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ABSTRACT

Let TyseessTy be k independent two-parameter exponential populations,
where . has the associated density f(x; ui’ei) = e;]exp{-(x-ui)/ei},

X > uss u3 20,0, >0, 1=1,...,k. The parameters H; are known as the
threshold, or "guarantee time," parameters. The two-parameter exponential
distribution is employed in reliability studies where the failure cannot
occur before some particular guarantee time. It is assumed that i

1= 1,...,k, are unknown but their ordering is known. We assume without
loss of generality that Hp Seee2 e These k populations are compared in
terms of their guaranteed Tifetimes with a known standard ug or the
unknown guaranteed 1ife of a control population L with parameters Mo and
89 Any Tis i=1,...,k, is better than the standard or the control if

Hi > g The goal is to select a subset (possibly empty) of the k popula-
tions so that all populations that are better than the standard (or the
control) are included in the selected subset with a guaranteed minimum
probability P*. Isotonic procedures are proposed and investigated
assuming that 69 = By =...= 6 = 6. These procedures, naturally, are
based on isotonic estimators of Hyseeo sl A11 four cases arising out of
Ho and ¢ being known or unknown are considered. The procedures are
compared with some other proposed alternative procedures in terms of

the expected number of inferior populations included in the selected
subset. Tables of constants associated with these procedures are

also given.
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1. Introduction

The problem of selecting populations better than a standard under an
ordering prior has been considered by Gupta and Yang (1981) for the normal
means problem and by Gupta and Huang (1982) for the binomial parameters
problem. In this paper we consider the case of two-parameter exponential
populations for which an interest lies in comparing location parameters

(guarantee tjmes).

A two-stage procedures for selecting the best of k such populations
has been considered by Desu, Narula and Villarreal (1977) and Mukhopadhyay
and Hamdy (1984). Mukhopadhyay (1984) also considered the sequential procedure
for selecting the better exponential population. These three papers are
based on "indifference zone approach". However our paper is based on
"subset selection approach".

In Section 2, notations and definitions used in this paper are intro-
duced. Isotonic selection procedures are considered in Section 3, according
to the control parameter and the common scale parameter which may be known
or unknown. In Section 4, some other procedures for this problem are also
considered. Comparisons of these procedures based on the expected number of
bad populations in the selected subset is investigated. Tables of associated

constants for the proposed procedures are given in Table I through Table IV.

*This research was supported by the Office of Naval Research Contract
N00O14-75-C-0455 at Purdue University. Reproduction in whole or in part
is permitted for any purpose of the United States Government.



2. Notations and Definitions

Let E(u,8) denote the two-parameter exponential distribution with

probability density function
e'1exp{-e'](x-u)}, if x>y
(2.1) f(x; u,8) =
0 s 1f x <

where -» < y < » and 6 > 0. The parameter v is called the guarantee time and
6 is the scale parameter which in this case is the standard deviation.

Suppose that MysT]se-->m, are (k+1) independent populations. It is
assumed that the observations from s follow a E(ui,e) distribution,
1 =20,1,...,k. The guarantee time is the parameter of interest. It is °
assumed that M1 S Uy <...5 w5 however, the true values of these ui's are
not known. We consider Ty 3s a control (or standard). We say that
population ms is "good" if Wi > ug- Our goal is to select a subset of
these k populations so that all "good" populations are included in the
selected subset.

Let @ = {u = (po,u],...,uk)l-m U S Uy SeeaS g, e < ug < ®} be
the parameter space. Let us denote the sets a; = {1, i+1,...,k}, 1 < i < k
and ap = ¢ (the empty set). If action a; is taken, it means the subset
{ni,ni+1,...,nk} of the k populations is selected. Since by our assumption
“ils are ordered according to an ascending ordering prior, it is, therefore,
appropriate to restrict our attention to the action space G = {ao,al,...,ak}.
Let Xij’ J =1,2,...,n be a random sample from population T i=0,1,...,k.
The sample space is denoted by % = {x = (xO];...,xOn,x1],...,x]n,...,xk],...,xkn)l

u_i < X_ij < @, j = ],2,.-.,“,1=0’1’o'-’k}0

Definition 2.1. A selection procedure s is isotonic if it selects s with

parameter My and if by < By then it also selects T We will restrict our

attention to isotonic selection procedure s which satisfy the P*-condition:



inf P (CS[G) > P*,
p€Q -

where P* js a pre-assigned value, and a correct selection (CS) means the

selection of any subset which contains all good populations.

Definition 2.2. A poset (S, <) denotes a non-empty set S with a binary partial

order < defined on it.

Definition 2.3. A real-valued function f defined on a poset (S, <) is called

isotonic if f preserves the order on S, i.e. x <y, implies f(x) < f(y).

Definition 2.4. Let g be a real-valued function and Tet W be a positive-valued

function, both defined on a poset (S, <). An isotonic function g* on S is called
an isotonic regression of g with weight W if Z [g(x)- g*(x)]ZW(x) attains its

minimum values over set of all isotonic funct1ons on S.

It is well-known (see Barlow, Bartholomew, Bremner and Brunk (1972)) that
there exists one and only one isotonic regression of a given g with a given

weight W defined on S.

Let Yi = 123;; Xij’ where Xij . E(ui,e), J=12,...,n, i =0,1,...,k.
Let S = {u1,...,uk[u]'5..ni uk}. Consider the functions g(ui) = Yi and

W(u;) = n/e = w,

i i=1T1,...,k. Then by the maximin formula, the isotonic regres-

sion of g with weight W s g*, where

Ys oot Yt

ey

g*(ui) = max min {
1<s<i s<t<k

The isotonic estimator of My is denoted by ii-k’ i=1,2,...,k, where

(2.2) X:p = max X_.
itk l<s<i s:k
and
~ Y +Y Y +...+Y
z o . s s+l S k
(2.3) Xs:k - an{Ys, __'2—-_'"'03 k_S+'I }’

It is known that the isotonic estimators X K i=1,...,k are also the maximum
Tikelihood estimators of is i=1,2,...,k, for the two-parameter exponential

distributions.



3. Isotonic Seletion Procedures

3.1. Mo and 9 are known

Let us define

Q

5 {1_1 S Qluk__i < ].10 < uk__i+-l}, i= ],2,...,k-],

and

QO {v e Qluk < uo}.

Q.. Furthermore,

Then Q; are disjoint and @ = 3
0

n Cx

;
inf P (CS|s) = min inf P (CS|s), for any 6,
uEN < 1<i<k uEQ -

and

inf P (CS[8) > P* iFF inf P (CS[6) = P¥, i = 1,2,....k.
LER F uEQ,; 3=

If Ho is known, no samples are drawn. from 0 and X = (X1],...,X]n,...

Xk],...,an). We propose a selection procedure 6%1) as follows:
3.1 iV -a c(» here (1) - mingi| X, 2wy + dll) &,

~

here Xi-k is defined by (2.2) and ds]&, i=1,2,...,k are determined to satisfy

the P*-condition.

Lemma 3.1. For any y € s 1 <1 <k, PH(CS|5%])) is increasing in My

1<J <k

Proof. If y € 245 then

| k-i+1
(1)y - : (1) e
PL(CS]ey ") = P 1 2 ezt G
p {k G d{h) oy,
= U U e 2 unt =}
3=l pe] r:k 0 j:kn

E (0



k-i+1 j =
where A = U U {X
=1 r=1

(1) ¢
+dj:k 1.

r:k = ¥ n

Since IA(g) is increasing in (xj],.. ), 1 <j <k, and the distribution

“5 X5

of Xij has stochastically increasing property, hence Eu{IA(Z)} is increasing

in My 1 <Jj < k. This completes the proof of the Temma.

It follows from Lemma 3.1 that inf P (cs]a%l)) - Pu*(cs|a§1)), where

EEQ.] ‘,E -
E* = (]-10:"°°,---s‘wsUOsvoosUO)a and
M
i terms
(My - o 5 (1) [
PurlOS187°7) = Pl ianii 2 v + Atk )
o (1)
Pl ik 2 Yecinnaid

where Z]""’Zk are i.i.d. E(0,1).

Now Z, _:i1.i has the same distribution as Z,.,. If we let

3 1 F
(3.2) V. = Z,.. = min {F'-Z

. Z:},
i 1:1 lerg T 31 J

then we have

i (My - (1) -
(3.3) E;;f PLCSIsy ") = PLVy > d g ds 1= Th2seisks
: _i Po-

and the following theorem follows.

Theorem 3.2. For given P*(0 < P* < 1), if d§1%+1-k is the solution to the

equation P(Vi > X) = P*, where Vi is defined by (3.2). Then 6%1) defined by

(3.1) satisfies the P*-condition.

Remarks:

(1) If x <0, then P(Vi > x) = 1, hence we restrict our attention to

41

ik > 0, 1 =1,2,...,k.



(1)
(2) It is clear that dk R

. . (1) . ..
Vi 3_V1+] implies d]:i is decreasing in i.

d%?% for all 1 < i < k. Furthermore,

In order to find the dg!i's we need to find the joint distribution of

»oand Zy +...+ Zo, 1 < 1 < k. Theorem 3.3 gives an-explicit
(1),
di:k S

Z],Z]+22,...

form to find

Theorem 3.3. For x > 0, P(Vi > X) = e'ix _ b.xj'1, 1 < i <k, where

(3.4) b = 103-2) 4541y /(3-11.

Proof. Consider the transformation U1 = 21, U2 = Z]+Zz,..., Ui = Z] +...+ Zi,

_u.
then.U],...,Ui have joint pdf e 1,0« Up < Uy <ene< Uy < oo Hence

i-1 i-2
-us U U

P{V, > x} = T e 1( : - x)du;
i 2= { e HEmr - T X

. 1 -2
(i) -ix i

i
o107 e T (X-]):fi’xe —(T_Z_deu

—1x z b j-1

2

where bj is defined by (3.4).

From Theorem 3.3, for 1T < i <k, d£1%+1-k is the solution to the equation

(3.5) e X 2 bxd™! = P, where b, is defined by (3.4).

The values of d%!g(z dﬁ1%+1-k)’ for k = 1(1)20, and P* = 0,800(0.025) 0.975

and 0.990 are tabulated in Table I.

3.2. Ho known, & unknown

. k n
If the common value of ¢ is unknown, let 6 = } (Xij'

i=1 j=1
v = k(n-1). Then 2vé/e is distributed as chi-square with 2v degrees of

Yi)/v, where



ceesY

1° (see Epstein and Sobel (1954)). We
(2)
1

freedom and is independent of Y K

propose a selection procedure § by

(3.6) 6%2)(X) = gE(X). where ¢(X) = min{i{iizk 3_u0+d%?& 2%9 .

Analogous to the proof of Theorem 3.2, we have the following result.

Theorem 3.4. For given P*(0 < P* < 1), if d£?%+1-k is the solution to the
equation P(Vi 3_2%9 x) = P*, where V; is defined by (3.2) and 2v8/6 ~ ng

are independent, then ng) defined by (3.6) satisfies the P*-condition.

>_2_v_é_x)=
— 6

j-1 r(v+j-1)
b. (2x)? —
19 r(v)(1+2ix) V!

1] D1 e

Theorem 3.5. For x > 0, P(Vi

J
where bj is defined by (3.4).

Proof. The proof is straightforward.

Remarks:

(1) dé?%+1:kdependson v = k(n-1) and d£€3+]:k # dg?%.

(2) d£?2+]:k is the solution to the equation

(3.7) % b.(2x)j'] rvt-1) . P*, x > 0, where
j=114 r(v)(1+21x)V+3']

bj is defined by (3.4).
The values of dg?a for k = 2(1)6, P* = 0.900(0.025)0.975 and 0,990, with

common sample size n = 5(5)20 are tabulated in Table II.

3.3. unknown, 8 known

]

In the case where Mo is unknown, we take additional observations XOj’
j=1,2,...,n from my and denote X by (Xol""’XOn’X11""’X1n""’XkT""’an)'

Let Y. = min X;., i =0,1,...,k, and X.. be defined as in (2.2). We propose a
T 1c5<n iJ ik



selection procedure 6%3) by

(3.8) 6%3)(5) =3 (x) where (X) = mih{il&i:k 3_Y0-d§?& %&.

Theorem 3.6. For given P* (0 < P* < 1), if dé?2+],k is the solution to the

equation
i o . .
(3.9) T b.e* [ Al ()2, < px, x <0,
=Y xe -
or the equation

1
(3.10) 1-e7%(1- | by Ty - px, x5 0,
5213 (441)]

where 1< i < k and b is defined by (3.4). Then 5{3) defined by (3.8)

Satisfies the P*-condition.

1 <J <k and is decreasing

Proof. If y € Q. PE(CS|6§3))’is increasing in uy

in . Hence
Ho

inf P (cs]s{®)) = inf P o (Csle] (3)y,
neQ, E g

where }_1* = (uoa'ms---s'w:UO:---al—lo)s
) ———

i terms

and is independent of g Therefore

(3)y - (3)
uégf P_(cs}a ) = PV, > Zo=dp i)
. 3)
i -d(
-i+1:k J -1 -(1+1)z (3)
j=]bje !d(S) dz, if dy 5,9, 20
k-i+1:k
= 3)
-d( . i .
k-1+1:k g r(j) (3)
1-e Z }, if dk ie1:k 0.

1+1)



Remarks:

(1) 1f d3).. <0, then P(V, > Z “a{3) ) <PV, > Zg) < PV > 2

k-1+1:k = 0" dk-5+1:k =1/2.

0)

Hence, for P* > 1/2, there is no solution in the case when d£§2+1-k < 0. We

should restrict attention to d£?2+]-k > 0 and use the equation (3.10) or
43) - L)
- n((1-P¥)/ (1 I b LUy,
k i+1:k =1 J (i+] )

The values of d%?&,,for k = 1(1)20, and P* = 0.800(0.025)0.975 and 0.990 are

tabulated in Table III.

() 4B = d{3) 4s increasing in 1, 1 <1 < k.
i .
(3) 1f p* »1/2, then 0 < (1-p%)/(1- § b, Sy <1 and hence
: =19 (i)
3)
de 3ok > O
® 51 -(i+1)z,, . 1(d) 5! (GHx)° -(i)x
(4) fzJ e dz = J) 7] e , x> 0.
X T (i+1)Y 220 :
(3) (3)
If dk iv1ok < 0, then dk ieT:k js the solution to the equation

. :
(3.11)  ( % b, LU Jz ——li%lﬁl—)e = p*, x>0,

213 (i41)d 420

3.4. UO unknown, 6 unknown

(4)

We define a selection procedure 6] by

2v.8
d(4) 171

(3.12) 6%4)(5) = aE(X)’ where £(X) = min{iliizk 3_Y0- ik 1
) k n
where v, = (k+1)(n-1), 6y = iZO j21(X1.J.-Y1.)/v1.

Theorem 3.7. For given P*(0 < P* < 1), if dé4)+] Kk is the solution to the

equation
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i g1 ()2
(3.13) i b T-(J)j Clz (1+1)"(-2x) 1"(://1+2) P k<O
FEUT 07020 0 p () (1-2i%)

or the equation
(3.14) 1-(1- z rd) )(1+2x) Topx, x» 0,
$21 9 (441))
where bj is defined by (3.4). Then 6%4) defined by (3.12) satisfies the

p*-condition.

2v. 8
(4) (4) 171
Proof. H;gf P_(CSIG ) = P(V > Z0 dk i+1:k O )
n (A e
T(J) J -1 (1+1) (_de-1+]'k) F(V1+Q) (4)
213 (ien)d e20 @) 1t et 2
_ pir(vy) (1-21dy J249. )
-0 ] b, L) LU (re2ait), ) ! e alM s o.
j=1 (1+]) i+1:k i k-i+1:k ~
cemark: 1f d(4) (4)
emark: If dy 5.9, 20> then inf P (CS|s; ) < 1/2. Hence, if
uEQ .-

> 1/2, d(4)+] K is the solution to the equation (3.14) o

(4) * F(J) 1
a) = 1P/ z s Iy, Ty,

The values of dg%& for k = 2(1)6, P* = 0.900(0.025)0.975 and 0.990, with

common sample size n = 5(5)20 are tabulated in Table IV.

4. Some Other Proposed Selection Procedures

4.1. Ho and e known

(1) In Section 3.1, if we take d = % & and define a selection procedure

sg]) b

(4.1) aé]): Select ms iff ii:k 3_u0+d %3 i=1,2,...,k.
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Since d(T)'= min d(Tz, it is easy to see that inf P (CS|6(1)) > P*,
1:k 1<i 1:1 A 2 =
<i<k ueQ - -
Furthermore, ii-k Z-Rj-k for i > j implies aé]) is an jsotonic selection
procedure.
(2) Let ij = max{Y],...,Yj}, 1 <j <k and define a selection procedure

Gg]) by

(4.2) 5(1)(x) = ae(x), where e(X)

T 9
3 (X min{i{X; > ugtd; 71

Then, for any i, 1 <1i <k

-d .
inf P (cs]ed1) = P(Z_jpy 2 dqep) =@
If dk-1+1 = -gn P* for all i, then.6g1) satisfies the P*-condition.

(

Remark: 63]) is equivalent to:

(1). c e Y
63 : Select ms iff Xi >

> ug-Ln P* 23 i=1,2,...,k.

(3) Gupta and Sobel (1958) proposed a selection procedure without assuming any

(1)

ordering prior. If we define a similar selection procedure Sp by

(4.3) 6(]): Select =, iff Y. > +d 93 i=1,2,....k,
i i n

4 =¥
then
inf P (cs|sf!) = &9, if ds 0.
U
EEQ_i =
Hence inf Pu(Cslsgl)) = e'kd and d = - %—Kn p*.
peQ

Note that the selection procedure ag]) is not isotonic.

4.2. known, 6 unknown

L)

(2)

(1) Similar to Section 3.2, we can define a selection procedure 62 y
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(4.4) agz): Select m, 1ff K., > uy + d 3%9, i=1,2,...,k,

= 4(2)
where d d]:k'

(2) We define a selection procedure 83 y

(2). e 2V
(4.5) 8377 Select ms iff Xi >t d = 1= 1,2,...,K,
where d = ((P¥)"1/V-1)/2.
(3) We define a selection procedure 5&2) by
(2). . 2v6 . _
(4.6) 8477 Select ms iff Yi-i u0+d - 1= 1,2,...,k,

where d = ((P*)']/V-l)/2k. Then ng), i = 2,3,4 satisfy the P*-condition.

4.3, Ho unknown, 6 known

(1) If we define 5&3) by

3),

(4.7) s Select m; 1FF X, > Yo=d qn 1= 1,2,....k,

3

)
:k*

(
2
where d = d%

(2) If we define 6%3) by

(4.8) 6(3): Select s iff ii > Y

) s _
3 ~d o 1= 1,2,...,k,

0
where

e 2P* , if P* < 1/2

—tn 2(1-P*), if P* > 1/2.
(3) If we define 623) by

(4.9) a§3): Select m; 1ff Y, > Yo-d 0h 1 = 1,2,....k,

where



Lon (kr1)px , 4F P < 1/(kH1)
_on KL (1p), 4F P> 1/ (k).
Then 6§3), i = 2,3,4 satisfy the P*-condition.

4.4, . unknown, 6 unknown
0

(1) We define 6(4) by

2
2V 6
(4). e v 171
(4.10) 85 't Select ms iff Xi:k Z_Yg'd s 1= 1,2,
| _ 4(4)
where d = d]:k'
(2) We define 5" by
| . 2v. 6
(4.11) 6&4): Select . 1ff X, > Yy-d —~%—13 i=1,2,...
where
-1/v]
{1-(2P*) 12 , if P* < 1/2
d= -1/v4
{{2(]-P*)} -1y/2, if P* > 1/2.
(3) We define 6&4) by
2v. 0
(4). . 191 .
(4.12) A Select s iff Yi E.Yo'd — 1 1,2,...

where
-1/v1
(1-((k+1)P*) Yok o, if P* < 1/(k+1)

-1/v
ey (- 1172, 8 Pr s 1/ (k).

Then 6&4), i = 2,3,4 satisfy the P*-condition.

13
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5. Expected Number (Size) of Bad Populations in the Selected Subset

In this section, we assume that Mo and © are known. Let E(S']s)
denote the expected number of bad populations in the selected subéet when
the selection procedure § is used. For the procedure satisfying the P*-
condition, usually we want the procedure with small expected number of bad
populations in the selected subset. For procedure 6%1) we have the following
theorem:

Theorem 5.1. For any j, 0 < J <Kk, sup E S'|6§1))

= Z P{ U {Zy.5 2 d(1)}}, where ih-' is defined as in (2.3) and Zy,...,Z
r=1 h=l +J

are i.i.d. E(0,1).

Proof. For any j, 0 <J <k, ifu¢€ Qije we have

(S'|6§1)) = % pu(ﬁ is se]ected]6(1))

s g + a1} 8.

Using the property similar to Lemma 3.1, we have

sup E (s IG é P **{ U {i > u +d(])
2
€a_ u r=1 Y h=1 h:k 0 “h:k n

ro 2

- '% PLu 2, > dil)y
r=1 h=l h:J ’

|v

where E** = (uo,uo,...,uo,w,...,w).

———

j terms

(1)

For procedure 62 R it is easy to show that

sup E S |6g])) = Z P{ U {Z j2 d%!&}} and
UEQk J — h )
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sup E s'|a§”)i sup E (s {a )Y, for 0 < j < k.
uEQk -j E uEQk 5T
(1)

Hence_51 is uniformly better than §

(.

Furthermore,

sup E(S' ]6(]) = sup E (S Ia(])), since
Y uGQO X

J+1 r J+1 roa

LU Ty opn 2 3> T PL U g0 2 90
L PEU Ty 2 L PLY e 2

= Z P{ U {Z 52 d}}.
r=1 h=1-

For procedure 5§1), we have the following theorem:

Theorem 5.2. For any j, 0 < Jj < k, sup E(S' Ia ) = j-q(]—qJ)/P* and

uGQk -j
sup E(S' [63]) = k-q(1-q )/P*, where q = 1-P*,
e

0
Proof. sup E(S' |5 = sup z P { max Y uatd =}
uEQk 5 3 HEQ _ 5 Y7 =1t l<s<r s="0"n

- z (1-P{ max Z_ < d}} = j-q(1-q°)/P%,
r=1 1<S<r

and sup E(S' {63 is increasing in j.
uéﬂk j

(1)

In order to compare the procedures 6%1) and §3 7 we need the following

lemma:

~
-~

Lemma 5.3. For i =1,...,k, let Ai = {Zi:k Z_dgla}, then

J J
P{UA, nA; 1} > P(UA,)P* for all j, 1 <J < k-1, k > 2.
i=1 1 J+ i=1 1 — — i
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Proof. If 2j+1:k Z-dgl%;k and ;i:j 3_d§1& for some i, 1 < i < j, then
Z, to.t Zg _ (j-i+1)(zi+...+zj)/(j-i+1)+(z-j)(zj+]+...+z£)/(z-j)
2=-i+] 2-1+1
(G-inall) + eddl) g
> £_1+1 o di:k’ for j+1 < 2 < k.
Hence
P(SA nA )=P(5{§ . dMyna. )
J =z (1)
- P(ig1{zi:j d1 k})P(Aj+])
> P( U A.)P*
i=1

Theorem 5.4. For all k > 2, sup E (S'|5§])) < supE (SI|651))'
py i - u
EEQO - - EEQO P

Prcof. By Lemma 5.3 and the induction principle, we have

j .
P(UA,) < 1-(1-P*)J for all j, 1 < J < k.
i=1
Hence
k r a
sup E(S'lsg])) = ) PLu Az Z_dé!&}}
EGQO 1 r=1 h=1 ) ’
k
< Y -(1-P9)"3 = sup E(S'ISg”).
r=1 EEQO !

Remark: Theorem 5.4 tells us that procedure 6%1) is better than Gg]) in the

sense that in q, it tends to select smaller number of bad populations, however,

(1) (1)
3

procedure 84 is not uniformly better than &
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In order to compare the procedures Gg]) and 6&1), we need the

following Temma.

1/k

Lemma 5.5. k{1-(P*)"/ ") 4 -Ln P*, 0 < P* < 1.
Proof. Let f(k) = k(]-(P*)]/k), then

Frk) = 1-(e0 R+ L (en Py (po) VK
FI(K) > 0 iFF - g Px > en(1- E8ET),

The result follows since - %—Ku P* > 0 and 1im k

K->

Theorem 5.6.
ueh
Proof. It is easy to show that sup E (s’ |6(]))
' uEQk _j H
sup E (S |<s(1 = k(pr) 7k,
LER F
sup E (s Ia(] ) < sup E (S |6 iff
uER E peR -

k(1- (1) /K) < (1-P%) (1-(1-P%) <) /P,

If P* > 1/2, then -2n P* < (T-P*)(Z-P*).
k(1-(P *)1/k) _on P*,

sup E (S |6 ) < sup E (S ]64 ) » since
LER E ueQ E

(1-P%) (2-P*) = (1-P¥)(1-(1-P*))/P*

< (1-P%) (1-(1-P*)K) /P,

Remark: Theorem 5.6 tells us that procedure §3

(1)

procedure 84 "

(1)

(1-(p) Ky = _gn P,

If k > 2 and P* > 1/2, then sup E(S' |6 ]) < sup E(S' |6 )

pef

1/k

j(P*) and hence

By Lemma 5.5, we have

is uniformly better than



Table 1

Table of d%?& values associated with procedure 6%1).

41 P

Uk
k 0.990 0.975 .0.950 0.925 0.900 0.875 0.850 0.825 0.800
1 .0100 .0253 .0512 .0779 .1053 .1335 .1625 .1923 .2231
2 .0250 .0500 .0752 .1006 .1261 .1520 .1781 .2046
3 - - - .0750 .1000 .1252 .1504 .1757 .2012
4 - - - - - L1250 .1501 .1752 .2004
5 - - - - - - L1500 .1751 .2001
6 - - - - - - - .1750 .2000
7-20* - - - - - - - - -
The "-" 1in Table I means that the value is the same as the preceding

one in the same column.

* For k = 7(1)20, values of d%!& are the same for any given P* in the

above table.
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Table II
Table of di?& values associated with procedure 6%2).
n=>5 n =10

* .
k 1\{0.990 0.975 0.950 0.925 0.900 ]0.990 0.975 0.950 0.925 "0.900
5 1 | .0006 .0015 .0031 .0047 .0063| .0002 .0006 .0013 .0020 .0027.

2 - - .0032 .0048 .0066 - .0007 .0014 .0021 .0029
3 1} .0004 .0010 .0020 .0031 .0041{ .0002 .0004 .0009 .0013 .0018

2 - - - - - - - - - -

3 - - .0021 .0032 .0044 - - - .0014 .0019

1 | .0003 .0007 .0015 .0023 .0031( .0001 .0003 .0006 .0010 .0013
S e

4 - - .0016 .0024 .0033 - - .0007 - .0014
-1 }.0002 .0006 .0012 .0018 .0025} .0001 .0002 .0005 .0008 .0011

2 - - - - - - - - -
53 - - - - - - - - - -

4 - - - - - - - - - -

5 - - - .0019 .0026 - - - - -

1 |.0002 .0005 .0010 .0015 .0020{ .0001 .0002 .0004 .0006 .0009

2 - - - - - - - - - -

3 - - - - - - - - - -
64 - - - - - - - - - -

5 - - - - - - - - - -

6 - - - .0016 .0021 - - - .0007 -
The "-" in Table II means that the value is the same as the preceding

one in the same column.



Table II (continued)
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Table of dggi values associated with procedure 6%2).
n=15 n=20
* .
k N\J0.990 0.975 0.950 0.925 0.900°|0.990 0.975 0.950 0.925 0.900
2 1 | .o001 .0004 .0008 .0013 .0017| .0001 .0003 .0006 .0009 .0013
2 - - .0009 - .0018} - - - .0010 -
1 1|.0001 .0002 .0005 .0008 .0011}.0001 .0003 .0004 .0006 .0008
32 - - - - - - - - - -
3 - .0003 .0006 .0009 .0012 - - - - .0009
; .0001 .0002 .0004 .0006 .0008{ .0001 .0001 .0003 .0004 .0006
4 3 _ _ _ _ _ _ _ _ _ _
4 - - - - .0009 - - - .0005 -
1 |.0001 .0001 .0003 .0005 .0007|.0001 .0001 .0002 .0003 .0005
2 - - - - - - - - - -
53 - - - - - - - - - -
4 - - - - - - - - - -
5 - - - - - - - - .0004 -

The "-" in Table II means that

in the same column.

the value is the

same as the preceding one
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Table of diQ& values associated with procedure 84

Table IV

(4)
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5

n= 10

0.590

0.975

0.950

0.925

0.900/0.990

0.975 0.950

0.925

0.5900

w N

- 1o
*

0.199
0.193
0.144
0.143
0.138
0.113
0.112
0.111
0.108
0.093
0.093
0.092
0.091
0.089
0.079
0.079
0.078
0.078
0.077
0.075

0.147
0.142
0.108
0.107
0.103
0.086
0.085
0.084
0.081
0.071
0.070
0.070
0.069
0.066
0.060
-0.060
0.060
0.059
0.059
0.056

0.111
0.106
0.083
0.081
0.077
0.066
0.065
0.064
0.061
0.054
0.054
0.054
0.053
0.050
0.047
0.046
0.046
0.046
0.045
0.043

0.091
0.086
0.068
0.067
0.063
0.054
0.054"
0.053
0.050
0.045
0.045
0.044
0.044
0.041
0.039
0.038
.0.038
0.038
0.037
0.035

0.077
0.072
0.058
0.057
0.053
0.046
0.046
0.045
0.042
0.039
0.038
0.038/0.039
0.037[0.03¢
0.035(0.038
0.033}0.034
0.0330.034
0.033]0.033
0.0320.033
0.032}0.033
0.030]0.032

0.080
0.078
0.060
0.059
0.057
0.047
0.047
0.047
0.045
0.039
0.039

0.061 0.047
0.059 0.045
0.046 0.035
0.045 0.035
0.043 0.033
0.036 0.028
0.036 0.028
0.036 0.027
0.034 0.026
0.030 0.024
0.030 0.023
0.030 0.023
0.030 0.023
0.029 0.022
0.026 0.020
0.026 '0.020
0.026 0.020
0.026 0.020
0.025 0.019
0.024 0.019

0.038
0.036
0.029
0.029
0.027
0.023
0.023
0.023
0.022-
0.020
0.019
0.019
0.019

0.018

0.017
0.017
0.017
0.016

0.016

0.015

0.033
0.031
0.025
0.024
0.023
0.020
0.020
0.019
0.018
0.017
0.017
0.017
0.016

0.015

0.014
0.014

0.014

0.014
0.014
0.013

15

n= 20

pk

0.990

n
0.97

0.9590

0.925

0.90010.990

0.975 0.950

0.925

0.900

mmeNH(ﬂ,PWN}—‘PWI\!HwNHNHH

0.050
0.049
0.038
0.037

0.036

0.030
0.030
0.030
0.029

0.025

0.025
0.025
0.024
0.024
0.021
0.021
0.021
0.021
0.021
0.020

0.038
0.037
0.029
0.028
0.027
0.023
0.023
0.023
0.022
0.019
0.019
0.019
0.018
0.018
0.017
0.016
0.016
0.016
0.016
0,016

0.030
0.028
0.022
0.022
0.021
0.018
0.018
0.017
0.017
0.015
0.015
0.015
0.015
0.014
0.013
0.013
0.013
0.013
0.012
0.012

0.024
0.023
0.019
0.018
0.017
0.015
0.015
0.015
0.014
0.013
0.012
0.012
0.012
0.011
0.011
0.011
0.011
06.011
0.010
0.010

0.01le

0.021
0.020
0.016

0.037
0.036
0.027
0.027
0.026
0.022
0.022
0.022
0.021
0.018
0.018
0.018
0.018
0.017
0.016
0.016
0.016
0.015

0.015
0.013
0.013
0.012
0.012
0.011
0.011
0.011
0.010
0.010
0.009
0.009
0.009
0.009
0.009,
0.008

0.015.0.012-0.009-0.008.0.006
0,01570.011°0.00970.007 0,006

0.028
0.027
0.021
0.021
0.020
0.017
0.017
0.017
0.0le
0.014
0.014
0.014
0.014
0.013
0.012
0.012
0.012
0.012

0.022
0.021
0.016
0.016
0.015
0.013
0.013
0.013
0.012
0.011
0.011
0.011
0.011
0.010
0.009
0.009
0.00%
0.009

0.018
0.017
0.014
0.013
0.013
0.011
0.011
0.011
0.010
0.009
0.009
0.009
0.009
0.008
0.008
0.008
0.008
0.008

0.015
0.014
0.012
0.011
0.011
0.009
0.009
0.009
0.009
0.008
0.008"
0.008
0.008
0.007
0.007
0.007
0.007
0.007



23

REFERENCES

Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and Brunk, H. D.
(1972). Statistical Inference under Order Restrictions. John
Wiley & Sons, New York.

Desu, M. M., Narula, S. C. and Villarreal, B. (1977). A Two-Stage
Procedure for Selecting the Best of k Exponential Distributions.
Commun. Statist.-Theor. Meth., A6(12), 1223-1230.

Epstein, B. and Sobel, M. (1954). Some theorems relevant to life
ggsting from an exponential distribution. Ann. Math. Statist.
» 373-381.

Gupta, S. S. and Huang, W. T. (1982). On isotonic selection rules
for binomial populations better than a standard. Tech. Report
82-22, Dept. of Statist., Purdue University.

Gupta, S. S. and Sobel, M. (1958). On selecting a subset which contains
all populations better than a standard. Ann. Math. Statist. 29,
235-244,

Gupta, S. S. and Yang, H. M. (1984). Isotonic procedures for selecting
popultaions better than a control under ordering prior. Proceedings
of the Indian Statistical Institute Golden Jubilee Conference on
Statistics: Applications and New Directions, held in Calcutta
December 16-19, 1981, pp. 279-312.

Mukhopadhyay, N. (1984). Sequential and Two-Stage Procedures for
Selecting the Better Exponential Population Covering the Case
of Unknown and Unequal Scale Parameters. Journal of Statistical
Planning and Inference 9, 33-43.

Mukhopadhyay, N. and Hamdy, H. I. (1984). Two-Stage Procedures for
Selecting the Best Exponential Population When the Scale Parameters
are Unknown and Unequal. Sequential Analysis, 3(1), 51-74.




SECURITY CLASSIFICATION OF THIS PAGE (When Dare Entered). |

{

REPORT DOCUMENTATION PAGE

. READ lNSTRUCTIOVS
BEFORE COMPLETING FORM

Techn1ca1 Report #8346 -

REPORT NUMBER

2. GOVT ACCESSION NO.

3. RECIPIENT'S CATALDG NUMBER

4.

TITLE (and Subtitle)

ISOTONIC PROCEDURES FOR SELECTING POPULATIONS
BETTER THAN A STANDARD: TWO-PARAMETER EXPONENTIAL

s. TYPE OF REPORT & PERIOD COVERED

Technical

DISTRIBUTIONS 6. PERFORMING ORG. REPORT NUMBER
_ Technical Report #83-46
AUTHOR(s)

Shanti S. Gupta and Lii-Yuh Leu

8. CONTRACT OR GRANT NUMBER(s)

{NO00014-75-C-0455

PERFbRMiNG ORGANIZATION NAME AND ADDRESS
Purdue University

Department of Statistics

West Lafayette, IN 47907

10. PROGRAM ELEMENT, F'ROJECT TASK
AREA & WORK UNIT NUMBERS

CON:I'ROI.LING OFFICE NAME AND ADDRESS
Office of Naval Research
Washington, DC

12. REPORT DATE

October 1983

13. NUMBER OF PAGES

14,

MONITORING AGENCY NAME & ADDRESS(!f dillerent from Controlling Otlice) )

15. SECURITY CLASS. (of this report)

Unclassified

184, DECL ASSIFICATION: DOWNGRADING
SCHEOULE

OISTRIBUTION STATEMENT (of this Report)

Approved for public release, distribution unlimited.

17.

DISTRIBUTION STATEMENT (of the abstract enteréd In Block 20, it ditferent from Report)

SUPPLEMENTARY NCTES

KEY WORDS (Continue on reverse side if nacessary and identity by block number)

Isotonic procedures, selection procedures, standard, negative exponential,
guarantee time, subset selection, simple ordering prior. .

20.

of a standard.
populations in the selected subset is 1nvest1gated
for the proposed procedures are given in Table I through Table IV.

ABSTRACT (Continue on reverse side If necessary end identify by block number)

The problem of selecting populations, from two- parameter exponent1a1 populations,
which are better than a standard under an ordering prior is investigated.
negative exponential distribution is the model for 1ifetime, then the problem is to
select all theose populations for which the guarantee ]1fet1mes aré larger than that
Comparisons of these procedures based on the expected number of bad
Tables of associated constants

If the

DD

FORM -
1 JAN 73

1473 | .

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

r



