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Abstract

Suppose that k new treatments have been developed with the purpose of
replacing the standard treatment with the best new one, provided that it is
actually an improvement on the standard treatment. In a parametric approach,
mainly under the assumption of MLR, procedures afe considered which, at a
first stage, screen out inferior treatments through statistical tests at a
common level of significance a,-  If none (exactly one) is not eliminated,
none (this one) will be used as a replacement. Otherwise, if more than
one treatment overcomes this screening process, that one of the non-e]iminated
treatments will be chosen as the replacement which is judged to be the best,
after additional data have been observed from the selected treatments. Topics
of this paper are the questions of how to choose the terminal decision at
the second stage and the tests at the first stage, respectively, and how to
implement the appropriate procedures at certain pre-specified performance

criteria.

Key Words: Multiple comparisons w1th a control; 2-stage procedures; screening
R ‘procedures. : . S



1. Introduction Thke following procedure, which is used in certain clini-

cal studies, may serve as a motivation for the considerations in this paper.
Suppose that k new treatments have been developed with the purpose of
replacing the standard treatment with the best new one, provided that it is
actually an imprdvement on the standard treatment. In a pilot study,

each new treatment is applied several times and screened out if it is not
considered to be significatly better than the standard treatment. Hereby,

judgement is gained through suitable statistical tests at a fixed level of

dg* If all k new treatments are eliminated the standard treatment will

not be replaced. If exactly one new treatment is not eliminated this will
be taken as a replacement. -In all other cases, the remaining treatments

are further examined in a follow up study through additional applications,
and finally that one which appears to be the best will be used as a replace-
ment of the standard treatment. The natural questfons of how to choose the
tests in the first stage and the terminal decision in the second stage are
the topic of this paper.

Let L ERRREL be k populations associated with unknown parameters
B1s--.50, €2 S IR. Let g0 be a control value which may be known or unknown.
In the latter case, assume that there is also a control population o A
population T is considered to be better than 0 if 6, > 8> i=1,...,k. ~The
goal is to determine, in two stages, whether there is any population better
than the control and, in the affirmative, which one is associated with the
}

largest parameter. Assume that samples }H = {X, , 1=0,1,...,k,

i373=1,...,4n4

and Xd = {Yij}j=1,...,m1’ i=1,...,k, can be drawn from TgoTysee =Ty at



the first and at the second stage, respectively, which are mutually inde-

pendent. Let {fe} be a given family of densities with respect to u,

0EQ
the Lebesgue measure on IR or the counting measure on any lattice in R, -

and assume that for every je {0,1,...,k} all observations from m have a

common distribution with density fe . Later on, after Theorem 1 has been
: i

proved, we will make the additional assumption that for every sample Z of
size n from one population there exists a sufficient statistic Tn(g) such
that the family of joint densities has nondecreasing 1ikelihood ratios

in Tn' For notational convenience let them be in the following denoted by

1 ny+my

U. = Tn-i(')—("i)’ 1 = O,]s-.-sk, V'i= Tm.i(‘_{__i), and w'i = T ; _I(l.'i’_Y..-i)’ 1:",.."k.

To simplify the presentation the case of a known control value %0 will
be considered first. Before we define a natural class of two-stage pro-
cedures in a concise way, let us briefly describe how these procedures will

be typically applied. For every testing problem Hi: 0; < 6g versus Kiz 85 > 0

the experimenter chooses a test based on X; with a fixed level % and another
test based on (54,14) with a variable level o .. At Stage 1 he discards all
populations which are not significant at Tevel o under_the first set of
tests. If none(exatt]y one) is left, he decides that none (this one) is
better than the control and is the best population. If more than one popu-
lation survives he proceeds to Stage 2. At Stage 2, he draws additional
samples Xd from those populations which have been selected at Stage 1 and
makes a final decision in favor of that population among the selected ones
which has the smallest p-value (i.e. is most significant) under the asso-

ciated second test.



If these tests are upper level tests, which for simplicity may be non-
randomized for a moment to fix ideas, based on some real-valued statistics
Di and ﬁi, say, i = 1,...,k, then the procedure considered above can be
equivalently described as follows: At Stage 1 all wi'S are se]ec£ed with
Ui > C; (where c is the ao—fracti1e of 01 under 0; = eo), and a final
decision is made in terms of the largest ﬁi among the selected nj's. The
truncated versions of such procedures (i.e. which perform Stage 1 only)
have been studied by several authors, see, for example, Gupta and Sebel (1958)-
and Lehmann (1961). For further references see Gupta and Panchapakesan
- (1979) Chapter 20. Some preliminary results concerning two-stage procedures
of the type described above in the case of Ny = .o =y and m = ...=m
can be found in Gupta and Miescke (1982), which include a comparison with
the one-stage analog by Bechhofer and Turnbull (1978).

To begin with, let us point out that several definitions given in Miescke
(1979) will be relevant in the sequel but for brevity are not repeated here.
Especially, tests may be randomized ones taking values in [0,1]. This typi-
cally occurs in discrete cases or in continuous type cases where nonparametric
(rank) tests are under concern. Thus significance statements as well as p-
values are understood to be based on additional randomization schemes as are
used in Miescke (1979). To be more specific, let A = (A],...,Ak) and
B = (B],...,Bk) be the randomization schemes for the first and the second

stage, respectively. Note that the gi's, Xj's, A and B altogether are

assumed to be mutually independent.

The class 8 of two-stage procedures. For i =1,...,k, let ?; ='{¢1 a}a€[0 1]

be a right continuous and monotone (in d) unbiased test for Hi versus Ki which
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is standardized at 6; = 0g Assume that P; q = 1 outside of the support of
the distribution of X, at 6, =0, Let Q. = (ml,uo,...,mk . ) where

o
0 < a, < 1 is fixed. Ana]ogous]y, Tet Yi T {wi’a}a€[0’1] be such a test for

H; versus K; based on (54’14)- Let y = (w],...,wk). Let 8 be the class

of all procedures of the following type (ga s V)
o

Stage 1: Select ™ if pmi(zi’Ai)’ the p-value of §4 undef AR
smaller than A i=1,...,k. If none (exactly one) of the
populations is selected, stop and decide none (this one) is
better than i and is the best population. Otherwise pro-

ceed to Stage 2.

Stage 2: Among the selected populations decide finally in favor of

that =, which has the smallest p-value p, (X.,Y.,B.) under
J .wj ==

by

The following result will prove to be useful in various aspects, except

for the important question of how to optimize the component y in <9a s ).
: o]

(%))

0
(X;>Y;)), 0€[0,1], i = 1,...k, 0€a. Then for

Theorem 1. Let (gu » ¥ ) €8. For notational convenience, let Ei = Ee.(@i .
e ————— o i >

Qﬂd_ F'I (OL) = Eei ((P'I ’ao(l.];)w-i ,O

every non-empty D < {1,...,k} and eGQk,

{1) P, {final decision falls into D}
8 : |
= [ 1 [1-Fj(a)] d(1- 1 [1-F.(a)]),
0 j€éD i€D

(2) Pe {final decision is in favor of s}
= [ n[1-Fi(a)] dF(a), 1 =1,k
0 j=1
J#i



(3) P {final decision is made at Stage 1 in favor of =.}

k .
m [1-E.]E., i=1,....k,
j=1 o
it

(4) p {final decision is in favor of the control}
k

i
J=1

[n- Ej]'

Proof: It has been shown in Miescke (1979) [cf. (2.3) - (2.5) loc. cit.]

that the distribution function of each p-value appearing in (ga s )
0

equals to the power function of the corresponding test, which is a contin-
uous function of «€[0,1] at every fixed parameter point, and which at
o = 1 assumes the value one.

Let now D be a non-empty subset of {1,...,k}. For j = 1,...,k, let

* . .
ij(lj,lj,Bj) be equal to pwj(lj,ld,Bj) if pmj(gj,Aj) < a,» and Tet it be
equal to 1 otherwise. Then it is easy to see that the 1.h.s. of (1) is

equal to

P in p* (X:,Y.,B; i X:>Y:sB:)3Y .
p Cmin pwi(__1 YiB:)Y < mn {pwj (X35Y4,84)3}

Since for i€{1,...,k} and 0.€q, P, '{p$
i Y

Fo(a) if 0 < < 1, and is equal to 1 if a = 1, (1) follows by standard

(X:»Y;5B;) <a} is equal to

arguments. (2) is a special case of (1) which was stated only because of
its relevance in later applications. The verification of (3) and (4) is

straightforward and therefore the proof is omitted.



Remark 1. It will be shown in Section 2 that under the assumption of mono-

tone 1ikelihood ratios (MLR), every (Eh » ¥ ) €8 is dominated by (ga s ¥¥)
0 0

ifng+mo=... = n, * m., where y* consists of the uniformly most power-
ful (UMP) tests. Hereby the results of Theorem 1 will not be of great help.
There is, however,'a particular situation where (1) and (2) can be used

for a similar purpose. Suppose that the data of Stage 1 are not available
but the information which populations have been significant is a hand. Then
one has to use tests at Stage 2 which depend only on the 14'5 from the
selected populations. In this case every Fi(a) factorizes into the product

of the two power functions of Py, and wi o’ respectively, and therefore
5 0 2

(1) and (2) are completely determined through these pbwer functions. For
example, if D _(8) = {i |ei > 05, 1€ {1,...,k}} is not empty, then (1)
for D = D+(§) is maximized by the procedure which uses the UMP-tests at
both stages. This is true even if the n, + mi's are not assumed to be ali
equal. Since these and related results in such a special case, however, are
considered to be of less statistical importance they will not be discussed
in further detail.

In the case of an unknown control parameter 6 Some obvious changes
have to be made. First of all the tests mi,ao depend now on (54,50),
i=1,...,k, whereas y remains the same as before. Let 8' denote the class
of two-stage procedures of the type (guo,gi) in this case. The analog of
Theorem 1 for 8' can be attained by replacing the right hand sides of
(1) - (4) by their integrals with respect to the distribution of 50. If not
explicitly stated otherwise, the results to be derived in the sequel for 'y

have analogous counterparts for 8' which will not be formulated or proved

for brevity because of the close similarities.
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2. Optimality Results For MLR-Families. In the following let D _(e) =

{1lei > 0g» 1€{1,...,k}} be the "good" populations and D (8) = {1,...,k}
k

\D+(§) be the "bad" ones, 6 €o . Also let us partition the parameter space
X into 95 = Lgéiﬂk |65 < 85> 1= 1,...,k} and its complement 95, say. A
procedure is said to make a correct selection (CS) at51695 if all populations

are eliminated at Stage 1, and it is said to make a correct se]ectionat:gLEQE

if a final decision is made in favor of a population with the Targest o-

value. Let the goal be now to find a procedure in 8 which has a large proba-

bility of a correct selection (PCS)tﬂ1Qk. From now on we assume that the

family {fe} has the MLR-property as specified in Section 1. Then the

6€EQ
following partial solution to our problem can be given.

Theorem 2. Let (@ -y ) €8. If ny+m = ... =n +m and y, = ... =g
— 0

then for all o€ Qk,

(5) g Po(g) { CS under (guo,y_)} 5_§ Po(@). { CS under (gao,gi*)} ,

where y* consists;of the UMP-tests for Hi versus Ki’ i=1,...,k,

which in this'case are all identical, and where the summation is

with respect to all k! permutations of (1,...,k). o(s) = (66(]),...,ec(k)).

Proof: Only an outline of the proof will be given since it follows by similar

decision theoretic arguments as have been used previously in Gupta and Miescke
(1983).
Under the assumptions stated above, the associated decision function of

(ga » ¥ ) which determines final selections at Stage 2 is permutation invariant.
0

The Toss function which is implicitly employed is zero if a correct sélection -



is made, and is one, otherwise. Its component which is associated with
final selections at Stage 2 is permutation invariant and favors selections
of populations with large parameters.

Let now_gésﬁ:be fixed and, in a Bayes approach, assume that the unknown
parameter vector is random and has a prior distribution which gives equal
mass 1/k! to all permutations c(@) of 6. Then the posteribr distribution

of the parameter vector, given wi =w,, 1 =1,...,k, has the decreasing in

i
transposition (DT) property. From this fact and the properties of the loss
function stated above it follows that the optimal final decision at Stage 2
is the natural one which is made with respect to the non-eliminated popula-
tion with the largest wi, where ties are broken at random. Clearly this is
equivalent to selecting the non-eliminated population with the smallest p-
value under test y*. The proof is now completed by noting that (5) gives

a comparison of the corresponding Bayes risks, where of course at all

k the probabilities of a correct selection are the same for both proce-

8€0
dures.
Corollary 1. If, under the assumptions of Theorem 2, additionally
= = = = 1 1 ; k
Ny = ... =N ggg_wl,uo cee wk’ao is given then for all s€Q
*
(6) Pg_{CS under (9a0’31)} 5_%fCS under (guo,gi )} .

Proof: Since both procedures considered here are completely permutation

invariant, and since also the 0-1 loss function employed is permutation

invariant, their risk functions are symmetric functions of_gesf{ Therefore



all summands on the 1.h.s. of (5) coincide and the same holds for the sum-
mands on the r.h.s. of (5).
Eémarkfir The proof of Theorem 2 actually applies more generally to the
following situation. No matter of how the populations are e]iminated at
Stage 1, if ny tmpos .=y *oms and if only permutation invariant
final decision functions are admitted at Stage 2, then every Bayes procedure
w.r.t. any symmetric prior employs the natural rule at State 2. Of course,
also from a non-Bayesian point of view, (5) is an intuitively appealing
criterion. It simply reflects the lack of knowledge of how the sample
sizes are associated with the k ordered populations parameters. Since
there is not even an approximately similar result available in the case of
unequal ng + mi's, it is strongly recommended to frepairf the design of
every experiment with unequal ni's by choosing the mi's appropriately to
get equal overall sample sizes. Let us assume from now on that ny + my =

=N + me = N, say, holds.

Actually, in various selection problems authors have chosen their
designs such that the statistics on which the natural final decision rule
is based have joint distributiohs with the DT property. To mention a
few relevant examples, Bechhofer (1954), Bechhofer, Dunnett and Sobel (1954),
and Dudewicz and Dalal (1975) have done so to be able to implement their pro-
cedures at certain specified performance requirements. It may now be added
that exactly in these designs the employed natural final decisions are optimal
in terms of the risk or the PCS, respectively, uniformly on all parameter
configurations.

Lack of the DT property in distributions of statistics used for final



- 10 -

decisions, in cases where this property could be attained in principle,
should be considered as pathological designs. Even in the simplest case of
a one-stage selection procedure serious difficulties arise, as may be illu-

strated by the following problem which was emphasized by Bechhofer (1982).

Example. Let 7#"";Xk be independent sample means with unknown expectations
810 -0 and with known but different variance q]',...,qk generated from k
normal populations. For the problem of selecting a population with the
largest o-value no procedure exists which has a largest PCS, uniformly in
€ Elk. If k = 2 the natural rule is Bayes w.r.t. independent priors N(O,q1)
and N(O,q2), respectively, and it can be seen to be admissible under the 0-1
loss function. However, if k > 3 the natural rule cannot be Bayes with
respect to any (multivariate) normal prior. The question of whether it is
admissible is still open. On the other hand, for every normal prior with
expectation (0,...,0), for which the posterior distribution has

the DT -property (which Teads to a simple solution) the Bayes rule selects
in terms of the largest X}/qi’ i=T1,...,.k.

In the remainder of this paper only procedures of the type (Qa s P *) €D
0

will be considered. This is justified in view of the assumption n, + my =
-=n tm = N and of Theorem 2. The following result, which generd]izes

Theorem 3 of Gupta and Miescke (1982), can be used to find least favorable

parameter configurations (LFC) of such procedures on suitable subspaces of

ok,

Theorem 3. Let (gu > ¥ *)€ES where for every i€{l,...,k} the power function
—_— 0

of P is nondecreasing in 0;- Then the performance characteristics con-
b
0
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sidered in Theorem 1 have the following monotonicity properties. (1) s

nondecreasing in 0s5 i€D and nonincreasing in ej, J€D. (2) and (3) are

nondecreasing in 6. and nonincreasing in ej, j#1. (4) is nonincreasing
in STETRERLIS

Proof: The assertions concerning (3) and (4) are obviously true. To

prove those concerning (1) and (2) note that for i€ {1,...,k} , 8 € Qk,

and « € [0,1],

(XoAg) <o T

(7) Filad = B (oo (A4)) B 0F , (X Py,

;
The first factor on the r.h.s. of (7) is nondecreasing in 6, according to
the assumptions made above. The second factor can be seen to have the same
property by applying Theorem 1 of Simons (1980) which guarantees that for
every sample from a MLR-family, conditionally on any proportion of the
information in the sample which one might choose to extract, likelihood
ratios are still stochastically nondecreasing. Since ¢?’a(54,14) is a non-
decreasing function of wi, the proof is completed by noting that Ai could

be ignored since the arguments apply to every situation Ai = A, where

a, € [0,1] is held fixed.

Corollary 2. Under the assumptions of Theorem 3, let ny = ... =n, and

=9, - Then for every 6 € Qk‘with 0] < -v. < ek,‘the proba-
,cxo - - - - -

bility of a final decision in favor of population =

@ R B

; is nondecreasing in

ie{l,...,k} .

Proof: Given the assumptions above it can be seen from the proof of Theorem 3

that for 07 < +ev 2 0
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(8) F-l(oc) < FZ(OL) < el < Fk(a), o€ [0,1].

Therefore the assertion follows from (2) by the same technique which was

used in (IV) of Miescke (1979).

Theorem 4. Let (¢ ,u*) €8 where consists of consistent tests. Then
¢, ¥ Where @,
— ) 0

for increasing sample sizes ns and m; = N - Nys i=1,...,k, the probability
of a correct selection tends to one at all gﬁigt and at a11_g€szf with

61. < 80, i=1,...,k.

k
+

k

Proof: If g€n . with exactly one coordinate greater than 8y» Or if 8€Q

with o, < e, i=1,...,k, the assertion follows immediately from (3) and

(4), respectively. For all other s ¢ QI( the probability that all populations

L
ms with 0; > 8 will not be eliminated at Stage 1 tends to one. Moreover,
Pé {wi > wj for all j # i} also tends to one if ¥ is the unique maximum
o;_e],...,ek. This can be seen as follows. Selecting in terms of the
largest wj is equivalent to selecting in terms of the smallest p-value under
tests &j which are essentially the same tests as wg but now standardized at
0. By Theorem 2 of Miescke (1979) it follows that

1

(9) Pg LMy > Wy forall §#1) = fo jgi [1—Eej(¢j,a(lj,lj))]da,

which now can be seen to tend to one if N tends to infinity. If, however,
all the good populations are not eliminated at Stage 1 and wi > wj, for all
J # 1, then a correct selection is made. This completes the proof in the

given parameter configuration. The case of more than one best population

can be treated similarly.
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Focussing now on the first component 9a in the procedures (Eb Y ) €8, the
natural choice is of course 93 which cons1sts of the correspond1ng UMP-

tests for H, versus Ky based oa X;» or more precisely, based on Ui = 1,005k
Even though such a choice cannot be justified (not even in the case of

Ny = ... = nk) by an overall improvement on the PCS, several strong reasons
can be quoted in support of choosing (9; ,ji*).' First, of course, all

0
results derived hitherto hold for this procedure. Second, the following

can be stated.

Theorem 5. Among all procedures in 8, (g* , ¥ *) maximizes
- o

(10) Pg_{CS} at every g_egzﬁ, ’

(11) P_e_ (¢S at Stage 1} at every 6 € p:(_ with exactly one _61.'> eo,

(12) ;9 (number of good populations selected at Stage 1) at every 9_69&,
(13) Ee (number of bad populations eliminated at Stage 1) at every gﬁszk.

Proof: (10) follows from (4) and (11) follows from (3). A1l arguments are

standard and are based on the well known properties of the power functions
of the UMP-tests ¢$,a0;1 =1,...,k. Therefore, no further details will be
given.

Third, all permutation invariant procedures (gao,yif), except'(ggo,gif)
ifself, can be modified, without changing the sizes of the selected subsets
of popu]at1ons at Stage 1, in a specific way which leads to an improvement
‘on the PGS, provided that the family {fe}e €q is a strongly unimodal
exponential family. . It should be noted that the modified procedure is also
based on tests but is no longer a member of the class 8. More precisely,

from Corollary 2 in Gupta and Miescke (1983) the following result can be derived.
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Theorem 6. Let {fglgeq

nential family. Then every (Ep_u ,p*) €8 with np = ...=n and and Oy, S =P
0 %9 >

be a strongly unimodal (i.e. log-concave) expo-

can be improved by simply replacing the selected populations at Stage 1 by

the same number of populations, but now by those which are associated with the

largest Ui's, where ties are broken at random. Then for all 9_egk,

(14) Pe {CS under (gu s *)} < Pe {CS under the modified procedure } .
2 0 =

3. Applications With Illustrations In The Normal Case. In applications the

procedure (g;o;gi*) usually will be implemented as to meet certain perfor-
mance requirements. This will be described in this section and will be illu-
strated by the example of k normal populations N(ei,.ci), i=1,...,k, where
Ui and wi are the corresponding sample means, i = 1,...,k. Here the procedure
can be considered to be the two-stage analog of the one-stage procedure by

Bechhofer and Turnbull (1978). At first consider the basic requirement

(15) inf { Pg {CS under ('EESO’IE*)IEE Qlf } = P6f’

where Pa is a predetermined constant. In view of (4) this can be accomplished

by choosing % to satisfy

k *
(16) (1 - cxo) = PO.

Then in the normal case the procedure is of the following form. At Stage 1,

population m; is selected if nl/z (Ui - eO) [ o 3_®-](1 - ao), i=1,...,k,

where @ denotes the c.d.f. of N(0,1). And at Stage 2, a final decision is
made in terms of the largest w from the selected populations.

S1nce (15) actually 1nvo]ves only the properties of the procedure at the
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first stage, the PO* - condition can be attained by employing techniques
used for one-stage procedures. Thus (15) can be solved by taking recourse
to relevant papers in this area. For further details see Gupta and
Panchapakesan (1979).

A second requirement will typically employ the indifference zone
approach which is due to Bechhofer (1954). Let A > 0 be fixed and let
k

- 13 .
g, = {0 €@ |§4 TA > 04 Opseees By gs Ogpqaees By for some i}. Now

consider the requirement

(16) inf {Py {CS under (t_p;o,y)_*)} | o€ 9'2} -t

where P? is a second predetermined constant. Even though Theorem 3 can

be used to find the LFC, it is technically too difficult to attain (16)
exactly. Therefore, the following conservative approach, which over-
protects the experimenter with respect to (16), is recommended and is easy
to perform.. Let 51692 with 6, = max {e],..., 0y }, say. If population
m is selected at Stage 1 and wi is the unique maximum. of w],...,wk then a
correct selection is made. Therefore if the following two conditions are
fulfilled, and B and B, are chosen to meet By * By - 1 = Pf then

by Bonferroni's inequality it follows that the T.h.s. of (16) is not

smaller than P?. The conditions are

(]7) Eeo+ A((ngobo (l\])) 2. B'la J = 1,.;.,k,-'and
(18) inf (Pioine,...,0) M > Wpooslyd | 6€0 ) > 8, .

In the normal case it is well known (cf. Tamhane and Bechhofer (1979))

that Slepian's inequality leads to better results than Bonferroni's inequality.



- 16 -

Use of the former allows to choose 81 and By according to the condition

B1By = P? which is preferable since By + 8, - 1 < B18 for O < BaBy < 1.

To meet (17), standard techniques from the theory of testing hypotheses
can be used. And (18) can be attained by using results of single-stage

selection procedures in the indifference zone approach due to Bechhofer (1954).
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