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Abstract

Let F be a cumulative probability distribution function on R.. Then
F can be the distribution of a sum X + Y, where X and Y are random variables
symmetric about zero, if and only if F has mean zero or F has no (finite or
infinite) mean. Also, any distribution in ﬂ%k can arise as the distribution
of a sum X + Y + Z, where X, Y and Z are k-dimensional random vectors whose

distributions are spherically symmetric about the origin.
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Let F be a cumulative distribution function on R. Simons (1976) showed
that a necessary condition for F to be the distribution of a sum X + Y,
where X and Y are random variables symmetric about O, is that F either have
mean zero or have no mean, finite or infinite. This paper will show that
this condition is also sufficient.

An obvious corollary of result is that a sum X + Y of symmetric (about 0)
random variables can be symmetrically distributed about C # 0. An example
of such behavior has previously been exhibited by Chen and Shepp (1983). 1In
the Chen-Shepp construction, the suhmands and the sum ai] have Cauchy distri-
butions. The Chen-Shepp argument can be generalized to show that, for every
positive integer k, there exist k-dimensional Cauchy random vectors X and Y,
spherically symmetric about the origin, such that the sum X + Y has a k-
dimensional Cauchy distribution not centered at the origin. It follows easily
that any distribution in B%k can arise from a sum of three random vectors whose

distributions are spherically symmetric about the origin.

Theorem 1. Let F be a distribution function on R. There exist random variables
X and Y symmetric about zero with X + Y having distribution F if and only if
o 0

[ xdF(x) = [ (-x) dF(x).
0 —o

Thus, a sum X + Y of symmetric (about zero) random variables can have



distribution function F if and only if F has mean 0 or has no mean.
Lemma Any two-point, mean 0 distribution can arise from a sum

bU. + bU

1 2’

where U] and U2 are both uniformly distributed on [-1,1] and b > 0.

Proof bf the Lemma.

Let U] be uniform on [-1,1], and Tet o € [-1,1]. Define U2 by
1+ - U if U > 6
UZ =
-1 + 6 -U1 if U] < 8.

Then U, is also uniform on [-1,1], and U; + U, takes on the values 1 + ¢

and -1 + ¢ with probabilities %(1-6) and %{1+e); réspective]y. It follows
easily that any two-point, mean zero distribution can be obtained from bU] + bU2
if b and 6 are chosen properly. Note that U] + U2 is identically 0 if we take

g =+ 1.

Proof of Theorem 1.

In the construction of the Skorokhod representation of a mean 0 random
walk, it is shown that any distribution F with mean 0 can be represented as a
mixture of mean 0, two-point distributions and the point mass at 0. (See, for
example, Freedman (1971), pp. 68-70. The idea seems to originate with Mulholland
and Rogers (1958)). This argument also works when F has no (finite or infinite)

mean. By the Lemma, any F satiSfying the condition of Theorem 1 can arise as



the distribution of a sum X + Y, where X and Y are both mixtures of uniform
random variables symmetric about O.

Suppose Z = X + Y, with X and Y symmetric about 0. Define

+ _ 1
7' = 3z + |z])

and

]
—

L = 7'(-2 + IZI).

It will now be shown that E(Z+) = E(Z"). Define XT to'equa1 X truncated at
1T, so that

T if X < -T
Xp = X if T <X<T

T if X >T R

and define Y. similarly. As T + o, (X; *+ YT)+ converges monotonically upward to

T T
(X + Y)+ = Z+, and (XT + YT)' converges monotonically upward to (X + Y) = Z .

By the monotone convergence theorem,

+

E(X- + Y.)¥ 5 E(Z

TH N )

and
E(xT + YT)' ~ E(Z7)

as T » », But XT and YT

about 0. Thus,

are, for each T € R, bounded random variables symmetric

E(XT+ YT) = E(XT) + E(YT) =0,

and
E(X, + Y-)"

T 1) = E(X. + Y

T+

Since the Teft side of the last equality converges to E(Z+) and the right side



converges to E(Z°) as T + =, it follows that E(Z+) = E(Z ).

Remark 1.  The "only if" part of the proof is essentially the same as that

given by Simons (1976) and is included here only for completeness.

Remark 2.  The symmetric random variables X and Y obtained in the first part
of the proof are unimodal and identically distributed. They do not necessarily

have means, even when the F distribution has a mean.

Corollary 1. For any distribution F on R, there exist symmetric (about 0)

random variables X, Y, and Z such that X + Y + Z has distribution F.

Proof of Corollary 1.

Let W have distribution function F, and let Z be an independent Cauchy
random variable symmetric about 0. By Theorem 1, there exist random variables
X and ?, symmetric about 0, such that X + Y has the same distribution as
W - Z. If the probability space on which W and Z are defined is large enough,
we can use the conditional distribution of (i,?), given the sum X + ?, to

construct X and Y on the (W,Z) space so that

W-Z=X+Y

and so that (X,Y) has the same distribution as (X,Y). Then we have
W=X+Y+Z

Remark 3. Simons (1977) showed that a sum of three symmetric (about 0) random

variables could have a finite but nonzero expectatioh.

Remark 4. By Remark 2, the random variables X, Y, and Z in Corollary 1 may

be chosen to be unimodal. They are not identically distributed as constructed,



but if (V],VZ,V3) is defined to be a random permutation of (X,Y,Z), the
permutation being independent of X,Y, and Z, then V1+V2+V3 has distribution F,

and the Vi are symmetric about O, jdentically distributed, and unimodal.

Remark 5. Corollary 1 also follows from the Chen-Shepp example. Indeed, the
Chen-Shepp example implies that there exist Cauchy random variables XO’ YO and ZO,

symmetric about 0, such that

X+ Yyt Zo =1

0 0 0

If W is a random variable with distribution F, independent of XO, YO and ZO’

then we can define

0’ = WZO .

The random variables X, Y, and Z are clearly symmetric about O and satisfy

W=X+Y+Z.,

Theorem 2 is a generalization of the Chen-Shepp example to multiple dimen-

sions. The theorem and its proof are due to Herman Rubin.

Theorem 2. For any positive integer k, there exist k-dimensional Cauchy random
vectors X and Y, symmetrically distributed about the origin, such that the sum
X + Y has a k-dimensional Cauchy distribution which is spherically symmetric

about the point (1,0,...,0).

Corollary 2. Any distribution F in Elk can be attained by a sum of three random

vectors whose distributions are spherically symmetric about the origin.



Proof of Corollary 2
By Theorem 2, there exist three k-dimensional Cauchy random vectors

X90 Yy and Z,, symmetric about 0, such that

+ Y, +

KO XO ZO = (1,0,...,0).

Let W be a k-dimensional random row vector with distribution F, independent of

50, XO and ZO' Let M be a random kxk matrix, also independent of X- XO’

and ZO’ whose first row is W and for which ]|w|] M is an orthogonal matrix
W

when W # 0. When W = 0, set M equal to the kxk matrix of all 0's. If

{e1:855....8, 1 are the coordinate unit vectors in Hlk, a suitable M matrix
can be constructed by taking the rows of IIHJI'] M to be the orthonormal
basis of sz obtained by applying the Gram-Schmidt procedure to the spanning

sequence W, 81280558y - I Xg2 Xo,and-z0 are written as row vectors, -then

Z_= XOM , Y= XOM , and Z = ZOM

are random vectors spherically symmetric about 0, and they satisfy

W=X+Y+1Z.

Proof of Theorem 2.

In this proof, t, s, and x will be elements of H{k, and ty, Sq» and x,
will be their first coordinates. The scalar product of t and x will be written
as (t - x).

. k
Let A(x) = I{||§JIEJ}’ and for each o€[-1,1], define @(-,0) on R" by




For each o , o(-,a) is the logarithm of the characteristic function (hereafter
abreviated 1log ch.f.) of ah infinitely divisible distribution. Indeed, for

each X, the integrand is the log ch.f. of a shifted Poisson random vector with
"jumps" of size and direction x, so that ¢ is the log ch.f. of a shifted compound

Poisson random vector.

Define y(-) on BQk by

If c € R, straightforward calculation shows that

o(ct,a) = |c| @(ti0) + cap(t) - itk ac log |c]
and that

(P(E_’O) = —kzl_El ’

for some positive constants k, and k2. The last formula implies that ¢(-,0)

is the log ch.f. of a k-dimensional Cauchy distribution centered at the origin.

Let U be a random vector in Hlk with log ch.f. o(-,a). For each o €[0,27),

define the k-dimensional random vectors
Vy = (cos 8)U and ﬂe = (sin o)U .

Then (V. W) is an infinitely divisible 2k-dimensional random vector with

log ch.f.

o(t,s,85a) = log E[ exp {1(;;ye) + i(s - ye)}] = g(t cos & + s sin 6, a).

Let A(.) be a measurable function from [0,2n) to [-1,1]. Taking a ?con-
tinuous convolution" of the infinitely divisible distributions associated with
the ¢(-»+» »A(0))'s produces the log ch.f.

2y

c(t,s,n) = [ o(t,s.,6, A(6)) do.
0
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Let X and Y be k-dimensional random vectors such that the 2k-dimensional random

vector(X,Y) has log ch. f. z(*5+,1). Then X by itself has IOg ch. f.
\ ' 2T
log E[ exp {i(t - X)}] = ¢(t,0,2) = [ o(t cos o, (8)) de
0
2w
= [+ |cos 6| o(t,0) + (cos o) r(e) y(t) - i t1ky A(e)(cos o) Tog [cos e|de ,
0

and Y has Iog ch.f.

2n
Tog E[ exp {i(s + y)}] = z(0,5,1) = [ (s sin 6, A(s)) do
0
2m

= [ |sin o] o(s,0) + (sin 8) A(e) w(s) - i s]k] A(8)(sin 8) log |sin 6] do
0
The sum X + Y has log ch.f.
2m
Tog E[ exp {i(t -(X + Y))}] = ¢(t,t,n) = [ o(t(cos & + sin 6), A(s)) do
0
om
= [ Jcos o + sine | ¢(t,0) + (cos 6 + sin 9) a(e) v(t)
0

-1 t]k] x(6)(cos 6 + sin 8) Tog |cos & + sin 6| de .
If a(-) is chosen to be orthogonal in LZ[O,Zn) to sin e, cos s,

(sin 8)Tog|sinel, and {tose)Tog|cos 8] ,but not to (cos 6 + sin 8) log |cos & +

sin 6|, then

C(Esgae) 'k3|t[3 Z;(O,i,e) = 'k3l_§_| s

and

e(tatan) = =k [t] + 4 ¢

175

where k3 > 0, k4 > 0, and k5 # 0 are constants.

Thus, X and Y satisfy the conditions in the theorem, except that X+Yis

symmetric about (k5,0,...,0). The random vectors k;] X and k;] Y are as desired.
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