - O
= x "y s fleUa )
ay o o K
K
o, 0O
K K
= 3 fK(aK) X~y
“

Therefore we see that the inner product ( , )f restricted to M, is given by

the marginal frequencies fK(aK). Now in the proof of sufficiency of Theorem 2.1



above we consider MK equipped with inner product given by fK instead of the

n ™
whole space ®;-1 R

Furthermore we only consider I,J which are subsets of K.
Then exactly the same argument applies to the sufficiency part of Theorem 2.2.
This completes the proof. Q.E.D.

3.2. Necessity.

We prove the necessity in a series of lemmas.
Lemma 3.2. L% and L§ are mutually orthogonal for every I#J if and only if

MI/MInJ and MJ/MInJ are mutually orthogonal for every I#J.

Proof. Assume that L¥'s are orthogonal. Now by construction of LY's we have

I I
MI = span {Lg.: I'ely, MJ = span {L%:: I'cdJd} and MInJ = span in*,: Ifc:IFlJ}.

Hence

. C.
M /M g = span {L%.: I'cInd®y

MJ/M = span {L%.: I';:JrWIC} |

Ind

Note that (Irldé) N (qrmlc) = . Therefore M;/M; 5 and My/M; ., are
orthogonal. Conversely assume the Tatter condition. By Remark 2.2
we consider only I,J such that Id¢J, J¢I. Then Ind is ‘a proper
subset of I as well as of J. Hence MIr]J.C: MI’ MInJ c:MJ. Then

This implies that LY and

L’IL = MI/MI. cMI/MmJ and similarly L§ <M/ !

Ing-
'Lg are orthogonal. Q.E.D.

Lemma 3.3. MI f MJ = MIr]J.

This is obvious from the characterization of MI in Lemma 3.17.
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Now we present two lemmas concerning orthogonal projectors in an inner
product space V. Let A, B be subspaces of V. A Tinear mapping PA from V
to itself is called the orthogonal projector onto A if PAx=x for all x€A and

PAx=O for all x€V/A where V/A denotes the orthogonal complement of A in V.

Lemma 3.4. A, B are mutually orthogonal if and only if PAPB=0.
See Theorem 1.21 of Takeuchi et. al. (1982).

Lemma 3.5. A/Ar1B and B/ANB are mutually orthogonal if and only if PAPB=PAnB

Proof of this is fairly easy using the previous lemma and is omitted.

Combining Lemma 3.2 - Lemma 3.5 we have

Lemma 3.6. L% and Lﬁ are mutually orthogonal for every I#J if and only if
Py Py =P for every I#Jd.
MM Ming

The essential step of our proof now is to give the explicit form of the
m,
projector PM . To do this we first characterize ®R 1/MI and introduce a notation
I

on Kronecker delta.

m.
Lemma 3.7. Y€ ®?=] R 1/MI if and only if

o Ua
I i€

for every Oy
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*s _ %1
Proof. Let x€EMI then x © = x ~ by Lemma 3.1. Now

OLIUOL
(XI IC
(x,y)f =3 f(aILJaIC) Xy
=L X z waUa )y
o
o o . I
I
m; ag
Hence y € ®R /MI iff the right hand side is zero for all x This holds iff
a
the coefficient of x I is zero for all Op e Q.E.D.

Let 62 be Kronecker delta. For I = {i;,...,1,} we define

(3.3) § - =386 . 8 cee §

Remark 3.1. This differs from the usual definition of generalized Kronecker delta

(see Section 40 of Sokolnikoff, 1964).

Now we give the explicit form of the projector PM . Being a Tinear map
I

M.
from ®R 1 to itself, PM has n contravariant indices and n covariant indices:

PMI is explicitly specified if the (aS,BS) = ((a],...,an), (Bl""’Bn)) element

of P,, is specified for all (as,ss).

My

Remark 3.2. If multi-indices ags Bg are ordered lexicographically, then PM
I

becomes a ("mi) X ("mi) matrix. For specifying the entries the ordering is

irrelevant.



Lemma 3.8.
o o f‘(aIUB C)
(3.4) P > =gt —7TI
' MI B f o
BS I IVl
For example if I = {1,2} then
a]--.un _ a-l az f(a] 5a23833"'38n)
Pu - % % 7, (0 50,
“{1,2} B]...sn 1 2 12V71°72
m.,
Proof. We show that if xEMI then PM x=x and if X € ®R 1/MI then PM
I ’ I
Bg By : .
xElWI. Then x © = x . Therefore the aS-e1ement of PM X is
I
o o B
(P, x) S . r P S X S
My 8. Mg
S S
flajus )
— I I I
=72 66 F 1o X
BS I IVl
=z GB X z 7 - - —
BI I B c 1''1
I
o B o
=3 csBI' x 1= x !
BI I

This shows PM X=X.
I
m

Now let x € ®R 1/MI' Then oc-element of Py is
I

12

x=0.

Let



by Lemma 3.7. Hence PM x=0. Q.E.D.
Now the last lTemma is the following.

P
g M

o
R/
1l

Lemma 3.9. Let INJ = 0. implies

fIUJ (ocIUocJ) = 'FI(OLI) . fJ(aJ)
for all Gps O
Proof. If P

Mp My My

(3.5) z (P, P

13



Now by Lemma 3.8

%5
P = fye).
Mﬂ Yg S
Hence the right hand side of (3.5) is
Y3 g
(3.6) % f(ys) sY=53 s r  f(y,Uy )
£ £ dJ c
Yg J Y3 d Y o dJd
J
y
J
=X 5€J fJ(YJ)
Y3
= fJ(eJ)
Now the left hand side of (3.5) is
o B Y
(3.7) : Py 2 op, ° 59,
s M. M €
Y52 Pg S s
Now
8. 8 f(83Uv ) y
% PM S GJ = 7 GJ —f(B—‘)]— 5€J
g dvg 9 vg W AN J

By Y
ZGYJGEJ X
Y Jd J 1y

J Jc

B1 Y B

ZGJSJ—GJ

14
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Hence (3.7) is

(3.8) r P

=
et
[e2]
m
(o]
n
™
(o]
™
=
-+
L |
Q
—
O
m
Ca

8
1 J

= % f(a,UB,UB ) 6
frlog) BJ,B(I e " "qun® &

Tu
=?-—.E?.L—'TZ f(OLIUEJUB C)
IV'I B(I J)C (1ud)
U

= ——(———)—fI aI fIUJ (GIUEJ)-
Equating (3.6) and (3.8) we have
fJ(sJ) = fILJJ(aILJeJ)/fI(aI)

for all o and €3 This proves the lemma. Q.E.D.

Now the necessity part of Theorem 2.1 easily follows from Lemma 3.6 and
m,
Lemma 3.9. Except for considering MK instead of ®R ' no modification is needed
in the above argument to prove the necessity part of Theorem 2.2. This completes

the entire proof.
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4. Relation to adjustment for all other interactions.

In Theorem 2.1 the I-interaction term is bn]y adjusted for lower order
interactions contained in I. Often adjustments for all other interactions are
desired in practical applications of ANOVA. Here we discuss the implication
of proportional cell frequency for adjustment of all other effects. It turns
out that when the usual parametrization of mean tensor u is employed, then
the case of proportional cell frequency is convenient for "maximal" interaction
terms. For other interaction terms the situation is not as simple. Precise
statements will be given in Theorem 4.1 and Corollary 4.1.

To discuss the adjustment for other effects we have to first specify what
effects are included in a model. This can bé done by specifying a subspace %
where the mean tensor u = E(x) is assumed to lie. Usually p is written as sum
of overall mean, main effects, two-factor interactions, etc., where the
parameters are under the usual linear restrictions. This amounts to decomposing
u into various subspaces. Now the point is that the subspaces in question are
not mutually orthogonal with respect to the inner product ( , )f. Instead "
they are mutually orthogonal with respect to the natural inner product of ®R L
(see (2.5) of Takemura, 1982). Therefore in the case of unequal cell frequencies
two inner products are considered at once: the.natura1 inner product for
decomposing u and the inner product ( , )f for decomposing x. This is the
reason why the case of unequal cell frequency is difficult.

Let I ='{i],...,ik} and consider the I-interaction space LI defined in
(3.1) of Takemura (1982). Let PI be given by (3.3) of Takemura (1982) which
is the orthogonal projector onto LI with respect to the natural inner product.

Let

Mp TP
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where u = E(x).

Then

1]
™
v

—
o
I
o~
=
-
»

where I ranges over all subsets of S. Let |I| denote the number of elements of

I. Writing

We obtain the usual parametric expression of u. Following the notation in
Chapter 4 of Scheffe (1959), the hypothesis HI of no I-interaction is expressed

as

HI: up = 0.

Under a specific model certain uI's are assumed to be zeros. Let

' J=. {I: UI#O}
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and let
% o= span'{LI: Iedl.

7 may be simply called as model. Now for I& J we define L?, the I-interaction

space adjusted for all other effects in the model 7%, as follows:

Definition 4.1. Let 7}(;1 = span {Ly: J#I, J€ 3}. Then

L1 = m/my

(with respect to ( , )f ).

To proceed further we assume that:d satisfies the following condition (A):

(A): If 1€ d and Jc1, then J& J.

This means that if I-interaction is assumed to be present, then Tower order
interactions contained in I have to be assumed as well. When condition (R)
is satisfied, I € J 1is called maximal if J> 1, J& d imply J=I. Namely, I

is maximal if I-interaction is the highest order interaction in the model %

with respect to the partial ordering of inclusion.

Now we can state the following theorem. -
Theorem 4.1. Assume that cell frequencies are proportional and: J sétisfies
the condition (A). Then for maximal I we have L% = L?.

Let EI.denote the orthogonal projector onto L% (with respect to ( , )f ).

Let my = dim L% = Tiel (mi—l). Then as a corollary to Theorem 4.1 we have
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Corollary 4.1. Assume that cell frequencies are proportional and.d satisfies

condition (A). Let I be maximal. Under the assumption of normality,

(R/cz) (5Ix,51x)f has the noncentral x2-distribution with my degrees of freedom

and the noncentrality parameter (R/&Z) (5

P e

Proof of Theorem 4.1. Note that M. = span {LJ: JcI}. Therefore under the

I
c %. It follows that 7= span {MI: I€J}. However

condition (A), MI
Mf = span {Lﬁ: Jc I} as well. Hence %= span'{Lﬁ: J& dr. If I is maximal the

same argument yields

ﬁi = span {MJ: J#1, JEPJ}

span {L¥: J#I, Je 9}.
J ;

Hence

Ly = m/my = 13

I I Q.E.D.

Proof of Corollary 4.1. It suffices to check that 51“ = 51“1' For J#I,

~ . ~ 2. ~ -
My € LJ;:MJC:W(I. Since W‘I and LI are mutually orthogonal we have PI”J 0.

~

Hence Pu = PI(ZJuJ) = PI”I' Q.E.D.
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