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ABSTRACT

This paper deals with an asymptotic distribution-free subset selection procedure
for a two-way layout problem. The treatment effect with the largest unknown value
is of interest to us. The block effect is a nuisance parameter in this problem. The
proposed procedure is based on the Hodges-Lehmann estimators of location param-
eters. The asymptotic relative efficiency of the proposed procedure with the normal
means procedure is evaluated. It is shown that the proposed procedure has a high

efficiency.




1. INTRODUCTION

Consider a two-factor complete block design with one observation per cell. Let
the observable random variables be X;,, 1 = 1,2, ..., k; a = 1,2, ..., n and

consider the linear model

k
Xia=ﬂ+0i+ﬂa+€ia: 20;:-0, (1'1)

=1

where X;, is the observation under treatment ¢ in the o*® block, p is the mean-
effect, 0; is the effect of treatment i, B, is the block effect for the a*? block (nuisance
parameter), and the &;4, @ = 1, 2, ..., n are error components. It is assumed that
the error components are independent and identically distributed with a continuous
cumulative distribution function (cdf) F(g), € € R* (the real k-space), where F(g) is
symmetric in its arguments. That is, for any ¢ € R* and any permutation (i1, ...,4x)
of (1,...,k), we have

F(e1,...,ex) = Fleiy,...,€4)- (1.2)

Let fj1) < -+ < O be the ordered 0;’s. Suppose that we are interested in the
treatment with the largest unknown parameter 0 (if more treatments than one
have §; equal to 0[], then exactly one of these treatments is “tagged” as the best
treatment). Correct selection denotes the selection of any subset containing the
population with 8 (or the “tagged” population). For the nonparametric approach
to the one-way layout problems, most previous authors have considered procedures
based on a class of rank order statistics. It was pointed out by Rizvi and Wood-
worth (1970) that there are difficulties associated with these procedures, mainly
because the least favorable configuration is usually not known. Randles (1970) and
Ghosh (1973) have considered the procedures for the one-way layout based on the
Hodges-Lehmann estimators. It was shown by them that the procedures based on
the Hodges-Lehmann estimators have high efficiency. Hsu (1982) considered the
two-way layout problem with independent errors. In this paper we assume the er-
rors are equally correlated and use the results of Puri and Sen (1967) to derive a

subset selection procedure for the largest unknown parameter ). Also, we use



Hodges-Lehmann estimators derived from signed-ranks rather than the ranks them-
selves as in Hsu (1982).

2. ROBUST COMPATIBLE ESTIMATION

In the model (1.1),for 1 < 4,5 < k, i # j,let Xij.0 = Xia—Xja; €ij,a = €ia—E€jay -

a=1,2,...,n and A;; = 0; — 0. Then for a fixed a, we can write
Xija = Aij + €ij,a- (2.1)

From Assumption (1.2), e;;,o» have common distribution, say G, which is symmetric
about zero. Hence Xiji, ..., Xijn are iid. with common cdf G(z — A;;). We
assume that G is continuous, but otherwise unknown. Let R;;, = Rank of | X;; o|
among | X;j,1l, - .-, | Xij,n| and let X, = (Xi5,1,-..,Xijn). Consider the one-sample

signed rank statistic

hij,n(:X_ij) = n—l Z En,aZn,a (2.2)

a=1

where Z, . is either one or zero as follows: if the o' smallest observation among
[Xij1ls - -+ | Xijn| corresponds to X;;: (for some t), then Z, o = 1 if X;;: > O or
0 if X;5: < 0. Ey,q is the expected value of the o® order statistic of a sample of

size n from a distribution ¥*(z) given by

sty = {¥(E) —¢(-=z) fz>0 3
v(@) = {§" if z < 0. (23)
Throughout this paper, we shall assume that 1(z) and G(xz) satisfy the following
assumptions (see Puri (1964) and Puri and Sen (1967)):
(1) (=) is a distribution function symmetric about « = 0, that is ¢(z) +¢(—z) = 1.
= - —1
@) % 5 [Boa ~ 97 (5301200 = 04(n7H)
(3) J(u) = ¢~1(u), 0 < u < 1is absolutely continuous and |J () (u)| = |d*J (u)/du*| <
Mlu(l — w)]=%—%+6 § =0, 1, 2, for some M and some § > 0.
(4) G is a continuous cdf, differentiable in each of the open intervals (~o0, a1), (a1, a2),
vevy (@s—1,as), (@s,00), for some ay, ..., a, and the derivative of G is bounded

in each of these intervals.



(5) The function £.J(G(z)) is bounded as z — too.

It is easy to see that hi; (i1 +a,...,2ijn + a) is a non-decreasing function
of a for fixed z;; and when A;; = 0, the distribution of Ay, is symmetric about a
fixed point p = L E,|V|, where V' has cdf ¢.

Let

A:j = sup {A : h,'_.,',n(g,;_.,' - Al.) > ”}’

= (2.4)
Aij = inf {A : h,'j,n(z,'j - Al) < Il'}

and let
Ay =385 +85)

Now from Hodges and Lehmann (1963), A,-_,- is a translation invariant robust esti-
mator of A;; and has a distribution which is symmetric about A;;. Note that the
estimates A,; are incompatible (see Lehmann (1964)) in the sense that they do not
satisfy the linear relations satisfied by the differences they estimate. This leads to

certain ambiguities. To derive compatible estimators, let
1k
A= —ZA;I;, Ai;=0 fori=1,2, ...,k. (2.5)
ko= '

Then by minimizing 3 (A;; — As;)? with respect to 8’s, we obtain the compatible
i#i
or adjusted estimators of A;; as

A

Zii=As— Ay, i#]. (2.6)
. k
Note that E(A;) = 6; since 3 6; = 0, hence E(Z;;) = A;;. Puri and Sen (1967)
=1
have proved the following theorem:

Theorem 2.1. The joint distribution of {n%(Zy — Ai); 1=1,2,...,k—1} is

asymptotically normal with zero means and a covariance matrix I' = (vi;), 4,5 =



1,2,..., k—1 where

_[22 iz
7”‘{03 i (2.7)

and of = [A? + (k — 2)A;(G)]/kB?, where

1
A% = / J*(u)du, B= / —J(G(x)) dG(z),
and A;(G) = / / J(G@) T (G(y)) dC* (z,4), (2.8)
G*(z,y) is the joint cdf of €ij,a and e;g,o (§ # £) whose marginal cdf’s are G (z) and

G(y), respectively.

Moreover, using the translation invariant property of A,-,-, we have the following

lemma:
Lemma 2.2.
(1) Ai(z11 —c1,... 20, — Clyee 3Tkl — Cky- Tk — Ck)
k
—_— A — 1
= Ai(T11, .. 310y s, Ther, - -« »Tkn) + € — ¢;, where © =z E

1=

(2) The distribution of A; — 8, is independent of 4.

3. A NONPARAMETRIC PROCEDURE FOR
SELECTING THE BEST TREATMENT

Based on the estimators defined in (2-5), we propose a selection procedure R,

as follows:
Ry: Select treatment ¢ iff A; > max A,- —dy, (3.1)

where d; > 0 is determined so as to satisfy the basic probability requirement. The

value of d; can be determined asymptotically and will be discussed later.
Let @ = {8 = (64,...,0k) | Z 0; = 0} be the parameter space and let CS

stand for a correct selection whlch means that the selected subset contains the



best treatment. For a given constant P* (k=1 < P* < 1), the basic probability

Let Alll <o L A[k] denote the ordered A,-’s and A(,-) denote the unknown
estimator associated with the parameter 0, 1 < ¢ < k. Let P;(8 | R;) denote
the probability that the treatment (5) is selected (treatment () is associated with
parameter 0[;)) for the selection procedure R; when 9 is the true state of nature.

We have the following lemma:

Lemma 3.1. For 8, 8* € Q and fixed g, if ﬁi‘j] - 0[*‘.] 2 05 = 01y, ¢ # 7, then
Pi(0" | Ry) > P;(8 | Ry).

Proof. P;(0| R;) = P, (A(J) 2 réla.<xkA(,) - dl)

= Py(By =0~ Ay + 0 S dy + 057 - 04, i £ G =1, ..., k).
By Lemma 2.2, the distribution of A(,) =0 — A(J) Ho,i#5,i=1,2,...,k
is independent of §. Hence P;(8 | R;) < P;(8" | Ry) if 01 — Oy = 051 — 8145 ¢ 76 J.
Corollary 3.2. olrela Po(CS | Ry) = Po(CS | Ry) where 0 = (0, ... ,0) (k-tuple).

Proof. Since Py(CS | R;) = Pi(8 | Ry) and O — 0 > 0, ¢ # k, by using
Lemma 3.1, the result follows.

For large sample we can define d; as in Theorem 3.3 given below.

Theorem 3.3. For given P*(k™! < P* < 1), if 62 < oo, we have
di(n) = n"%doy + o(n"%)  asn — oo, (3.2)
where d is the solution to the equation

Q(d/\/i,...,d/\/f ) = P*, l (3.3)




Q is the joint cdf of a normally distributed vector (V1,...,Vk—1) with
E(V;)=0, Var(Vi)=1 and Cov(V;,V;)=1/2, i#j.  (34)
~ Proof. By Theorem 2.1 and Corollary 3.2,

lim inf Py(CS | By) = lim Po(Ay - Apy <di(n), i=1,2,...,k—1)

n—roo §

=P(Vi < lim n¥dy(n)/V200, i=1,2,..., k—1).
n-—ocd
Therefore, if d is the solution of (3.3), then
di(n) :n"%dao+o(n‘%) as n — co.

Remark. The solution of (3.3) is also a solution of [ OF~1(z + d)d®(z) = P*,

where @ is the cdf of standard normal. This has been shown by many authors (see
for example, Gupta (1963)).

Determination of the Minimum Common Sample Size

Let Ey(S | Ry) denote the expected size of the selected subset using rule R;

k
given §. Then Eo(S | R;) = Y P;(8| R:). Having determined di(n) from (3.2), one
=1
may determine the common sample size n by imposing the additional requirement

that Eg(S | R1) < 1+¢, for some € > 0, whenever § lies in a given proper subset
of (1, for example, the subset defined by

9[1] =eee = alk_ll = 0[k] - 5‘, 8* > 0. (35)
It will be convenient in the sequel to replace (3.5), when the sample size is n, by
Opy=---= Ok—1) = Ok — 5§, (3.6)

(see Bartlett and Govindarajulu (1968)).



Theorem 3.4. For given ¢ > 0, with dy(n) given by (3.2) and n determined by
Ey(S | Ry) <1+ ¢ for 0 satisfying (3.6). Then as n — oo,

§(") = n=%¢(e)ao + o(n~%), (3.7)
where c(¢) is the solution to the equation
QeAD/VE,- .., (c+d)/VE)+(E-DQU/VE, ..., d/VE, (d—0)/VE) = L+, (3.)

where @ is defined as in Theorem 3.3.

Proof.

k—1
Eﬂ(S l R1) =ZP_a_<n%(A(,') - A(J'))/\/Ea‘o < n%dl(n)/\/iao, 1= 1, ey k- 1,
J=1

i#j, n¥ (A(k) - A(a‘) - 6("))/\/500 <nt (di(n) - 5(n))/\/§ao>
+ Pﬁ(n% (A(‘) —_ A(k) + 5("-))/\/50-0 < n%(dl(n) + 5(n))/\/’2‘0_0,

i=1,., k1),

If 9 satisfies (3.6), then

k-1
lim Ey(S | Ry) =ZP(V,— < lim n¥di(n)/v200, i=1,...,k—1,i# j,
Jj=1

Vi1 < lim n¥(dy(n) — 6() /\/an)

+P(V.- < lim n%(dy(n) +6™)/vV200, i=1,..., k—l)

= (k- 1)Q(d/V2,...,d/V2,(d~c)/VZ) + Q((d+)/V2,...,(d + &) /VZ)
=1+¢e.

Hence c(e) is the solution of (3.8) iff

6(r) = n_%c(s)ao + o(n'%) as n — co.



Remark. The common sample size n required to satisfy oing Py(CS | Ry) = P* and
ea L

E¢(S | R1) < 1+ ¢ for 9 satisfying (3.5) is (c(e)ao/6*)2.— Note that n is a function
of k, P*, §*, and e.

4. A SELECTION PROCEDURE FOR THE NORMAL CASE

In the following we assume that (€1a5+ - »€ka) are jointly normally distributed

with zero means and the covariance matrix o2 (,1, '1’), a=1,2 ..., n where

—1/(k — 1) < p < 1 is known and 6% < oo, may be known or unknown. Let
X; = -'1; >~ Xia. Then the vector (X; — Xy, ... , Xk—1 — X) has a joint normal

a=1
distribution with mean vector (8; — 0, ...,0,_1 — 01) and the covariance matrix

1
2
n L )
5 1
We assume that o2 is known and propose a selection procedure R, by
R;: Select treatment ¢ iff X; > max X, — ds. (4.2)

It is easy to see that olélg Py(CS | Ry) = Po(CS | Ry).

Thus, similar to Theorem 3.3 and Theorem 3.4 we have the following theorems:

Theorem 4.1. For given P*(k~! < P* < 1) and any sample size n, let dz(n) be
chosen to satisfy Py(CS | R;) = P*. Then

dz2(n) =n~3d\/I—po, (4.3)
where d is the solution of (3.3).

Theorem 4.2. For given ¢ > 0, let the sample size n be determined so that da(n) =
n~%d\/T=po and E¢(S | Rz) <1+ ¢ for @ satisfying (3.6). Then as n — oo,

§0) = n"’bl’c(e)\/l —po, (4.4)



where c(¢) is the solution of (3.8).

Suppose that the joint distribution F of (€1as---1€ka) is unknown, but the
variance of €, is finite. By the central limit theorem, the joint distribution of
{n3 (X - Xp—0; + 0c);t=1,2, ~ 1} is asymptotically normal with zero
means and the covariance matrix (4 1) We can still use the procedure R, given
by (4.2). For large samples we have d2(n) = n=3d\/T=po + o(n~ 7) and §(") =
n~zc(e)y/T=po+ o(n=%), where d is the solution of (3.3) and c(e) is the solution
of (3.8). |

5. ASYMPTOTIC RELATIVE EFFICIENCY OF R, TO R,

For any two procedures R, and R, satisfying the basic P*-condition, let us
define the asymptotic relative efficiency, say ARE(Ry,R,) = llm ng,(e)/ng, (¢) for
the given parametric configuration (3.5), where np,(e), § = 1 2 are the sample
sizes required to achieve the same expected size, 14 €. Then we have the following

theorem:

Theorem 5.1. ARE(Ry, Rp) = {20%(1 - p)B?/A? H{kA?[2[A? + (k - 2)A;(G)]},
where A2, B and A;(G) are defined in (2.8).

Proof. For procedure Ry, putting §(") = § *, from (3.7) we have

ng, () = (c(e)ao/c?‘) 2,

where ¢(e) is the solution of (3.8). (Note that & | 0, then n — o0). Similarly, for

procedure R;, we have

ng,(e) = (c(e)\/1- pa’/6"‘)2.
Hence

ARE(Ry,R;) = (1 - p)o?/cd
= {20°(1 - p)B*/ A’} {kA?/2[A% + (k - 2)A;(6)] }.

Remarks.



(1) Barlow and Gupta (1969) define ARE(R;, R,;) = hm nR,(€)/ng, (€) for the given
parametric configuration (3.5), where np, (e), i = 1 2 are the sample sizes re-
quired to achieve the same expected size (say ¢) of non-best populations selected.
If we consider the case where expected size refers only to the number of non-best
populations in the selected subset, we have n R, (€) = (¢'(€)00/6*)?, where c'(¢)

is the solution to the equation
(k- 1)Q(d/Vv?2,...,d/V2,(d - ') /V2) = .
- Similarly, we have ng, (&) = (c'(e)/T=p 0o /6*)?, and hence
ARE(Ry, Rp) = (1 - p)o?/o?

which is the same as in Theorem 5.1.

(2) Puriand Sen (1967) proved that ), (G) < 1A%, hence kA?[2[A%+(k—2)A;(G)] >
1 and ARE(Ry, R;) > 2(1~ p)o2B2/A?. The variance of G is 2(1 - p)o?, hence
2(1 - p)o®B?/A? is the ARE of the one-sample rank order tests (for location)
with respect to the Student’s t-test when the parent distribution is G(z). If
we use the normal scores estimator, we have ARE(R,, R;) > 1. If we use the
Wilcoxon scores estimator, then for any F, we have ARE(Ry, R;) > 0.864 and
ARE(Ry, R;) = 3/n when F is normal. Hence the procedure given by (3.1) has
“high” efficiency. In the above discussions, we consider the parameter points
satisfying (3.6). When the condition (3.6) is not satisfied, but the ratio of sam-

Ple sizes, m for R, and n for R,, satisfies lim = = (1 - p)a?/a?, then, for

ﬂ—’OO

large n, the procedures R; and R, have approximately the same probability of

a correct selection and expected size.

n

Theorem 5.2. Let n and m = g(n) satisfy hm 0 2= = (1 - p)o?/al, then the pro-
cedures Ry and R; have the same asymptotlc probablhty of a correct selection and

the same expected size for any parametric configuration.

Proof. For procedure R;, consider any sequence of parameter points satisfying

0[(;:]) B 0[('11) =6in =n"%\/T— pob; +o(n~1),

10



i=1,...,k—1 and for some 1,3, § # §*, §; # 0. Then

lim Py (CS | By) = P(Vs < nlln;on’}(dz(n) +6im)/V2A = p)o,i=1,..k—1)
=P(Vi<(d+&)/V2,i=1,...,k-1)
= Q((d+ 81)/V2,...,(d+ 8k-1)/V?2)

andfor 1 <j<k—-1,
Tim (0 | Re)=P(Vi < (d+8& - 8)/VE i=12 ..o ki # 5)

= Q((d+ 61 — 8;)/V2,- .-, (d+ & — 8;)/V2).

For procedure Ry, m~%go ~n"3/T—po,so
0{]:;)—0{:]'0=m—%006‘£+0(m—%):5€m, i=1,2..., k-1

Hence

lim Pym (CS | R)=P(V; <(d+6&)/V2,i=1,2,...,k-1)
= Q((d+ 6:1)/V2, ..., (d+ 6k—1)/V2).

andfor1<j<k-1,

Jim Py(0™ | Ry) = Q((d+ 61— 65)/V2,.., (d+ 8 = 8)/V2),

In the above parameter points, we assume that 9%,':]) - 0%:]' ) tend to zero at the
n—% rate. If any difference tends to zero more rapidly, we replace §; by 0, and if it
tends to zero more slowly, or tends to a finite limit, then we replace 8; by oo, and
still obtain the same asymptotic behavior. This completes the proof of the above

theorem.

6. ESTIMATION OF B AND ) ;(G)

In practical application, for large n, the procedure R; can be rewritten as

A - do
Ry: Select treatment ¢ iff A; > max Aj— - (6.1)
1<%k




where d is the solution of (3.3) or [ ®*~!(z + d)d®(z) = P*. However, 0y is still
-0

unknown. We need to find a consistent estimator of o2. Since 0 = {A% + (k —
1 o0

2)A;(G)}/kB?, where A? = [ J%(u)du is known, but B = [ 4 7(G(z)) dG(x)

1] —oo

and A\;(G) = ? ofo J(G(x))J(G(y)) dG*(z,y) are unknown. Our problem is to
find consistent;:;i—n(::ztor of B and A;(G).

The consistent estimators of B and A;(G) can be found from (4.7) and The-
orem 4.2 of Puri and Sen (1967); let these be B, and L,, respectively. Then
62 = [A? + (k — 2)L,,]/kB2 is a consistent estimator of 3. Hence, for large n, the

procedure R; is defined by

Rjy: Select treatment ¢ iff A,- > max A; —

1<5<k 7 /n’

(6.2)

Remark. If 4(z) is the cdf of U(—1,1), then J(u) =2u—1,0 < u <1, hence A? =

1/3. I G'(z) = g(z) exists, then B = 2[g*(z)dz and A;(G) =
(o] [+ o]

4 [ [ G(x)G(y)dG*(z,y) — 1. It has been shown by Doksum (1967) that
—00 —00

o0 o0 .
[ [ G(z)G(y) dG*(z,y) can be estimated by n(n—l)(n—2)1k(k—1)(k—2) { number

—00 —00

of sixtuples (4,7, £,a, 8,7) with 1, 7, £ distinct; o, 8, v distinct, and Xia — Xja <
Xig — Xjg, Xia — Xt < Xiq — Xg.-,}.
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