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Abstract: We analyze the multivariate linear regression model Y = Z B + U,
where one column w of % is an indicator variable. Relations between this
model, two-group linear discriminant analysis, and a multiple linear regression
model w;th W as response variable are investigated. Some remarks on the case

of several indicator variables are given.
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1. A multivariate parallel regression model

We consider the model defined by
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is an observed matrix of p - g response variables on each of ny + n, individuals,
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is a known matrix of rank q + 2,
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is a matrix of unknown regression parameters, and U(n]+n2 x p-q) is a matrix

of (unobserved) random disturbances, whose rows are uncorrelated, each with

mean O and common covariance matrix . Without loss of generality we can assume
that the columns of X are all centered, i.e. X'1 = 0. The elements of w are
assumed to take only two values ¢y = n2/(n]+n2) and Cp=cy-1=- n]/(n]+n2).

Furthermore, we assume that the rows of the matrix Z are ordered such that
W, = ) _ (1.5)

w is called a dummy-or indicator-variable, and the special choice (1.5) of its
values simplifies some calculations.

The model (1.1) corresponds to p - q simultaneous multiple regressions
on q + 1 variables. Alternatively, we can look at it as a regression model for
two samples of size n and n, respectively, thus representing 2(p-q) multiple
regressions on q variables, the two regression hyperplanes associated with each
Y-variable being parallel. We call (1.1) therefore a multivariate parallel
regression model. Note that for any fixed point (x],...,gq) € RY the values

of the two regression functions of variable Yj differ by Bq+1 i



If we assume multivariate normality for the rows of U, it is well known

that the maximum 1ikelihood estimates of B and y are (Johnson and Wichern 1982,

p. 324) .
8!
B = (') 2y l By (1.6)
SO et X
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and
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L= (nyny) 0 UMY (1.7)
where
u (n]+n2 xp-q) =Y - 1Z B (1.8)°

is the matrix of estimated residuals. 9'9 is often called the residual sum of
squares and products (SSP) - matrix. Its distribution is Wishart, and it is
stochastically independent of the parameter estimate é which has a multivariate
normal distribution.

Let us now consider the hypothesis HO: ?w = 9. Under this hypothesis,
each of the p - q pairs of parallel regression hyperplanes coincide to one
hyperplane. To test HO’ we can use Wilk's A-statistic, which is the same as
the Tikelihood-ratio statistic (Johnson and Wichern 1982, p. 327). Alternatively,

a test can be constructed using the facts that



By ™ Np_q (gw, kg) (1.9)

where k ‘is the element in the last row and last column of (Z'Z)'], and

N
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(Mardia et a11979, p. 160). Under HO’ the statistic
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has the -central F-distribution with p - q and n]+n2-p-1 degrees of freedom
(Mardia et al 1979, theorems 3.5.1. and 3.5.2.). This test statistic will
later be seen to be the same as Wilk's A.
Let us now give some more details about the parameter estimétes. Let
r o= n1n2/(n]+n2),
ny+n
1 1.2

X:: - n b X

(3= 1,...,q). 1.12
D T b1 (3 q) (1.12)

Then dx = (d],...,dq)'is the vector of mean differences for the x-variables, and

'7 = 0 X'X rdx . (1.13)
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Then we-have

v
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and it follows easily that

By = ¥'s

the vector of overall means of the y-variables.

Using formula (A.2.4g) from Mardia et al (1979) we get
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is the sum of squares and products-matrix of the combined data matrix (X :Y),
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pooled over both groups. The last line of (1.17) follows easily by writing
the typical element of Axx as the pooled covariance of two variables, and

analogously for exy'
Using again (A.2.4g) from Mardia et al (1979) we get
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Noting that
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which is the conditional (sample) mean difference of Y, given X.



To analyze the SSP-matrix ﬁ'ﬁ,

denote the i-th row of ﬂ, Y and X, respectively.

and from
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the residual SSP-matrix is
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In order to write the F-statistic (1.11) in a different form, we apply formula

A.2.4f of Mardia et al (1979) to 990s the element in the last row and last column

of (1.14), and get



- -] ] ' '] "]
g2 = 1710 - gy

'] 1 -]
ro ¢ gxﬁxx?x * (1.24)

Thus the-F-statistic (1.11) can be written as
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F = - - =43 - | (1.25)
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If we write d' = (d; : d}), then (1.25) becomes (see [4], formula 3.6.7)

] '] "-I
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F = p_q . _-I --l . (]-26)
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Let us now look at the A-statistic for the same problem. The residual SSP-matrix

under H0 is
B. =B, -B BB (1.27)
Yy.X ~yy ~YX_ XX XY
where
gxx ?xy 9x9x 9x9y ( )
B = =A+r 1.28
- - dl 4
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is the combined SSP-matrix of (X : Y), ignoring the group structure. Wilk's

A-statistic is
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by (A.2.3n) of Mardia et al (1979). The equivalence with the F-statistic

follows now from

ni+ n,-p-1 _ '
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Note that, for q = 0, (1.11) is the same as the usual T2 statistic for testing
the equality of the mean vectors of two multivariate normal popu]at1ons with

identical covariance matrices.

2. The linear discriminant analysis model

The coefficients of the Tinear discriminant function between two normal

(1 _ ()

populations are defined as o = E_] 8, where § = y is the difference

-

of mean vectors, and ¢ is the common covariance matrix. If o is partitioned in

g and p-q components as o' = (ai : aé), then the hypothesis

Hat = 9 (2.7)

says that the discriminant function does not depend on the last pP-q variables.
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Partitioning ' = (di : Gé) and %= anologously, we can define
v I
AS = 6'%‘16 and AS = si ;}6] as the Mahalanobis - distance between the two

populations, based on p and g variables, respectively. Let 8, ] denote the
conditional mean difference of the last p-q variables, given the first q ones.

Rao (1970) has shown that

2 2
L = 2.2
H0 Ap Aq (2.2)
and
(GROREE: (2.3)

are both equivalent to HO'

Let us denote by d' (d? : dé) the sample mean difference, by

11 Sy

S = the usual (pooled) unbiased estimate of and by
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D2 = g s! 4, p? = da st g the sample counterparis of a2 and 22 all based
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on samples of size ny and n,, respectively. To test HO’ a statistic based on
2 2 .

Dp and Dq can be used:
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which has the central F distribution with p-q and n]+n2-p—1 degrees of freedom

under HO; Mardia et al (1979) give a proof for this which is based on distribution

theory for Wishart matrices. Of course, (2.4) is the same as (1.26). Rao (1970)
i
has derived (2.4) using the equivalent condition (2.3). He uses essentially

the same approach as our model (1.1), writing it in the form

E(Y]X) ay + XB in population 1

~

E(Y|X) ay + XB in population 2, (2.5)
thus avoiding the indicator variable w. Testing for ay = a, in Rao's model

is the same as testing for By = 0 in (1.1). Using Wilk's A criterion as a test
statistit, Rao's proof turns out to be algebraically simpler than the one given
in section 1 of this paper. However, Rao's approach does not provide us with

the interesting relations to a multiple linear regression model which are to

X
(31) s
-2

p-variate normal, the conditional mean of X], given X,, is a linear function of

be discussed in the following sections.

Rao's approach is based on the fact that if a random vector X

%2. Multivariate normality is a necessary assumption in the linear discriminant
analysis approach. However, if we start with our model (1.1), nothing is said

about the distributionof the X-variables, on which the regression approach actually
conditions. ATl we need is the (p-q)-dimensional normality of the random disturbances.
In this sense, the multivariate regressions approach is more general than the

linear discriminant analysis approach.



3. The multiple regression approach

A formal analogy between linear discriminant analysis and a multiple
regressipn model has been known since Fisher's(1936) first publication on the
linear jiscriminant function. This analogy is often considered as a lucky
algebraic coincidence. In this section we are going to show that it occurs in
a natural way as a relation between a formal multiple regression model and the
multivariate regression model of section 1.

The multiple regression model is

w=(X:Y)($X>
- oYy

where w, X and Y are as in section 1. Ty and Yy are gq- and (p-q) - vectors

(3.1)

+
t (D
-

of regression coefficients, and g is formally the (n]+n2)-vector of residuals.

We assume for simplicity that Y'J = 9 as well as }'] = 9. (Alternatively,

we can assume that § is of dimension ﬁ;iﬁz'x g+T with a first row.], and Yy

has dimension g+1, thus allowing for an intercept). We wish to test for Yy = 9,

that is, we wish to compare model (3.1) with the restricted model

. <x> <X> _]<X>
y = =1~ ) x:v “ ] oW (3.3)
-~ Yy Yl ~ ~ Yl ~

for the model with p variables, and

15
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X'w (3.4)

for the restricted model. The residual sum of squares is

i

SS(p) = w'w - w'(X : Y) ; )
' 1 '] []
XK XY X
=wihwoe Wt (X)L yry <Y> W (3.5)
and
$S(q) = w'w - w'X (X'X)"" X'w (3.6)

-

for models (3.1) and (3.2), respectively. The ratio of the two sums of

squares is
= 33(a)  [8(p)]”] (3.7)
P Iss(q)1T

Noting that w'w = r, X'w = rd,, and applying formula A.2.4f of Mardia et al (1979),
we get |

‘] — '] ' ] 1 ‘]
[SS(q)] " = v ' + dy (X'X - rdd.)"" dx
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= -] ' -]
‘Y‘ * EIX f\xx?x (3'8)

and analogously

[ss(p)1™" = v+ arala (3.9)



Assuming that we allow for an intercept in models (3.1) and (3.2), the F-statistic
for the hypothesis Yy =0 is
n]+n2-p-1 /SS(

i _ .
re Y-
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pP-q oo | 1 | )
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This is the same as (1.26). Note that, to establish (3.10), we did not use
the proportionality between the regression estimates ; and the sample discriminant
function, as shown, e.g., by Lachenbruch (1975, p. 17).

Thé relation between the parameter estimates ;xof the multiple regression
model and the estimates é' =d of the multivariate model (1.1) can also be

WYX
established easily. First note that

t '-I ' "]
(¥ 5) (6XX * rgxgx)

1)

-1 -1 =14 v=1 0,1
6xx - éx rd (1 + rdxAxxdx) dxAxx . (3.11)
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*
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For the model with p variables we get anologously

- .; = ~ = _____Y‘ -] A_]d (3.]3)
i Yy 14+rd'A"'d -~ -~
and therefore
- -1 -1 1
Y., = A (d "A A d ) C T
.Y ~yy.x‘ LY LYXUXXoX v ]+d'A ]d

g' . (3.14)

It is worth noting that ;y can be written (from 3.3) as

~

v, = (VY- vy (3('1()’15'!)“(\('@ - Y'X(X'X)'])~('v~v). (3.15)

y ~ ~ .~

Since %O = (8'5)'1§'! is the matrix of regression coefficients of'! on 5, ignoring

group structure, the first term in (3.15) is the inverse of the residual SSP-matrix

of model (1.1) under Hy® By = 9. Similarly, the second term is r(gy—éédx).

This shows again the strong relation between models (1.1) and (3.1). However,

the proof of (3.14), using (3.15), seems more difficult than the one given above.
Another indication of the relation between the two models can be seen

in the fact that the estimate (3.4) ;* = r(X'X)"]dx of the restricted model

(3.2) appears in (1.19) as well as in (1.24). Interestingly, all these relations

- are somehow "cross-wise": quantities encountered in the analysis of the

unrestricted model in this section are related to quantities occurring in the

restricted model of section 1 (see 3.15), while the restricted model (3.2) is
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is rather related to the unrestricted model of section 1. See also (3.7) for

a similar phenomenon involving the residual sums of squares.

4. The;k—sample case
The multivariate parallel regression model of section 1 has a straightforward
generalization to the case of k > 2 samples by using k - 1 indicator variables

(column vectors) Wis WosensWy g5 Wy (j=1,...,k-1) being defined by

K if the i-th data vector belongs
Lon to sample j

i —E—Ji———' otherwise. : (4.1)
] n

4 2,=] L
—

The code (4.1) has the advantage that the two values differ by unity, and

n.l+ +nk

that y wji =0 (j=1,...,k-1), which simplifies the algebraic
i=1
calculations. In practical situations, however, any two different code values
(e.g. 0 and 1) do the job as well.
If we assume X'1 = 0 and Y'1 = 0 in order to avoid an intercept term, we

~ o~ -~

can write the model analogous to (1.1) as

V= (X 2w <§x> £ (4.2)

- w



k
where Y, X, Bx and U are as in section 1, (with n]+n2 replaced by } "j)’
~ -~ ~ ~ j='|
Bw is a k T x p-q matrix of unknown parameters, and W= (w ..... ]) is

an x E_ﬁ'matr1x of dummy variables. Wilk's A-statistic for test1ng Bw =0

is readily available as

XX Xx'w\ "Vo/xe
!1! - ! (X w) "X w'w w/ Y

13

A= L O (4.3)

Y - vx (xx)! xey)

The formal multiple regression analog (3.1) is this time itself a multivariate

model and can be written as

Tx
w=(X:Y) [~ + E (4.4)
Ty '
Tx -
where w, X and Y are as above, y = <Y ) is a p x k=T matrix of parameters,
T ) ~y

and E is formally the matrix of disturbances. The analog to the ratio of the

two residual sums of squares (3.7) for testing yy =0 is

-1

XX XY <x'
Wi - W (X:Y) <v'x Y'Y> Y'> W

~ o~ ~

A% = , _ i (4.5)

- (X0 X) 7w

~ A A

In contrast to section 3, A* is in general not equal to A, and so the analogy

ends here. Also the relation (3.14) between 3 and yy becomes much more comp11cated

since there is a different factor of proportionality for each column of yy
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There is one exception, however: the case q = 0. 1In this case there are
no X-variables, and the models (4.2) and (4.4) reduce to
Y=wg +U (4.6)
and

w=Yy +E, (4.7)

respectively. The A-statistic (4.3) for testing B, = 0 becomes

[rY - Yw
|I

(w'w)™ 1y Y|
VY]

s (4.8)

which is simply a test for equality of the mean vectors of k multivariate

normal populations. The formal analog (4.5) becomes

[w'w - w'Y(Y'Y)"™ v wl

* = _~ -~ o~
A W]

= Ty - ')l y(yey)” Ty |

~ o~ o~

-~ ~ o~ ~

!Ip - (Y'v)” Y wiw'w)™ w Y] = A (4.9)

by (A.2.3n) of Mardia et al (1979). Note that to prove (4.9) we didn't use the special

structure of w. It is, in fact, a more general result: if X. and X

1 2
are random vectors, measured on the same objects, then testing their linear

relationship by the regression of X, on X2 is the same as by the regression of X2

on %1.



5. Final remarks

The relations between the linear two-group discriminant analysis model
(section;2) and a multiple regression model, regressing an indicator variable W
on the ﬁ%asured variables, (section 3) have been known Tong ago, and they are
fairly easy to establish (see Lachenbruch1975, p. 17-19). Despite this, these
relations seem somehow artificial; and no deeper reason has been given for
their existence. However, if we start with the multivariate regression model
of section 1, looking at the problem of estimating and testing conditional
mean differences, then these relations appear much less as a Tucky coincidence,
since both models have a strong relationship with the more general multivariate
model.

In the two sample case, the relations between the three models are of
considerable practical importance, since software for multiple linear regression
is easily avai]ab]e. In the k-sample case there is no such practical advantage,
since the model (4.4) is itself multivariate. However, we can stj]] learn
something from this case: Suppose that we deal with k > 2 samples, but we are
mainly interested in a contrast between two groups defined by the values of a
binary variable, say Wi To represent the group structure, we need also k - 2
binary variables w2,...,wk_]. The multivariate regression setup is therefore
given by (4.2). However, since we are only interested in tests concerning Wis
we can write the model in the form (1.1), where w2,...,wk_] appear as binary
variables in the matrix X. Since the multivariate regression model conditions
on the data matrix X, this will not affect the correctness of the results, and
the multiple regres;ion approach (section 3) can still be used. This can be
viewed as a justification for including binary variables in a linear two-group

discriminant analysis.

e
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