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Introduction

A common problem that arises in practice is the comparison of several
Bernoulli processes (or populations) with unknowh parameters pqs... Py
respectively, where the pi's denote the success probabilities. For
example, in examining the output at manufacturing processes it may be of
interest to rank (or select) processes based on the estimated proportion of
conforming output. In a different context, utilizing customer survey data
expressing satisfaction with service at a car dealership it may be of
interest to rank (or select) dealers based on the estimated proportion of
satisfied customers. In all such examples the decision will be based on
sample data and, consequently, statistical criteria should be specified as
part of the investigation. We will deal with one such specification here.

Another particular realization of this problem is the critical issue
of vendor selection. Deming (1982) notes the importance of vendor selection
in a company's efforts to achieve high quality and productivity. In his
14 points, Deming's point 4 suggests the reduction of the number of suppliers

to a subset of vendors who can furnish statistical evidence of dependable quality.
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of the first author was supported by the Office of Naval Research Contracts
NO0014-75-C-0455 and NO0014-84-C-0167 at Purdue University. Reproduction in whole
or in part is permitted for any purpose of the United States Government.



A Statistical Selection Approach to Binomial Models

ABSTRACT

A subset selection rule is considered for selecting the best of
k binomial populations (as determined by the binomial probability
parameter). Let Xi denote the number of conforming items in a sample
of size n from the i-th population (success probability pi), i=T1,...5k.

The rule selects the i-th population if and only if Xi > max X.-d,
1<j<k

where d is a nonnegative integer. Operating characteristics are studied

for slippage and equi-spaced pakametric configurations. Tables and graphs
relating to selection probabilities and expected subset size are presented
as well as examples for illustrating use of these. Also, a new rule is
discussed for selecting populations when bounds on the probability parameters

are available.

Key Words: Binomial model, subset selection rules, operating
characteristics, comparison with a control, application to vendor

selection.



Vendor selection involves a consideration of many aspects -- cost,
service, reliability, and quality. Pettit (1984) described the approach
that 3M Corporation uses in the evaluation of prospective suppliers. It
consists of evaluating potential vendors in four areas: quality, price,
performance, and facility capabilities. While quality is explicitly con-

sidered in this approach, it is not eva]uated in a statistical sense.

This article illustrates how statistical ranking and selection methodology
can be utilized as one objective evaluation tool in this important decision
setting.

To formalize the above problems consider k Bernoulli processes, and
let P; denote the "success" probability (i.e., sampled item conforms to
specifications) of the ith population. The ith population we will denote
simply by s Let P[]].i--ai p[k:| denote the ordered parameters. It is
assumed that there is no prior knowledge regarding the correct pairings of
the ordered and the unordered pi's. The populations are ranked according
to the values of pi's, and that associated with p[k], the Targest Pi> is
called the best.

Let X],Xz, . ’Xk denote the number of conforming items from these
populations based on a random sample of n items from each. Our interest
is to define a statistical procedure based on X],...,Xk to select a
nonempty subset of the k populations with a guarantee of minimum probability
P* that the best is included in the selected subset. Selection of any subset

which includes the best is called a correct selection (CS). Thus the probabil-

ity of a correct selection using a rule R, P(CS|R), should satisfy the condition

that

P(CS|R) > P (1)
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whatever be the unknown values of the pi's. This condition is generally

referred to as the P*-condition. Obviously, for a méaningfu] problem,
1/k < P* < 1.

Any procedure R that satisfies (1) is a valid procedure. To distinguish
between valid procedures we need to evaluate criteria that characterize
effectively procédure performance. One such criterion is the expected
value of S, the number of populations included in the selected subset. S is
known as the subset size and it is 2 positive integer-valued random variable.
One may also consider the related quantity E(S'), where S' denotes the number
of non-best populations included in the selected subset. It should be pointed
out that one would like to have E(S) (or E(S')) as small as possible subject
to (1). Let o denote the probability of selecting the process associated

with p[i], i=1,...,k. Obviously, a = PCS. It is also easy to see that

E(S) aq +...+

*k
(2)
E(S")

u1 +...1 uk_].

The ai'S are called the individual selection probabilities. One may also

consider a criterion which combines E(S) and PCS. Such a criterion, namely,
E(S)/PCS has been considered in the literature. A1l these criteria that are

used to evaluate a valid procedure are called operating characteristics

of the procedure. In our present study, we use the expected subset size
and the individual selection probabilities.

A related approach for selecting a single best vendor (or a manufacturing
process) having the highest percentage of conforming product under the
indifference zone formulation has been studied by Sobel and Huyett (1957).
Some adaptive and sequential versions of the same problem have been discussed
by Bechhofer and Turnbull (1977) and by Bechhofer (1984). Gibbons (1982)
provided a general introduction to selection procedures including the
subset approach. Her examples focused primarily on selection with respect

to means of normal probability models.



The Gupta-Sobel Rule

Gupta and Sobel (1960) proposed and studied a rule BBdefined as follows.

Rg: Select =, if and only if X, > max X.-d,
i i =95
1<j<k

where d = d(k,n,P*) is the smallest nonnegative integer satisfying

inf P(CSIRy) > P*, (3)
Q

where @ = {p|p = (p], ..,pk), 0 < p; <1, i=1,...,k} is the parameter
space. 'Gupta and Sobel (1960) have shown that the infimum on the left-

hand side of (3) is attained when Py =e--= Pye Thus, we evaluate

P(CSIRB)for Py == P =P (say) and rewrite (3) as
inf § (Mpd0- " 3y z (MpY(1-p)" V3T P (4)
0<p<] JOJ y=0 s _

where u = min{d+j,n). There is no known analytical result regarding the
value of p for which the infimum in (4) is attained except in the‘épecial
case of k = 2. When k = 2, the infimum is attained for p = 0.5.

We have evaluated the algebraic expression in (4) as a function of
p, p = 0(.01)1.0, to further investigate where the infimum occurs and to
compare the corresponding infimum of the probability of a correct selection
with that computed at p = 1/2. Calculations were made for k = 2(1)5(5)15

= 2(1)5(5)35; d = 0(1)n. The results are summarized in Figures 1 and 2.

The value of p at which the infimum in (4) is attained 1is given in Figure 1
as a function of n and ranges between 0.26 and 0.50. However, as shown in
Figure 2, for these calculations the infimum of the probability of a correct
selection is very close to that value calculated assuming that the common value
of p is 0.5 -- especially at the higher probability values.

When PCS calculated at the common p value of 0.5 exceeds 0.75 the actual
infimum value of PCS is within 0.14% of this nominal calculation for k=3 and

“all n; within 0.3% for k=5 and n>3; within 1.4% for k=10 and n33§ and within



3.4% for k=15 and n>3. Thus, using a rule where d is determined assuming
a common p value of 0.5 would result in an actual Tower bound on the PCS

only somewhat smaller than the nominal value. For large n, (4) can be approximated by

inf [ o [x+ (d+ .5)/(npq)¥ Jp(x)dx = P* ,
O<psl -

where q = 1-p. The infimumcof the expression on the left hand side above

~occurs at p = %—which gives the approximation for d as the solution to

[ R Tx + (2d41)/(0F) Tp(x)dx = P*, (5)
where & and ¢ denote the cdf and density of a standard normal variable. Since d as
obtained from (5) is not necessarily an integer, to implement the procedure we
simply replace d by the smallest integer greater than or equal to d.
These values have been tabulated by Gupta and Sobel (1960), for
k = 2(1)20(5)50 and n = 1(1)20(5)50(10)100(25)200(50)500. Tables 1
and 2, extracted from Gupta and Sobel (1960), provide the values of
d for P* = .90 and .95, respectively, for k = 2,5(5)30(10)50, and

n = 5(5)50(10)100, 250,500,

Operating Characteristics

Let us assume without loss of generality that Py S--eS Py As we
pointed out earlier, we consider the rule: Select s if and only if

X; > max X.-d, where 0 < d < n. The operating characteristics studied
1<j<k
are the expected subset size and the individual selection probabilities.

We consider two types of parametric configurations, namely, (1) the

slippage configuration defined by P=P1=e =Py T PS> 0 <68 < 1-p, and

(2) the equi-spaced parametric configuration defined by Pi+17Pi = S,

i=1,...,k-1, 8 <8<(1-p)/(k-1). For convenience, let

0,1,...,Nn

b(x; n,p) = ()P (1-p)"%, x

(6)

t
Y b(x; n,p), t
x=0

1l

B(t; n,p) 0,15...,N.



Slippage Configurations

For the configuration (p,p,...,p,p+6), 0 <8 < 1-p, we get

n
PCS = o) = ) b(x; n,p+s)[B(x+d; n,p) 17,
x=0

(7)

n 2
4 = L bOG n.p)BOxds npes)[B(xed; n,p)] -2,
X:

T=1,...,k-1.
Any specified non-best population has the same probability of being selected and
we denote this by P(NCS). Also, E(S) = (k-])a] + PCS.
We present tables and graphs for the operating characteristics in the
case of three slippage configurations. These are given by the following

pairs of p and § values:
(I) p=.50, 6 = .10, (II) p=.75, s = .05, (III) p=.90, s = .03,

TabTes 3 through 5 give the values of PCS, P(NCS), and E(S) for

k =3,5,10,15; d = 2,3,4,5; and n = 5(5)50 (10)100,250,500 in the case

of the three configurations I - IIT. Figure 3 shows the graph of E(S) as
a function of n for the rule with d = 2 for k = 3,5,10 when the slippage
configuration is given by p = .90 and § = .03. This figure also shows for

n = 10(10)50, the value of PCS when § = 0, that is, when all the parameters

are equal to .90. It should be noted that the PCS Va]ues, for a fixed value of

k, decrease in this figure because the value of d is fixed at 2 throughout these
calculations. This behavior is clearly understood (for large values of n) by
referring to equation (5). The limit of this expression is 1/k. Figures 4 and 5
are graphs of E(S) as a function of n for d = 2,3,4,5, and for k = 3,5, and 10.
Figure 4 is for the slippage configuration with p=.75and § = .05 and Figure 5
is for the configuration with p = .90 and § = .03. These results and examples are

discussed in the next section.



For sufficiently large n, one can use the normal approximation and

obtain
PCS ~ | @k'1[x 4p+6pqq-6 + d+n‘SH/Z]CP(x)dx,
- : vnpq
| (8)
® k-2 d+1/2 pq 1/2+d-ns
.~ |0 + i) + dx,
%4 {w x /m][ (p+8)(g-s) X W}P(X) X
i=T1,...,k=1
Note that in equat{on:(s), 1/2 is due to the continuity correction in
approximating the binomial by the normal.
Equi-spaced Parametric Configuration
For the configuration (p,p+s,...,p+(k-1)s), 0 < & < (1-p)/(k-1), we
have
n
a; = ) b(xs n,p+(i-1)8) 1 B(x+d; n,p+(j-1)6), i = 1,...,k. (9)
x=0 jFi

We note that o is the probability of including the non-best popuiation
with parameter p + (i-1)s, i = 1,...,k-1, and oy is the PCS. For large n,

the normal approximation yields

@ 6:(1-6. PR
d+1/2+(i-j)ns .
u,_i s I .H.CI)[ —eﬁx + / (1 J)n ](P(X')dx,1 = ],...,k, (]0)
- jFi J J ne; 1—ej

where 8 = p+(i-1)s, i = 1,...,k.

A Modified Procedure Ré

Suppose, the experimenter has the a priori information that for all popu-
lations the unknown probabilities pi's are at least as large as Po where
Po is some specified number and which in many situations can be assumed to
be greater than %u Then, intuitively speaking, one should be able to use
this information to reduce the d-value, for fixed:wvalues of P* and n.. This can

be shown as follows:



In the least favorable case, i.e. when P1 = Py =...=p = p, and n is

large, we have

k-1 d+1/2
PCS = [ " '(x + —L5)p(x)dx,
- /npq
1

so thatfor n ~ =, the infimum of the PCS - takes place at p =5 Since
the PCS given above decreases with p for values of p > %3 it follows

that for Pg > %3

]

inf  PCS = [ of N(x + 24y (x)dx
O<p<1 -o /n

(o]

k-1 d+1/2 -
< f o '(x+ —L=)p(x)dx, where q, = 1-p,.
- 55655 0 0

Equating the two integrals above to P* and relabelling the d-value in

the second integral as d*, we have
d* = (2d+])/p0qO - 1/2 < d.

Thus, for fixed n and P*, the a priori constraint on pi's leads one to use
the following modified procedure,

Ry:

B’ Select the ith population if and only if

Xi > _max Xj - d*.
1<j<k
The modified procedure Ré will result in a smaller value of the expected
size, E(S), keeping n and P* fixed. If one is willing to give up the saving
in the value of E(S), one can, for a fixed P*, find a smaller n corresponding
to this smaller value d* of d. This can be done by interpolation in Tables

1 and 2.



Comparison with a Control

In some situations, one may want to compare several populations with a
control. The goal is to select all populations which are better than (that
is, having higher p-value) the control. Based on random sampies of n items,
let X1,...,Xm denote the numbers of conforming items from m populations and
let X0 denote the number for the control. This problem was studied separately

by Gupta and Sobel (1958). Their rule is

RBC: Select the population with Xi conforming items if and only if

X. > X,-D,
i—"0
where D = D(m,n,P*) is the smallest nonnegative integer such that with specified
probability P* the selected subset will include all populations better than the
control. For selected values of m, n, and P*, the value of D can be obtained

from Tables 1 and 2 by setting m = k-1.

Examples

For the purpose of illustrating our rule and the use of the tables, let
us assume that we have five processes for an item. Our goal is to identify
a subset of these in such a manner that the best is contained in the subset
with a high probability. Having identified this subset, we will then proceed to
investigate other nonstatistical criteria (such as price) upon which to base a
final decision on process selection. We note that this approach is applicable
only if test samples of the item can be obtained. For the five processes,
let Xi denote the number of conforming items based on random samples of size

n=30. (We will say more about the sample size choice later). Suppose that

= 24 X4 = 22, and X, = 28.

5
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In simple terms, process 1 generated 30 test items (chosen at random)

and 27 of the 30 items conformed satisfactorily to all specifications.

Now we use the statistical selection procedure RB with d = 2 to select
a subset. (We will say more about the choice of d later.)
The rule can now be simply stated as: choose all processes for which
X; > max Xj—d = 28-2 = 26. This results in the selection of processes 1 and 5.
How good is this procedure? What probabilistic guarantees do we have with
its use? That is where our tables and figures are helpful as we will now
illustrate. | |

In the event that four of the processes could produce 90% conforming
items (i.e., p = .90) and one could produce 93% conforming items, the
vse]ectionrru1e Rg as we used it (n'=30, d= 2, k = 5) would select the

best process with probability 0.86 and would retain a nonbest process with

probability 0.66 (see Table 5) The expected size of the selected subset
can be read from either Table 5 or Figure 3 and is 4(.66) + 0.86 = 3.5.
Also from Figure 3 we find the probability of making a correct selection
(i.e., choosing the best process to be in the selected subset) decreases
to 0.702 as the best process decreases to 90% conformance --

the same as the other four

If these operating characteristics are not satisfactory from the
decision-maker's perspective then alternative choices for n and/or d should
be made. Note, however, that all of the probabilities given in the
preceding paragraph were obtainable before any data was obtained. The
operating characteristics of the selection procedure are determined prior
to the actual data analysis. Let us look at how alternative choices of

n and d can be generated so as to meet a decision-maker's requirements or



11

preferences. This search and specification is usually conditioned on some
statement about the parameter configuration over which the probabilistic
statements should be applicable.

For example, if we now focus our concern on parameters in a slippage
configuration with p = .75 and & = .05 we can Took for a pair (n,d) for
which PCS is at least a specified number -- say 0.90. Since this criterion
will yield more than one (n,d) choice we might then choose the pair which

has the smallest E(S). Consulting Table 4 we generate the options listed

below:

n d PCS E(S)
5 2 .96 4.65
10 3 .96 4.56
15 3 .92 4.13
20 4 .95 4.32
25 4 .93 4.06
30 4 .91 3.82
35 4 .90 3.62
40 5 .93 3.91
45 5 .93 3.74
50 5 .92 3.60

It should be noted fhat becadsé df the dfscréte nature of the distribution
involved, an increase in n does not produce necessarily a better option. In
this illustration the best option would be n = 50 and d = 5. That is, ask
for a random sample of 50 items from each process and select those for which

X1_1 max X; - 5.
1<j<k

Alternatively, one may want to set an upper bound for E(S)/k, the
expected proportion of populations selected. If we set this bound as .80,

then we look for pairs (n,d) for which E(S)<5 x .80 = 4. If there are more
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than one such pair with same n, we take the pair for which the PCS is maximum.

Consulting Table 4 again, we have the following options -- the best being
n=145and d = 5. ‘

n d E(S) PCS
10 2 3.89 .87
15 2 3.37 .81
20 3 3.77 .88
25 3 3.48 .86
30 4 3.82 91
35 4 3.62 .90
40 5 3.91 .93
45 5 3.74 .93
50 5 3.60 .92

It is possible to use other criteria for choosing the pair (n,d).
If we feel that the true parametric configuration can in some sense be
described by one of two possib]e.s1ippage configurations given by, say,
p=.75 6= .05and p= .90, § = .03, then we can choose the pair (n,d)

that controls the PCS or E(S) at. given levels for both configurations.

Summary and Concluding Remarks

In this'paper we have presented two statistical selection rules
applicable to the binomial model. The first rule is_appropriate for
the selection of a subset to contain the best population with a preassigned
probabilistic guarantee. The second rule is directed towards a selection
of a subset to contain all populations better than a standard -- again with
a specified probabilistic guarantee. Additionally we have indicated how
prior knowledge can be explicitly incorporated in the form of inequality
constraints on the binomial probability parameters. Such incorporation,
where applicable, can reduce substantially the expected subset size while

preserving the stated minimum probability of making a correct selection.
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Implementation of such procedures requires several choices by the

analyst. That is, in a sense, similar to consideration 1nVo1ved'1n
statistical hypothesis testing. In thelatter case the analyst determines

a critical region (or rejection region) and sample size by examining
operating characteristics (e.g., Type I and Type II errors) and choosing
combinations appropriate for the application. With respect to the selection
procedures herein discussed the analyst must choose the constant d to be

used with the ru]e‘RB and the sample size for each process.

Once the number of populations (k) is specified the choice of d and n

depends in turn on operating characteristics of the selection procedure.
(For rule RBC the choice is D and n). We recommend the analyst first
specify a P* value which is the minimum probability of a correct selection
(the analog of Type I error). This specification can generate many (d,n)
combinations. At this point the analyst should specify an upper bound on
the expected subset size for a parametric configuration heaningfu] for the
application (the analog of Type II error). Then referring to the figures
and tables given here, determine a (d,n) choice which achieves the requirements
on both the probability of a correct selection and the expected subset size.
In situations where these tables and figures are not sufficient to represent
an application, the reader is referred to the additional references. New
calculations may be required using the formulae given.
Once the d value and sample size n have been determined the amalyst.
proceeds by random sampling and testing of n items from each
population and then selecting a subset according to the rule RB with
d as the constant. The resultant subset, chosen on the basis of
a statistical comparison, can thén be examined further on other
important aspects (such as price, facilities, delivery, etc. for vendor selection).
Statistical methods can play a significant role in vendor selection.

Those described here are applicable only to those situations where vendors
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are currently prdducing the product of interest. Since the rules are data
dependent, they would not be applicable for decision situations involving
new products currently not being produced.

We have illustrated here techniques applicable to attribute data

represented by the binomial model. Similar procedures have been developed
for continuous measurement data emanating from a wide variety of statistical
distributions such as normal, gamma, and exponential. A good discussion of
these many rules can be found in the book by Gupta and Panchapakesan (1979).
Distribution-free (nonparametric) rules have also been developed and can be
applied when only ordinal information is obtained about the vendors (or

processes). A review of such procedures can be found in Gupta and McDonald

(1982).
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Table 1. Values of d for implementing the rule RB for selecting the best

of k binomial populations or the rule RBC

populations that are better than an unknown control.

for selecting from k-1 binomial

P = .90
n 2 5 10 15 20 25 30 40 50
5 2 3 3 4 4 4 4 4
10 3 5 5 5 5 5 6 6
15 4 5 6 6 6 7 7 7 7
20 4 6 7 7 7 8 8 8 8
25 5 6 7 8 8 8 9 9 9
30 5 7 8 9 9 9 9 10 10
35 5 8 9 9 10 10 10 11 1
40 6 8 9 10 10 11 11 11 12
45 6 9 10 11 11 11 12 12 12
50 6 9 1} 11 12 12 12 13 13
60 7 10 12 12 13 13 13 14 14
70 8 10 12 13 14 14 14 15 15
80 8 12 13 14 15 15 15 16 16
90 9 12 14 15 16 16 16 17 17
100 9 13 15 16 16 17 17 18 18
250 14 21 24 25 26 27 27 28 29
500 20 29 33 35 37 38 39 40 41

The above values of d were computed by using the normal approximation as

given in equation (5). Exact calculations based on (4) were used for n < 10.



Table 2. Values of d for implementing the rule RB for selecting the best
of k binomial populations or the rule RBC for selecting from k-1 binomial

populations that are better than an unknown control.

P = .95
K
n 2 5 10 15 20 25 30 40 50
5 3 3 4 4 4 4 4 4 5
10 4 5 5 6 6 6 6 6 6
15 5 6 7 7 7 7 8 8 - 8
20 5 7 8 8 8 8 9 9 9
25 6 8 8 9 9 9 10 10 10
30 6 8 9 10 10 10 1 11 1
35 7 9 10 1 11 1 1 12 12
40 7 10 1 1 12 12 12 13 13
45 g 10 1 12 12 13 13 13 14
50 8 1 12 13 13 13 14 14 14
60 9 12 13 4 14 15 15 15 16
70 10 13 14 15 16 16 16 17 17
80 10 14 15 16 17 17 17 18 18
90 11 14 16 17 18 18 18 19 19
100 12 15 17 18 19 19 19 20 20
250 18 24 27 28 29 30 31 32 32
500 25 34 38 40 42 43 43 45 46

The above values of d were computed by using the normal approximation

as given in equation (5). Exact calculations based on (4) were carried

out for n < 10.



Table 3.

PCS (top line), P(NCS) (middle 1ine) and E(S) (bottom line)
0.10

Slippage Configuration:

p = 0.50 delta

18

k 10 15
ag=2 4 3 S 3
n
0.95 0.89 1.00 1.00| 0.92 0.99 1.00 1.00} 0.87 0.97 1.00 1.00j 0.83 0.96 1.00 1.00
£] 0.87 0.97 1.00 1.00| 0.82 0.85 0©.99 1.00| 0.74 0.93 0.99 1.00| 0.70 0.8t 0.88 1.00
2.69 2.93 2.93 3.00{ 4.13 4.80 4.98 5.00| 7.56 ©9.33 9.92 10.00110.60 13.69 14.83 15.00
0.90 0.%6 0.99 1.00] 0.84 0.93 0.98 0.99] 0.75 0.89 0.96 0.99f{ 0.69 0.86 0.95 0.93
10 0.69 0.84 0.93 0.98| 0.62 0.79 0.91 0.97] 0.51 0.71 O.87 0.95] 0.45 0.67 0.84 0.94
2.29 2.64 2.85 2.95) 3.30 4.10 4.61 4.87| 5.33 7.32 8.77 9.56 6.88 10.17 12.68 14.14
0.88 0.94 0.98 0.99| 0.81 0.90 0©.96 0.98] 0.70 0.84 0.92 0O.97 0.64 0.79 0.80 0.96
15| 0.58 0.73 0.84 0.92| 0.50 0.66 0.80 0.90| 0.40 0.57 0.73 0.8% 0.34 0.51 0.69 0.83
2.04 2.39 2.66 2.83f 2.8 3.56 4.16 4.57| 4.26 5.87 7.51 B8.66| 5.37 7.99 10.51 12.51
0.87 0.83 0.97 0.88| 0.80 0.88 0.94 0.97] 0.69 0.81 0.8 0.95]| 0.62 .76 0.86 0.93
20| 0.50 ©0.64 0.75 0.85} 0.43 0.57 ©0.70 0.81| 0.33 ©0.47 0.62 0.76 0.27 0.42 0.-57 0.72
1.88 2.20 2.47 2.68| 2.50 3.16 3.76 4.23| 3.63 5.07 6.5% 7.76| 4.47 6.62 8.88 10.96
0.87 0.82 0.96 0.98] 0.79 0.87 0.93 0.96| 0.68 0.79 0.88 0.93 0.62 0.74 0.84 0.91
251 0.44 0.56 0.68 0.78] 0.37 0.50 0.62 0.74| 0.28 0.41 0.54 0.67 0.23 0.35 0.49 0.62
1.75 2.05 2.32 2.54| 2.28 2.87 3.43 3.92| 3.21 4.45 5.74 6.96 3.88 5.69 7.68 9.66
©.87 0.92 0.85 0.98]| 0.79 0.87 0.92 0.96{ 0.68 0.79 0.86 0.92 ©.62 0.73 0.83 0.90
301 0.40 0©0.50 0.61 0.71| 0.33 0.44 0.56 0.67| 0.25 0.36 0.48 0.60| 0.20 0.31 0.42 0.55
1.66 1.93 2.18 2.40| 2.12 2.64 3.16 3.63| 2.91 3.98 5.14 €.30( 3.47 5.01 6.77 8.60
0.87 0.92 0.85 0.97| 0.80 0.87 0.92 0.95| 0.69 0.78 0.86 0.91 0.62 0.73 0©0.82 0.88
35} 0.36 0.46 0.56 0.65| 0.30 0.40 0.50 0.61| 0.22 0.32 0.42 0.54} 0.18 0.27 0.37 0.49
1.59 1.83 2.07 2.28] 1.99 2.45 2.93 3.39| 2.68 3.62 4.66 5.73| 3.16 4.50 6.06 7.73
©.88 0.92 0.85 0.97) 0.80 0.87 0.91 0.95| 0.70 0.78 O0.85 0.91 0.63 0.73 0.81 0©.88
401 0.32 0.41 0.5% 0.60} 0.27 0.36 0.46 0.56| 0.20 0.28 0.38 0.48) 0.16 0.24 0.33 0.44
1.52 1.75 1.97 2.17| 1.88 2.30 2.74 3.17| 2.49 3.33 4.27 5.26] 2.92 4.10 5.49 7.0t
0.88 0.%2 0.95 0.97) 0.8t 0.87 0.91 0©.95| 0.71 0.79 0.85 0.90} 0.64 0.73 0.81 0.87
451 0.30 0.38 0.46 0.55] 0.25 0.33 0.42 0.51| 0.18 0.26 0.34 0.44| 0.15 0.22 0.30 0.39
1.47 1.68 1.88 2.08] 1.79 2.18 2.58 2.98| 2.34 3.098 3.94 4.85f 2.72 3.77 5.02 6.40
0.89 0.92 0.95 0.97| 0.82 0.87 0.91 0.%4] 0.72 0.79 0.85 0.90] 0.65 ©.74 0.81 0.87
50| ©0.27 0.35 0.43 0.51} 0.23 0.30 0.38 0.47] 0.17 0.23 0.31 0.40} 0.14 0.20 0.27 0.36
1.43 1.61 1.80 1.99]| 1.72 2.07 2.44 2.81| 2.22 2.89 3.67 4.51 2.56 3.50 4.63 5.89
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(Continued).

Table 3

PCS (top Tine), P(NCS) (middle 1ine) and E(S) (bcttom line)

p =0.50 delta = 0.10

Slippage Configuration:
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For values of n > 60, the values in the above table were computed by using

the normal approximations given in (8),



Table 4. PCS (top Tine), P(NCS) (middle 1ine) and E(S) (bottom Tine)
STippage Configuration: p = 0.75 delta = 0.05

3 5 10 15

d=2 3 4 5 2 3 4 5 2 3 4 5 2 3 4

.87 1.00 .00 1.00| 0.96 1.00 1.00 1.00] 0.85 0.99 .00 1.00| 0.94 0.99 1t.00

94 0.99 1.00 1.00| 0.92 0.99 1.00 1.00] 0.90 0.98 1.00 1.00| 0.90 0.98 1.00

86 2.98 3.00 00| 4.85 4.95 5.00 5.00| 2.08 9.86 9.99 10.00]|13.52 14.78 14.99
0.81 0.97 0.99 1.00} 0.87 0.96 0.99 .00 0.80 0.93 0.98 1.00| 0.77 0.92 0.98
0.81 0.983 0.8 1.00| 0.75 0.90 0.87 0.99| 0.68 0.86 0.6 0.99| 0.63 0.84 0.95
2.54 2.83 2.85 2.99] 3.89 4.56 4.87 4.97| 6.89 8 69 9.58 9.390| 9.63 12.65 14.23
0.87 0.95 0.98 0.99| 0.81 0.82 0.97 0.99| 0.72 0.87 0.95 0.98] 0.67 0.84 0.93
0.72 0.85 0.93 0.98| 0.64 0.80 0.91 0.97| 0.54 0.73 0.87 0.95} 0.48 0.69 0.85
2.31 2.65 2.85 2.95| 3.37 4.13 4.61 4.85| 5.57 7.47 8.79 9.52} 7.45 10.52 12.79
0.85 0.83 0.97 0.99| 0.77 0.88 0.95 0.98{ 0.67 0.82 0.91 0.96( 0.61 0.77 0.88
0.65 0.78 0.88 0.94f 0.56 0.72 0.84 0.92| 0.45 0.63 0.79 0.88] 0.40 0.58 0.75
2.15 2.49 2.73 2.88| 3.02 3.77 4.32 4.68( 4.75 €.52 7 98 8.98| 6.16 8.83 11.36
0.83 0.1 0.96 0.98! 0.75 0.86 0.93 0.97| 0.63 0O.78 0.88 0.84] 0.57 0.73 0.85
0.59 0.73 0.83 0.91] 0.51 0.66 0.78 0.88] 0.40 0O.56 0.71 0.83] 0.34 0.50 0.66
2.02 2.36 2.62 2.79( 2.77 3.48 4.06 4.47| 4.19 5.80 7.26 8.39| 5.31 7.77 10.14
0.82 0.90 0.95 0.97| 0.73 ©0.84 0.91 0.95| 0.61 0.75 0.85 0.92| 0.55 0.70 0.82 0.
0.55 0.68 0.78 0.87f 0.46 0.60 0.73 0.83| 0.35 0o 50 0.64 0.77| 0.30 0.44 0.59 0.
1.82 2.25 2.51 2.71] 2.58 3.25 3.82 4.27] 3.79 5§ 25 6.65 7.84] 4.72 6.81 9.13 11.
0.82 0.89 0.94 0.97| 0.72 0.82 0.90 0.94| 0.0 0.73 0.83 0.90| 0.53 0.67 0.79 O.
0.51 0.63 0.74 0.83} 0.43 0.56 0.68 0.78] 0.32 0.45 0.58 0.71] 0.27 0©0.40 0.54 0.
1.85 2.16 2.42 2.63] 2.43 3.05 3.62 4.08| 3.49 4.82 6.15 7.34| 4.28 6.24 8.31 10.
0.81 0.88 0.93 0.96] 0.72 0.81 0.89 0.93| 0.59 0O.71 0.81 0.89} 0.52 0.66 0.77 O.
0.48 0.60 0.70 0.79| 0.40 0.52 0.64 0.74| 0.30 0.42 0.54 0.67| 0.24 0.36 0.49 O.
1.78 2.08 2.33 2.55| 2.31 2.89 3.44 3.91| 3.25 4.47 5.72 6.89( 3.84 5.71 7.63 9.
0.81 0.88 0.92 0.96| 0.72 0.81 0.88 0.93| 0.58 © 70 0.80 0.88| 0.52 0.64 0.75 O.
0.46 0.56 0.67 0.76| 0.37 0.49 0.60 0.70| 0.27 0.39 0.5t 0.62| 0.23 0.33 0.45 O.
1.78 2.0t 2.26 2.47| 2.21 2.76 3.28 3.74] 3.08 4.18 5.35 6.49| 3.67 5.28 7.07 8.
0.81 0.87 0.92 0.95| 0.7Y 0.80 0.87 0.92] 0.58 0.70 0.79 0.86] 0.51 0.63 0.74 O.
0.43 0.54 0.64 0.73] 0.35 0.46 0.57 0.67| 0.26 0.36 0.47 0.58| 0.21 0.31 0.42 O.
1.68 1.84 2.19 2.40| 2.13 2.64 3.14 3.60| 2.90 3.93 5.04 6.13| 3.45 4.93 6.59 8.
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PCS (top line), P(NCS) (middie 1ine) and E(S) (bottom line)

(Continued).

Table 4

p=20.75 delta = 0.05

Slippage Configuration:

60, the values in the above table were computed by using
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For values of n >

(8).

the normal approximations given in



Table 6. PCS (top Tine), P(NCS) (middle Tine) and E(S) (bottom 1ine)

22

STippage Configuration: p = 0.90 delta = 0.03
k 10 15
d=2 3 5 3 4
n
1.00 1.00 1.00 1.00]| 1.00 1.00 1.00 1.00| 1.00 1.00 1.00 1.00| 1.00 1.00 1.00 1.00
5[ 0.89 1.00 1.00. 1.00 0.99 1.00 1.00 1.00}{ 0.99 1.00 1.00 1.00| 0.99 1.00 1.00 1.00
2.98 3.00 3.00 3.00]| a.96 5.00 5.00 5.00] 9.92 10.00 10.00 10.00[14.88 14.99 15.00 15.00
0.98 1.00 1.00 1.00| 0.98 1.00 1.00 1.00} 0.97 1.00 1.00 1.00! 0.97 1.00 1.00 1.00
101 0.95 0.99 1.00 1.00| 0O.94 0.98 1.00 1.00! 0.893 0.99 1.00 1.00| 0.93 0.92 1.00 1.00
2.88 2.98 3.00 3.00| 4.73 4.95 4.99 5.00| 9.35 9.88 9.99 10.00({13.99 14.82 14.98 15.00
0.96 0.99 1.00 1.00| 0.94 0.99 1.00 1.00| 0.93 0.98 1.00 1.00| 0.92 0.88 1.00 1.00
15| 0.89 0.97 0.99 1.00| 0.86 0.96 0.9 1.00{ 0.83 0.95 0.99 1.00| 0.82 0.95 0.99 1.00
2.74 2.83 2.98 3.00| 4.38 4.82 4.96 4.99( 8.39 9.52 g9.89 9.98[12.40 14.23 14.82 14.87
0.94 0.98 1.00 1.00| 0.91 o0.88 0.99 1.00| 0.87 0.96 0.99 1.00| 0.86 0.96 0.99 1.00
201 0.83 ©0.94 0.38 1.00]| 0.78 0.82 0.97 0.89] 0.73 0.89 0.87 0.99] 0.70 0©0.88 0.96 0.99
2.60 2.86 2.96 2.98| 4.05 4.64 4.89 4.97 7.44 8.99 9.68 9.92(10.71 13.28 14.45 14 .86
0.92 0.98 0©.99 1.00] 0.88 0.96 0.99 1.00| 0.83 0.94 0.98 1.00| 0.80 0.93 0.98 1.00
25) 0.77 0.90 ©0.96 0.99] 0.72 0.87 0.95 0.98] 0.65 0.83 0.93 0.88] 0.61 0.81 0.92 0.97
2.47 2.77 2.92 2.98| 3.76 4.44 4.79 4.83| 6.66 8.41 9.38 9.80]| 9.35 12.24 13.80 14.64
0.91 0.97 0.93 1.00| 0.86 0.95 0.98 1.00| 0.80 0.92 0.97 0.89{ 0.76 0.90 0.97 0.99
30| 0.73 0.86 0.94 0.98| 0.66 0.82 0.92 0.97| 0.58 0.77 0.89 0.96] 0.54 0.74 ©0.88 0.95
2.36 2.68 2.87 2.95( 3.52 4.24 4.67 4.88| 6.04 7.86 9.02 9.62| 8.30 11.28 13.26 14.31
0.90 0.96 0.99 1.00] 0.85 0.93 0.98 0.99| 0.77 0.90 0.96 0.99{ 0.73 0.88 0.95 0.88
35 0.68 0.82 0.91 0.96]| 0.82 0.78 0.88 0.95] 0.53 0.72 0.85 0.894| 0.48 0.68 0.83 0.92
2.27 2.61 2.82 2.92| 3.31 4.06 4.54 4.80| 5.53 7.36 8.65 9.40| 7.47 10.42 12.60 13.92
0.89 0.95 0.98 0.99] 0.83 0.92 0.97 0.98| 0.75 0.88 0.95 0.88| 0.70 0.85 0.84 0.98
401 0.65 0.79 0.89 0.95] 0.58 0.74 0.86 0.93]| 0.49 0.67 0.81 0.91] 0.44 0.63 0.79 0.89
2.18 2.53 2.76 2.89| 3.14 3.88 4.40 4.72| 5.12 6.90 8.28 9.16| 6.81 9.66 11.95 13.47
0.88 0.95 0.98 0.99] 0.82 0.91 0.96 0.89| 0.73 0.86 0.94 0.88( 0.68 0.83 0.92 0.7
45 0.62 0.76 0.86 0.93} 0.54 0.70 0.83 0.91] 0.45 0.63 0.77 0.88] 0.40 0.58 0.74 0.86
2.11 2.46 2.70 2.85| 2.99 3.72 4.27 4.63]| 4.77 6.50 7.91 8.89] 6.27 8.99 11.32 13.00
©0.88 0.94 0.97 0.98] 0.81 0.90 0.36 0.98] 0.72 0.85 0.93 0.97] 0.67 0.81 0.91 0.98
50| 0.59 0.73 0©0.83 0.91] 0.51 0.67 0.80 0.89| 0.42 0.58 0.74 0.85( 0.37 0.54 0.70 0.83
2.05 2.39 2.64 2.81| 2.86 3.58 4.14 4.53| 4 .48 6.14 7.57 B8.62]| 5.82 8.41 10.74 12.53
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PCS (top line), P(NCS) (middle 1ine) and E(S) (bottom 1ine)

Table 9. (Continued).

p=0.90 delta = 0.03

STippage Configuration:
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, the values in the above table were computed by using

For values of n > 60

the normal approximations given in (8).
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Figure 3. Expected size of selected subset for p=.90,6=.03,d=2,andk = 3,5,10. Inserted
numbers are probability of a correct selection with § = 0 and p=.90. -
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Figure 4. Expected size of selected subset for p = .75, 6 = .05 and k = 3 (top), k = 5 (middle)
and k = 10 (bottom).
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Figure 5. Expected size of selected subset for p = .90, 6§ =.03 and k = 3 (top), k = 5 (middle, and
k=10 (bottom).
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