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1. Introduction

1.1 Goals

The major goal of this paper is to discuss the intimate relationship between
Stein estimation of a multivariate normal mean and Bayesian analysis. Indeed
Stein estimation can not be sensibly carriedout without at Teast informal consideration
of Bayesian aspects of the problem (see section 1.3). The paper is organized around
the four major methods (see Section 1.4) in which prior information can be used in
concert with, or related to, Stein estimation. Although the paper will be formally
self-contained, references to in-depth studies of these methods will be given. Many
of these ideas apply also to non-normal multivariate estimation problems, but for
simplicity we consider only the normal case in this paper.

A second goal of the paper is to present some interesting new Stein-type pro-
cedures and evaluations of them. Foremost of these new results is the development
of a new empirical Bayes estimator, and proof of its minimaxity, in section 5. The
novelty of the estimator lies in its being empirical Bayes with respect to a "sensible"
class of prior distributions, while the minimax proof contains several novel theo- -
retical ideas that should be useful elsewhere.

1.2 Notation

A huge variety of multivariate estimation problems can be reduced to the canonical
.form where X = (X1, X )t js a random vector with a_72 (e,%) distribution, the
mean o = (e],...,e )t be1ng unknown and the (pxp) positive definite covariance
matrix § being assumed known. (It is typical of this subject that, when s
unknown, insertion of suitable estimates of } into all expressions 1eads to
qualitatively similar conclusions.) It is desired to estimate © by an estimator

§(x) = (GT(x),...,ap(x))t, under the sum of squares error 10ss

~T0

L(e,8) = |6-6|2 =

2
L (ei-si(x)) .



(The more general situation of a quadratic loss, (e-s)tQ(e-s), can be reduced to the
above case by a Tinear transformation. Also, losses having different functional
dependencies on(6-8) are known to give qualitatively the same results.) The usual

frequentist evaluation of an estimator & is via its frequentist risk function (or

mean squared error)

R(6,8) = EAL(6,8(X)) = Eéle-d(x)lz.
(In this paper E will denote expectation, with superscripts giving the random quantity
or distribution over which the expectation is to be taken and subscripts standing for
fixed parameters.)

Since Bayesian considerations will be important, we will use n(0) to denote a

pfior density for 6. Of interest will be the posterior density,

m(e|x) = n(e)f(x|e)/m(x|m),
where f(x|e) is the.?zp(e,i) density and

m(x|r) = E"f(x|e) = [ f(x|e) w(e) do (1.1)
Rp

is the marginal or predictive distribution of X for the prior m. A posterior

Bayesian would be primarily interested in the posterior expected loss of &(x) (for

given data x), namely

o(x.8) = ETCIX) [oos ()2 = flo-s(x)|Pn(e]x) do, (1.2)

while a frequentist (or global) Bayesian would be concerned with the Bayes risk
r(m,s) = E'p(X,6(X)) = E"R(6,8), (1.3)
which is just the average loss over both 6 and X. Via either measure, the optimal

estimator is the posterior mean

s"(x) = E7@1X¥) 67,
A common Bayesian analysis of this situation is to use a conjugate 7zp(u,A)
prior, where u = (u],...,p )t is the prior mean and A is the (pxp) prior covariance

p
matrix. Denoting this prior my, standard calculations (c.f., Berger (1980a)) give



that the posterior mean is

s M) = x - (AT (xew),s (1.4)
and that

M0 = bt - k(BT = (s ), (1.5)

R(e,a“N) = tr[j;']+2A"1+A']i;A"]]'] + 303+ A)'_](e—u)lz, (1.6)
and

n(x|my) s 7, (nsh). (1.7)

1.3 The Stein effect and prior information

The classical estimator of o is, of course, ao(x) = x, and it is minimax with
constant risk
R(e,ao) = try.
The Stein effect concerns the fact that, when p>3, estimators &* can be found that
dominate 60, in the sense that, for all 6,
R(s,5%) < R(0,80). (1.8)
(Any such &* is also clearly minimax.) Study of this phemonenon began with Stein
(1956) and James and Stein (1960). General discussions and other references can
be found in Judge and Bock (1979) and in Berger (1983a).
The necessity for the involvement of prior 1nf0rmat16n follows from the basic

fact that R(e,s*) is substantially less than R(e,éo) only in a relatively small region

or subspace of the parameter space. Hence, unless & is thought to 1ie in this region,
use of &* will gain only a negligible amount. (The same can be said for all other
approaches to multiparameter estimation, such as ridge regression.) Clearly,
therefore, among the great variety of Stein effect estimators that are available, the
one selected for use should be one whose region of significant improvement coincides
with where e.is thought Tikely to be ( apriori).

The simplest situation to conceptualize is that in which & is thought to lie
in some ellipse, say

c=(o: (e-)® AT (e-u) < p}. ‘ (1.9)



(Here u could be thought of as the "best guess" for 6, and A as corresponding to
specifications of accuracies (variances) and dependencies (covariances) for these
opinions.) It has long been recognized that specification of n is necessary in

Stein estimation (essentially being the point to which one shrinks), but it is

shown in Berger (1982a) that the "shape feature" A is also usually crucial. These
appear to be the key needed inputs (see Berger (1980b, 1982a)), and luckily correspond
to aspects of prior knowledge which are fairly easy to specify. (For details about
how prior information concerning regression parameters can often be reduced to this
form, see Berger (1980b, 1982a).)

A different important possibility is that & may be thodght to lie near some
subspace of Rp, say the line where all 0, are equal. Versions of Stein estimators
are then appropriate which shrink towards this subspace; substantial risk improvement
can often be guaranteed along the entire subspace. Or 6 may be thought to 1ie near
the surface of some convex set, in which case the Stein estimator should shrink
towards this surface (c.f., Bock (1983)). Or various combinations of the above types
of information may be available.

Given a region in which 8 1is thought to 1ie, the queétion arises as to how to
select an estimator good for this region. The most natural solution is to find the
Stein effect estimator, &%, which does best "on the average" over this region. And
the most direct way to implement this is to choose a prior distribution T reflecting
where o is thought likely to lie, and then measure the average performance of &* by

rr(wo,a*) = [R(0,8%) my(e) do.
In the situation of (1.9), for instance, it would frequent]y be reasonable to model
the prior information asvbeing that i 15‘72p(usA)- If, on the other hand, it is
thought that the 6; are similar, it would be reasonable to model this in the usual
empirical Bayes fashion of assuming that m 1sz7zp(u,A), where p = (1,...,1)tu0,
A= TZI, and 1o and 12 are unknown or partially unknown. Indeed, it will virtually

always be most efficient in Stein estimation to begin by attempting 4 (possibly crude)



quantification of a prior Ty The goal, of course, will then be to find a good
Steinreffect estimator which also has good Bayesian performance with respect to mj.

To non—Bayesfans, this approach may be somewhat disturbing. Note, however,
that the usual fears about Bayesian analysis are not applicable here; even if the
prior my is completely inappropriate, the selected &% (if it satisfies (1.8)) will
still not be worse than 80 (though it will be essentially equivalent). One could
argue that sometimes no prior information is available (although this would be rare
in economic situations). The answer then is quite simple: just use 60, since no
Stein effect estimator would have much of a chance of offering significant improvement.

For the above reasons, even frequentists working in multiparameter estimation
should focus substantial attention on prior specification and its use in estimator
selection. The "common" practice of proposing an estimator and comparing it with
others via simulations is inappropriate. Diffefentvestimators will do well in
different regions (or, equivalently, for different priors), so prior information is
the only way to differentiate among estimators. A number of Stein-like approaches,
such as ridge regression, offer the allure of avoidance of prior input. The allure
is a specious one, however; any particular ridge regression estimator will do well
only in a particular kegion of the parameter space. ‘Any suggestion that the estimator
will magically shrink towards the correct region is simply erroneous: €ven in
empirical Bayes situations, where the data helps select the direction and amount
of shrinkage, prior information concerning the relationships of the 0, must be
specified to direct the shrinkage. Among the many good értic]es concerning this
jssue is Smith and Campbell (1980).

Finally, it should be remarked that one can often do amazingly well from
both the Bayesian and frequentist perspectives, simultaneously. This has long
been known in empirical Bayes settings (c.f. Efron and Morris (1973)). Other

examples of this will be seen throughout the paper, especially in section 4.



1.4 Using o in Stein estimation

Essentially four methods have been proposed for the needed incorporation of prior
information in Stein estimation. The first is to simply derive the Bayes estimator
for an appropriate o> and then to check its frequentist properties (such as dominance
or near dominance of 60). This is discussed in section 2.

The second method is the "adhoc" method, which consists of taking existing
Stein type estimators and attempting to modify them to incorporate prior information.
This is discussed in section 3.

The third method is that of finding the Bayes estimator for T within a restricted
class of estimators, a class usually chosen for its good frequentist properties. A
very interesting example is the Hodges and Lehmann (1952) “"restricted risk Bayes"
method, which is as follows:

Among all s* for which R(e,s%) §_R(e,60) + C,

select that &* which minimizes r(no,s*). (1.10)
When C = 0 in (1.10), one is finding the minimax estimator which is best for Ty This
restricted risk approach is closely related to the r-minimax problem of considering
the ctass of priors

T = {m = (1—€)w0 + e¢Q; Q €21, (1.11)
where. ¢ is a specified constant reflecting uncertainty in e and 2 is a class of
"contaminations," and then choosing 8% to minimize

sup r(m,8%). . (1.12)
TeTl

The idea here is, of course, that, providing Tys: € and 2 are chosen reasonably,
T should contain all “"plausible" prior distributions. If 6* does well for all ™
in T', it should thus be quite satisfactory for use (at least from a frequentist
Bayes viewpoint). These approaches are discussed in Section 4, where some quite

surprising results are presented.

The final method of approaching the problem is the empirical Bayes or, more



precisely, Type-I1I maximum 1ikelihood method (see Good (1980)). This method is
related to the r-minimax approach, in that one considers a class of priors such

‘as (1.11), but one then chooses the "most 1ikely" prior in T, according to the data.
Since the "likelihood" of a prior is simply m(x|n), this leads to the following
definition.

Definition. For a class I of priors and given data x, the ML-IT (type II maximum
Tikelihood) prior in r, w, is defined (assuming it exists and is unique) as that

o €T maximizing m(x|=) over all mw€T.

Most empirical Bayes analyses proceed by letting T be all conjugate priors,
choosing the ML-II %, and then doing a Bayeéian analysis pretending that 7 is the
true prior. Although this smacks of adhocery (the "pfior" . being chosen in a data
dependent fashion), a number of justifications for the approach can be given. (See
Berger énd Berliner (1983) for discussion and references.) Also, the approach |
seems to work remarkably well. In section 5 we apply the approach to realistic
classes of priors such as (1.11). Indeed for T as in (1.11), with mg being a conjugate
prior and 2 being a reasonable class of contaminations, a quite attractive estimator
is developed (via this approach) which is a data adaptive compromise between aﬂo and
a standard empirical Bayes estimator. Furthermore, the estimator is shown to be

minimax (for large enough e) by a minimax proof incorporating some novel features.

2. Bayesian Stein-type estimators

2.1 Introduction

There are several advantages to approaching Stein estimation through Bayesian
development of estimators. The first is that one can be certain that the needed
prior information is used correctly. The second is that the resulting estimator is
often admissible (c.f., Strawderman (1971) and Berger (1976)). Related to this is
the fact that Bayesian estimators are guaranteed to be fine conditionally: the

original James-Stein (1960) estimator (for £ = 1),



£5(x) = (1 - (p-2)/1x17)x%,
has R(6,6°"S) < R(8,6%), but if p = 3 and x = (.01, -.01, o1t then ¢073(x) =
(-33, 33, -33)t;a ridiculous result. Of course, the positive part version corrects
this obvious conditional deficiency, but only Bayesian development of procedures
can generally guarantee that the procedures are sensible for each x, and not just
on the average (c.f., Berger and Wolpert (1984)).

The final and most important practical reason to adopt a Bayesian approach to
Stein estimation is that one can easily obtain confidence sets, perform tests, etc..
The posterior covariaﬁce matrix is usually not much harder to calculate than the
posterior mean, and can be used to indicate the variability of the estimates (c.f.,
Box and Tiao (1973), Berger (1980b) , Morris (1983a, 1983b) and Van der Merwe et. al.
(1981)). Trying to develop estimates of variability from the frequentist perspective
has proved enormously difficult, even in the simplest cases (c.f., Hwang and Casella
(1982)).

The disadvantage with Bayesian development is that the estimators are sometimes
expressible only as numerical integrals, and that frequentist risk propefties can be
hard to verify. Situations where good frequentist risks are known to result are
discussed in this section. Note that the conjugate priors, ™’ discussed in section
1.2, do not have good frequentist risk properties, in that (see (1.6))

sup R(8,6 ) = =.

)
2.2 Flat-tailed prior distributions

There is substantial evidence (c.f., Rubin (1977) and Berger (1983b)) that
estimators developed from priors with flat (polynomial like) tails are Stein-
type and have good risk properties. One example of such a development is Berger
(1980b), in which such a prior is used as an alternative to LNE and results in the

Stein-type estimator (posterior mean)

2
FB(x) = x - FULl ) g pem) ™ (e

| [x-ull
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where ||x—u||2-= (x-u)t($+A)'1(x-p) and r(z) is approximately min{z,p-2}. Note
m
the similarity of this estimator with ¢ N in (1.4). Indeed, if u and A are

accurate reflections of the location of 6, then ||x—u|l2 will be approximately p
. T
(see (1.7)), and (for moderately large p) s"B will be essentially ¢ N. If, however,

6 is far from u, then r(||x—u||2)/||x—u||2 will be small, and §RB

60. This is the general behavior of estimators developed from flat tailed priors,

will be essentially

and is the source of their good frequentist properties. (Indeed 6RB is sometimes
minimax and always has bounded risk - see Berger (1980b).) Confidence regions for
8, centered about SRB, are also given in Berger (1980b).

2.3 Hierarchical priors

When the prior information consists of structural knowledge about similarities
or relationships among the 05 this can often be conveniently modeled by hierarchical
priors. For instance, the usual empirical Bayes situation, in which the 6; are
felt to be similar, can be modeled by supposing that the 6; are (independently
7Z(v0,18), and then putting a second stage (perhaps diffuse) prior on v, and Tg;

The resulting estimator (posterior mean) will again be Stein-type and have good
frequentist risk, providing the second stage prior on Tg has flat tails. There is

a huge literature on this approach, with a wealth of excellent statistical estimators
(and associated confidence sets). References can be found ‘in Lindley and Smith

(1972), Good (1980), Morris (1983b), and Berger (1983b).

2.4 Posterior robustness

An exciting possibi]ity:exists for bypassing the (often difficult) verification
of good frequentist risk behavior of a Bayesianly derived Stein-type estimator. The
idea is to look at the range of posterior means for all = in a class T of plausible
priors, such as (1.11). If this range is small, then posterior robustness obtains,
and a Bayesian would be completely satisfied with use of dﬂo(x). It seems likely
(see Brown (1983)) that the estimate is also then satisfactory from a frequentist

viewpoint. The great appeal of this approach 1lies in the fact that posterior
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robustness needs to be investigated only for the actual observed x. (0f course, to
a Bayesian, this is not just a convenient technique, but is the only fundamentally
sound statistical analysis.) See Berger (1983b) and Berger and Berliner (1983) for
discussion of some of these issues.

3. Adhoc incorporation of prior information

One can simply incorporate the needed prior information into estimators in
an "intuitive" fashion. One example is Berger (1982a), where a minimax version of
éRB was developed, incorporating u and A. This was done by simply taking an
existing class of estimators due to Bhattacharya (1966) and Berger (1979), and
incorporating u and A. The resulting estimator, when 1 and A are diagonal, can

be written (coordinatewise) as

2
w N ) A 2(g-a)
61 (x) = X5 m)— (X'i U-i) [qi JE'I(q‘] qj+])m1n§1, HXJ-HjIlzg]’

where'{oi} and {Ai} are the diagonal elements of i and A, q; = 0?/(0§+A1) (and a
relabelling has been done, if necessary, so that q13923,..zgp>05qp+]), and
{Iijujllz = % (xz-ul)z/(o§+Az). This estimator whas shown to always be minimax
and to have gﬁgg Bayesian properties.

A second example of such an adhoc approach is that of Bock (1983), in which
minimax estimators are developed which shrink towards the surface of convex sets
(such as a sphere, the positive orthant, or a wedge). These estimators would be
of Bayesién value when the prior information is that 6 is likely to be near such
a surface. (As an example, one might have vague prior knowledge cbncerning the
length, |8|, of @, and hence want to shrink towards the surface of the appropriate
sphere.)

The chief usefulness of such adhoc estimator developments is that they allow
(usually by design) proof of minimaxity (or some other desirable property) of the

final estimator, while bearing some relation to the desired prior input. Their
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weaknessess are those that have already been mentioned: they may utilize the prior
information in an inferior way; they are often not admissible; and they do not
lead to error estimates.

4. Restricted class Bayes and r-minimax estimators

A reasonable approach to incorporatingprior information into Stein estimation
is to restrict oneself to a class of estimators known to have desirable frequentist
risk properties, and within this class seek an estimator good with respect to LY
Although there are several examples of this in the literature, we will restrict
discussion here to the restricted risk Bayes problem posed by (1.10). There is also
the closely related r-minimax problem discussed in (1.11) and (1.12). These two
problems are actually equivalent in a wide variety of situations, as the following
lemma shows. For use in this lemma define the "orthant at 6'" as the set

Ale') = {eo: e1.>61! if 91! > 0 and 91.<e1! if 615 < 0}.
Lemma 1. Suppose that r is as in (1.11) and that, for each 6', there exists Qg,: € 2
such that P el(A(e')) = 1. Suppose also that & is an estimator such that R(e,8)
is nondecreasing in |ei| > k for some K and all i. Then

sup r(m,s) = (1-e)r(n0,6) + ¢ sup R(6,8). . (4.1)
% €T 8 '

Proof. Clearly

sup Y‘(TrO,G) = (-l'EI) Y‘('rro,é) + ¢ sup Y(Qs(S).
7 €T Qe 2

Define M = sup R(8,5), and observe that, for any » > 0, one can find a point o
6

such that |e?| > K for all i and R(ex,s) > M - x. Since R(6,8) is nondecreasing
for |o;| > K, it follows that

r(Q ,,8) = [ R(e,6) dQ ,(6) > M - A.
o ale?) °

But » is arbitrary, so that

sup r(Q,s) > M.
Q€ 2 -
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On the other hand,
r(Q,s) = fR(e,8) dQ(e) < fM dQ(e) = M,

establishing the conclusion.|]
Virtually all classes of contaminations 2 that are considered (c.f., Berger
and Berliner (1983)) satisfy the mild condition of the lemma, and furthermore, it

can frequently be shown (for, e.g., unimodal no) that any § minimizing sup r(wo,a)
TET

must also satisfy the condition of the lemma. But it follows from a standard
game-theoretic argument that any § minimizing the right hand side of (4.1) must
also be the solution to (1.10), where ¢ and C are related in a monotonic fashion.
As a specific example, consider the situation where I = o1 and ™ is
'72p(u,121). In Berger (1982b, 1982c) it is shown, when p>3 and C=0 in (1.10) (or
equivalently e=1 in the r-minimax case), that the approximate optimal restricted

risk Bayes rule is the Stein type estimator

[« 2
5 0(x) = x - —5— (x-u) if |x-uf? < 2(p-2) (oP+1%)
sR(x) = S (427 '
2
| x- |2( Ig)g (x-1) i |x-ul2 > 2(p-2) (oP+e2) .
X-u

R

Since C=0, s° is minimax, and hence always better than 50 in terms of frequentist

risk. It is convenient to measure the Bayesian performance of GR by the "relative

savings risk" (see Efron and Morris (1972))

r(mgs8) - P(ﬂo,éﬂo)
rrg»80) - r(ngss 0)

RSR(nogs) =

when RSR is near zero, § is essentially as good as the optiha] Bayes rule with
respect to mQ (namely, sﬂo) while, when RSR is near oné, sﬂo is no better than the
standard estimator 60. Table 1 gives RSR(nO,GR) for various values of p. These
values are startling, in that GR has essentially optimal Bayesian performance (at

least for p>5) while maintaining minimaxity. That one could have sugh optimal
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frequentist and Bayesian performance simultaneously is astonishing.

Results in this situation for C>0 (or e<1) are.a1so given in Berger
(1982b, 1982c) when p>2, and when p=1 in Efron and Morris (1971). The (approximate)
solutions depend in general on modified Bessel functions. For p=1 and p=3,

however, they have the fairly simple form (respectively)

/

2
X = — (x=u) it (xw)? < MoPsc?)
61’M - J (c"+17)
x = (sgn[x-u])[Mo /(o +1° ):I”2 otherwise,
, 2
- ) it lscal? < (oPaedi
g +T
|
2 2
| x- [ 202 + /M o ] (x-u) otherwise,
IX'PI 02+T2 IX'UI
where d = 3 M + % + MV1+8/(3M), and
M - c i C(GZZTZ)

0 0 po
r(WOSG )'r(ﬂos§ ) .

Here M indicates the amount that Sp’M is worse than a minimax rule (for which
M=C=0) in terms of sup R(6,8), normalized to.be on the same scale as RSR(WO,S).

)
Table 2 presents M, RSR(wO,a[%M), and also values (see (4.1)) of

' : T
sup r(n,dp’M) - r(no,s 0)
r(e) = T€L (4.2)

m

P(ﬂo,ﬁo) = Y‘("‘Tos(S O)

i.e., the suitably normalized r-minimax risk of 6P’M. It can be shown that
r(e) = (1-e)RSR(ng,s" M) + e (140). (4.3)
Actually, it was more convenient to just give the results for e = .1, .2, .3, and

.4, with M being determined as the corresponding value giving the optimal (approximate)
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r-minimax rule (see the discussion after Lemma 1). The results are also given
for p=2. (See Berger (1982b or 1982c) for the appropriate estimator in this case.)
The tradeoff between increased minimax risk (M) and Bayesian performance (RSR)
is well illustrated by Table 2. When p=1, for instance, one can have reasonable
Bayesian performance, sacrificing only 32% of the possible Bayesian gains, by being
willing to accept an increase of 40% in the minimax risk. For p=3 the situation
is very pleasant; by allowing an increase of 10% in minimax risk one surrenders only
13% of the possible Bayesian gains. The data for p=2 are included because they show
that the "Stein effect" is operating even in two dimensions: the values of M and
RSR are much better than when p=1.
The r-minimax data from Table 2 are also worth perusing. For instance, in
p=3, if one elicits u and TZ and feels that a normal shape for the prior is reasonable,
but feels that the prior specification could be off (in terms of misspecified prior
probabilities) by, say 20% (i.e., e=.2), then using g3»-2 would guarantee a Bayes
risk no worse than 31% from "optimal" by the standardized measure. (Using (4.2)
and (4.3) it is easy to convert this into actual r-minimax risk if desired.) Thus,

2 would have excellent overall risk, which should

for any prior deemed reasonable, 63’°

be satisfactory even to frequentists.
It should be mentioned that, for conditional Bayesians, the estimators discussed

in this section are very sensible, being simply the conjugate prior Bayes estimator

when x is near u (and so compatible with the prior), while being similar to Bayes

estimators with flat tails otherwise. Also, although the problem becomes much

more difficult when } and A are not multiples of the identity, good restricted

risk Bayes procedures and r-minimax procedures have been developed for such situations

in Chen (1983).

5. Type-II maximum Tikelihood and empirical Bayes estimators

5.1 The assumed prior structure

Consider the “"empirical Bayes" situation in which the 6, are thought to be
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independent realizations from a common 72(V,T2) prior density, but v and 2 are

partially unknown. Model this uncertainty in a robust hierarchical Bayesian

2

fashion, i.e., assume that v and t~ have a prior density

h(v,t2) = (1-€) hylv,t?) + eQlv,c?),
where h0 is an elicited prior, ¢ is the possible error in elicitation, and Q is a

member of a class 2 of possible contaminations. The overall prior for 6 is then

o) = [ [ & expl-(8,-v)%/2t% T (v,7%) dude?
i=1 vV2n1 v
= (1—e)w0(e) + eQ*(e), (5.1)
where
ﬁ0(6)='f [1 exp{—(ei-v)2/2r2}]h9(v,12) d\)df2
i=1 V2n1
and v
Q¥(6) = L1 —L— expi-(o;-v)2/2c2310(v,70) dvdi?. (5.2)
i=1 V2nt

We are thus faced with the class of possible priors
T = {m= (1-¢) My eQ*; Q. € 21l. (5.3)
Notice that this is considerably more refined than the usual empirical Bayes
setup, which effectively assumes that =1 and 2 = {all unit point masses}, so
that 1 is just the set of a11572p(v1,r21) priors, where ] = (1,1,...,])t. Usually
prior knowledge about v and 12 is available and, as briefly discussed in Berger
(1982b) and Berger (1983c), can provide valuable gains (unless p is quite large).

5.2 The ML-II prior and posterior mean

An adhoc, but intuitively reasonable method of dealing with T is to choose
the "most 1ikely" prior in r. Recall, from section 1.4, that this is called the
ML-II prior, %, and is that prior in T (if it exists) maximizing m(x|w) for the
given data x. (Recall that m(x|n) (see (1.1)) is the predictive density of x given

7, S0 that r is the "maximum likelihood" prior in the usual sense. Good (1965)



calls this "Type-II maximum Tikelihood," and we will stick with his nomenclature.)
This technique is extensively discussed in Berger and Berliner (1983), to

which the reader is referred for further justification. Note, at least, that this

would correspond to the usual empirical Bayes technique (when I consists of all

‘N (v],rzl) distributions) of estimating v and T2 via the maximum likelihood method

pto.
from the predictive density

m(x|v,72) = 7,01, $+°1). (5.4)
When « is as in (5.1), it is clear that
m(x|m) = (1—e)m(x|n0) + em(x|Q*). (5.5)
Hence
sup m{x|n) = (1-e)m(x|w0) + ¢ sup m(x|Q*). (5.6)
mET Qe.2.

Furthermore, if Q* maximizes this last term, then = = (1-¢) Mg * eQ*, and the

posterior mean with respect to = is

sT(x) = [ 6 f(x]s) (o) do

m(x|7)
23 67000 + (1-40x) Q(x), (5.7)
where
X(x) = (1-e) m(x|ng)/[(1-e)m(x|my) + em(x]Q)]. (5.8)

Note that, when the data x "agrees with" Moo m(xlﬂo) will be reasonably large and
i(x) will be close to one. If, on the other hand, x gives considerably more
support to 6, then i(x) will be close to zero. This adaptive behavior of s" ds
what makes it so attractive.

5.3 A special case

The simplest case to deal with is that in which § = czI, ho(v,rz) is a point

2
mass at (vO,TO) and

2

2= {all distributions concentrated on t Z_Tg}.



The idea here is that (vo,r

g) is simply the best guess as to the "hyperparameters,

18

e is a measure of the strength of belief in this guess, and there is enough

uncertainty to want to allow all contaminations in 2, subject to the constraint

that 'c2 > T-S.

the analysis goes smoothly, and partly to prevent "spurious"”

creeping in.)

(The reasons for this constraint are partly technical, so that

precision from

It shouldbe mentioned that, while choice of such a large 2 seems

to work well (in a conservative sense) in estimation, other uses of the resulting

1 (such as for confidence sets) are suspect (see Berger and Berliner (1983)),

although the problems of so using = here are not too severe.

For this situation,

TTO 1s 7’p(\)o1 ,Tg Py m(xl'ﬂo) iswp(\)ola
0 2
§ (x) = x 2 5 (x-v 1),
(U +T0)

and (see (5.2) and (5.4))

(x]Q*¥) = [ m(x]vst?) Q(v,72) dvdr?.

(P {)I),

(5.9)

Clearly m(x|Q*) is maximized over Q- € 2 by choosing Q to be a point mass at

the maximum likelihood estimate of (v,rz) (subject to the constraint T2

of course).
simply

S =%, 12 = maxied, |s|%p-o%,
where s2 = Ev (xi-i)z. Thus

i=1 .

m(x|8) 157 (01, (oP+c2)1),

and
00 = x - —— (x-%1),

~

max{T0+o ,|s| /p}

which is more or less the "standard" empirical

2 Ty

But, from (5.4), it is clear that the maximum likelihood estimate is

(5.10)

(5.11)

Bayes estimate of & in_the exchangeable



case. Also, i(x) can be written (after some algebra and Tetting max denote

maX{rS+02,[s|2/p}) as
) = | 1 ot <02+r§>p/2 352[ 1 1] p(z-vo)zg ! 5.12)
ax) = |1+ = - exp - + . .
v (1-¢) max 2 (02+TS) max 2(02+TS)

Using this with (5.9) and (5.11) in (5.7) gives the ML-II posterior mean, which
will be a very appealing data adaptive compromise between the Bayes estimator for
the specified (VO,Tg) and the empirical Bayes estimator which assumes that these
hyperparameters are unknown. More discussion of this approach, along with examples
of more realistic or richer structures that can be assumed, is given in Berger and
" Berliner (1983).

~

5.4 Minimaxity of "

~

The intuitive rationale and justifjcation for ", together with the fact that
the estimator behaves similarly to more familiar Stein-type estimators in the limits,
lends support to the feeling that the estimator will have good frequentist properties
(as well as good Bayesian properties). It is of interest, however, to éttempt
direct verification of this, by attempting to establish minimaxity of ¢". Unfortunately,
we were unsuccessful in this attempt, due to technical difficulties arising from
the 1ntroductionvof v. Workers in this area are, however, familiar with the fact
that such estimation of the supposed common mean rarely affects minimaxity by more
than a needed slight alteration of constants, so we considered the simpler problem

(vO,Tgx), and

of known v. Thus suppose that X m72p(e,021), 0 is 72p

2= {all distributions concentrated on {v=v0,r23;8}}.

An-analysis identical to that of the previous section gives, as the ML-1I posterior

mean,
' : 2 2
A X = ——59—5—-(x—v01) if .E (Xi_VO) < p(T0+G )
(O +T0) 1_]
§" = < (5.13)
o2r(v)
x = = (x=vy1) otherwise,




ZU

where v = E (x, -vo)z,
i=1
r(v) = p[1 + ( o 2) 1) A1, ‘ (5.14)
pio 10
p/2
. (o%+r ) 3
Av) = g o E) [ o i 0 ] P2 /2o +T0)

Theorem. For p>5, 8" in (5.13) is minimax (i.e., satisfies (1.8)) providing

a;;p, € being given in Table 3 for 5<p<26. (For p>26, € is less than .009, so
s" will be minimax for any sensible e.)

Proof. By making the appropriate linear transformation, it is sufficient to prove

2+TS=1, which we henceforth assume. Using the familiar

the theorem for v0=0 and o
unbiased estimate of risk of Stein (1981), to show that an estimator,
s*(x) = (1-02r*(v)/v)x, (5.15)

is minimax (where qu7zp(e,021) and v=]x|2), it suffices to show that

4 L px(v) + re(v) vT2(p-2) - (V)] > 0. (5.16)
For vep, &" is of the form (5.15) with r*(v) = v (recall oZ+to=1, v;=0), for which
verification of (5.16) is trivial. For v>p, we must verify (5.16) for r*=r as in
(5.14). Substituting (5.14) into (5.16), and after some algebra, the problem reduces
to showing that (for v>p)

Ki(V) + Ky(v) ¢ + Ky(v) c# 2 0, (5.17)

where

= e('l-e)_] pP/Ze-P/Z,
K](v) = 2vpfv2,
Ko(v) = V'p/zev/2[4p(v-1)-2v2],

= p(p-4)vPe". (5.18)

Since K3(v) is positive ‘(for p>5), in establishing (5.17) it is only necessary

~
w
—
<
~—
1

to prove that the left hand side has no roots in c. Clearly it is only necessary to.

consider the case where
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Kg(v) - 4K, (v) Ky(v) > 0, (5.19)
and then to show that
: 2 1/2
¢ > FKy + (Ky-aK.K3) 2172k, (5.20)

Calculation shows that (5.19) 1is satisfied (for vsp) only for v € B]i

U BZ’ where
4 rY ‘ 2 ’
B.=(p.p + [& - & p?-161/211/2), B, = (p + [B- + Byp?-1611/211/2 0),
1 2 2 2 2 2 ,
Algebra also gives that (5.20) is equivalent to

“p/2 p/2.p/2 -v/2
> e [(2p-a) + (a®-p7avap®) /1,

(5.21)

1-¢

where a = -v2+2pv. For v. € B], it is straightforward to check that the right hand

side of (5.21) is negative, establishing the result in this range.

Consider, finally, the functions

o(v) = WP/ %V (2p-a) + (a%-pParap?) /2],

H(v) = 1og{vp/2E(2p-a) + (a2-2pa+4p2)]/2]}.
It is easy to check that y(v) is positive on BZ' Also, it can be shown that H'(v)
is a positive continuous function, decreasing from = (at the left end point of Bz)
to 0 (at v=»). Thus

d 1 VoY -
v 109 v(v) = -5+ H'(v) =0

has a unique solution Vgs and hence

sup_ w(v) = y(vy).
v €8,

(The equation H'(v) = %-turns out to be a fifth degree po1ynomia] equation, so the
computer was used to find the root Vo in BZ' These roots are also given in Table 3
for the various p.)

Finally, it is clear that (5.21) is satisfied on B, if

nP/2 P/2
(T-¢) ~ p(p 4) vl -
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or if

e > 1/{1 + p(p-4) pp/ze'p/z/w(vo)} = €

This completes the proof of the theorem. ||

Comments.

1.

A11 previous minimax proofs we have seen, that use Stein's technique, depend

on the r*(v) in (5.16) being increasing, so that the derivative of r* can be
ignored. A substantial part of the difficulty of the above proof was due to

r not being monotonically increasing.

A substantial simplification was achieved through the approach of analyzing
(5.17) as a quadratic in c and showing that there can be no roots. As pointed
out in Gleser (1983), this can often be a useful technique.

The estimator cannot be minimax if p<4. This is mainly because, as vo=, r(v)-p
(see (5.14)), and notAto (p-2) as with more familiar Stein type estimators. An
adhoc adjustment of s" could probably be effected to achieve minimaxity for p=3
and 4, but the major point of the theorem was to indicate that the estimator does
have reasonable frequentist properties. )

The Bayesian performance, with respect to s of ¢" will not be as good as the
Bayesian performance of 6R in section 4. However,AdR will fare poorly (though
never worse than 60) when 8 is not near u, while 8" will continue to perform well

as long as the 6, are similar (i.e., as long as the exchangeability assumption

is valid). The strength of the Type-II maximum Tikelihood approach, with

. g=contamination classes of priors, is that a number of different types of prior

information can be built into T', and the data will shift ¢" towards the posterior
mean corresponding to the most plausible prior input (in 1ight of the data).

Further discussion and examples can be found in Berger and Berliner (1983).
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Table 1. RSR(nO,GR)

P 3 4 5 6 7 8 9 10 15

RSR .296 135 .073 .043 .027 .017 .012 .008 .002




Table 2. M, e r(c), and RSR(ny,s"")
p 2
e | ] 2| 3l a2 3] allal 2] 37 .4
r(e) | .33 | .50 [.64 |[.75 || .22 [.37 |.s9 | .59 ||.18 | .31 | .2 | .52
M oJra | 8 | 4 | el 6 | s | 2| 2] 4| 2 s | g
RsR .10 | .18 .32 |.32|].07 .00 |9 19 (|05 | .00 |01 | .13




Table 3. ‘p and Vo

p €p Vo p €p Vo

5 T77 11.50 16 061 33.65
6 .604 13.52 17 .050 35.66
7 471 15.55 18 .041 37.67
8 . 369 17.56 19 .033 39.67
9 .290 19.58 20 .027 41.68
10 .229 21.59 21 .022 43.68
11 .182 23.60 22 .018 45.69
12 .145 25.61 23 .015 47.69
13 .116 27.63 24 .013 49.70
14 .094 29.64 25 .010 51.70
15 .076 31.64 26 .009 53.
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BAYESIAN INPUT IN STEIN ESTIMATION AND A NEW
MINIMAX EMPIRICAL BAYES ESTIMATOR*

J. BERGER
Purdue University, West Lafayette, IN 47907, USA

(; L.M. BERLINER
Ohio State University, Columbus, OH 43210, USA

The relationship between Stein estimation of a multivariate normal mean and Bayesian analysis is
considered. The necessity to involve prior information is discussed, and the various methods of so
\ doing are reviewed. These include direct Bayesian analyses, ad hoc utilization of prior information,
restricted class Bayesian and Iminimax analyses, and Type II maximum likelihood (empirical
Bayes) methods. A new empirical Bayes Stein-type estimator is developed, via the latter method,
for an interesting e-contamination class of priors, and is shown to be minimax under reasonable
conditions. The minimax proof contains some novel theoretical features.

1. Introduction

1.1. Goals

The major goal of this paper is to discuss the intimate relationship between
Stein estimation of a multivariate normal mean and Bayesian analysis. Indeed
Stein estimation can not be sensibly carried out without at least informal
consideration of Bayesian aspects of the problem (see section 1.3). The paper is
organized around the four major methods (see section 1.4) in which prior
information can be used in concert with, or related to, Stein estimation.
Although the paper will be formally self-contained, references to in-depth
studies of these methods will be given. Many of these ideas apply also to
non-normal multivariate estimation problems, but for simplicity we consider
only the normal case in this paper.

A second goal of the paper is to present some interesting new Stein-type
procedures and evaluations of them. Foremost of these new results is the
development of a new empirical Bayes estimator, and proof of its minimaxity,
in section 5. The novelty of the estimator lies in its being empirical Bayes with
respect to a ‘sensible’ class of prior distributions, while the minimax proof
contains several novel theoretical ideas that should be useful elsewhere.

* This research was supported by the National Science Foundation under Grant MCS-8101670AL.

0304-4076,/84 /$3.00©1984, Elsevier Science Publishers B.V. (North-Holland)
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1.2. Notation

A huge variety of multivariate estimation problems can be reduced to the
canonical form where X = (X, ,---»X,)" is a random vector with a A8, %)
distribution, the mean 4 = (0,,...,0,) being unknown and the (p X p) positive
definite covariance matrix 3 being assumed known. (It is typical of this subject
that, when 2 is unknown, insertion of suitable estimates of X into all
expressions leads to qualitatively similar conclusions.) It is desired to estimate
0 by an estimator 8(x)= (8,(x),...,8,(x))", under the sum of squares error
loss

L(0,8) ZW"BIZ: i (Hi—ai(x))z'
i-1

[The more general situation of a quadratic loss, (8 — 8)'Q(8 — &), can be
reduced to the above case by a linear transformation. Also, losses having
different functional dependencies on (6 — d) are known to give qualitatively
the same results.] The usual frequentist evaluation of an estimator is via its
frequentist risk function (or mean squared error)

R(6,8)=EfL(8,8(X))=EX6-8(X)

(In this paper E will denote expectation, with superscripts giving the random
quantity or distribution over which the expectation is to be taken and sub-
scripts standing for fixed parameters.)

Since Bayesian considerations will be important, we will use 7(8) to denote
a prior density for 8. Of interest will be the posterior density,

m(01x) = 7(6)(x18)/m(x|x),
where f(x|8) is the A,(8, 2) density and

m(x|w) = Ef(x|0) = /R S(x16)w(60)do (1.1)

is the marginal or predictive distribution of X for the prior w. A posterior
Bayesian would be primarily interested in the posterior expected loss of 8(x)
(for given data x), namelyZ

p(x,8)=E |9 - §(x)? =/w —8(x)[2r(8)x)de, (1.2)

while a frequentist (or global) Bayesian would be concerned with the Bayes risk

r(m,8)=E"o(X,8(X))=E"R(8,5), (1.3)
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which is just the average loss over both # and X. Via either measure, the
optimal estimator is the posterior mean

87(x)=E"¢M[4g].

A common Bayesian analysis of this situation is to use a conj ugate A, (1, A)
prior, where #={(py,...,p,)" is the prior mean and A is the (p X p) prior
covariance matrix. Denoting this prior 7, standard calculations [cf., Berger
(1980a)] give that the posterior mean is

8 (x)=x~3(Z+A4) Nx—p), (1.4)
and that

p(x,8™(x))=tr 2—tr Z(Z+A) " 'Z=r(my, 8™), (1.5)
R(0,6™)=u[Z ' +247 1+ 471547 1]}

HIZ(Z+4)T(0- ) (1.6)

and
m(xjmy)is A, (n, T+ 4). (1.7)

1.3. The Stein effect and prior information

The classical estimator of 4 is, of course, 8°(x)= x, and it is minimax with
constant risk

R(6,8%)=tr3.

The Stein effect concerns the fact that, when P = 3, estimators §* can be found
that dominate 8°, in the sense that, for all 6,

R(8,8%) <R(8,5°). (1.8)

(Any such 8* is also clearly minimax.) Study of this phenomenon began with
Stein (1956) and James and Stein (1961). General discussions and other
references can be found in Judge and Bock (1978) and in Berger (1983a).

The necessity for the involvement of prior information follows from the
basic fact that R(8, 6*) is substantially less than R(6,8°%) only in a relatively
small region or subspace of the parameter space. Hence, unless 8 is thought to
lie in this region, use of §* will gain only a negligible amount. (The same can
be said for all other approaches to multiparameter estimation, such as ridge
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regression.) Clearly, therefore, among the great variety of Stein effect estima-
tors that are available, the one selected for use should be one whose region
of significant improvement coincides with where @ is thought likely to be
(a priori).

The simplest situation to conceptualize is that in which 8 is thought to lie in
some ellipse, say

C={8:(0—p)'a Y (6-p)<p}. (1.9)

[Here u could be thought of as the ‘best guess’ for 8, and A as corresponding to
specifications of accuracies (variances) and dependencies (covariances) for
these opinions.] It has long been recognized that specification of y 1s necessary
in Stein estimation (essentially being the point to which one shrinks), but it is
shown in Berger (1982a) that the ‘shape feature’ 4 is also usually crucial. These
appear to be the key needed inputs [see Berger (1980b, 1982a)], and luckily
correspond to aspects of prior knowledge which are fairly easy to specify. [For
details about how prior information concerning regression parameters can
often be reduced to this form, see Berger (1980b, 1982a).]

A different important possibility is that § may be thought to lie near some
subspace of R?, say the line where all §, are equal. Versions of Stein estimators
are then appropriate which shrink towards this subspace; substantial risk
improvement can often be guaranteed along the entire subspace. Or # may be
thought to lie near the surface of some convex set, in which case the Stein
estimator should shrink towards this surface [cf., Bock (1983)]. Or various
combinations of the above types of information may be available.

Given a region in which 8 is thought to lie, the question arises as to how to
select an estimator good for this region. The most natural solution is to find the
Stein effect estimator, 8*, which does best ‘on the average’ over this region.
And the most direct way to implement this is to choose a prior distribution m,
reflecting where 8 is thought likely to lie, and then measure the average
performance of §* by

r(vro,8*)=/R(0,6*)7r0(0)d0.

In the situation of (1.9), for instance, it would frequently be reasonable to
model the prior information as being that =, is 47, (p, 4). If, on the other hand,
it is thought that the 6, are similar, it would be reasonable to model this in the
usual empirical Bayes fashion of assuming that @, is A, (p, A), where p=
,...,1)sy, A=1%, and p, and 7> are unknown or partially unknown.
Indeed, it will virtually always be most efficient in Stein estimation to begin by
attempting a (possibly crude) quantification of a prior 7,. The goal, of course,
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will then be to find a good Stein effect estimator which also has good Bayesian
performance with respect to =,.

To non-Bayesians, this approach may be somewhat disturbing. Note, how-
ever, that the usual fears about Bayesian analysis are not applicable here; even
if the prior =, is completely inappropriate, the selected §* [if it satisfies (1.8)]
will still not be worse than §° (though it will be essentially equivalent). One
could argue that sometimes no prior information is available (although this
would be rare in economic situations). The answer then is quite simple: just use
8%, since no Stein effect estimator would have much of a chance of offering
significant improvement.

For the above reasons, even frequentists working in multiparameter estima-
tion should focus substantial attention on prior specification and its use in
estimator selection. The ‘common’ practice of proposing an estimator and
comparing it with others via simulations is inappropriate. Different estimators
will do well in different regions (or, equivalently, for different priors), so prior
information is the only way to differentiate among estimators. A number of
Stein-like approaches, such as ridge regression, offer the allure of avoidance of
prior input. The allure is a specious one, however; any particular ridge
regression estimator will do well only in a particular region of the parameter
space. Any suggestion that the estimator will magically shrink towards the
correct region is simply erroneous: even in empirical Bayes situations, where
the data helps select the direction and amount of shrinkage, prior information
concerning the relationships of the 6, must be specified to direct the shrinkage.
Among the many good articles concerning this issue is Smith and Campbell
(1980).

Finally, it should be remarked that one can often do amazingly well from
both the Bayesian and frequentist perspectives, simultaneously. This has long
been known in empirical Bayes settings [cf. Efron and Morris (1973)]. Other
examples of this will be seen throughout the paper, especially in section 4.

1.4. Using m, in Stein estimation

Essentially four methods have been proposed for the needed incorporation
of prior information in Stein estimation. The first is to simply derive the Bayes
estimator for an appropriate m,, and then to check its frequentist properties
(such as dominance or near dominance of 8°). This is discussed in section 2.

‘The second method is the ‘ad hoc’ method, which consists of taking existing
Stein-type estimators and attempting to modify them to incorporate prior
information. This is discussed in section 3.

The third method is that of finding the Bayes estimator for =, within a
restricted class of estimators, a class usually chosen for its good frequentist
properties. A very interesting example is the Hodges and Lehmann (1952)
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‘restricted risk Bayes’ method, which is as follows:
Among all 8* for which R(6,86*) < R(8,8°) + C,
select that 8* which minimizes (7, 8*). (1.10)

When C =90 in (1.10), one is finding the minimax estimator which is best for
y. This restricted risk approach is closely related to the I-minimax problem of
considering the class of priors

IF'={a=(1-¢)m+e0;0€2}, (1.11)

where ¢ is a specified constant reflecting uncertainty in 7y, and 2 is a class of
‘contaminations’, and then choosing §* to minimize

sup r(m, §%). (1.12)

gel

The idea here is, of course, that, providing m,, &, and 2 are chosen reasonably,
I" should contain all ‘plausible’ prior distributions. If * does well for all 7 in
T, it should thus be quite satisfactory for use (at least from a frequentist Bayes
viewpoint). These approaches are discussed in section 4, where some quite
surprising results are presented.

The final method of approaching the problem is the empirical Bayes or,
more precisely, Type II maximum likelihood method [see Good (1980)]. This
method is related to the I'-minimax approach, in that one considers a class of
priors such as (1.11), but one then chooses the ‘most likely’ prior in I
according to the data. Since the ‘likelihood’ of a prior is simply m(x|w), this
leads to the following definition.

Definition. For a class I' of priors and given data x, the ML-II (Type II
maximum likelihood) prior in I, #, is defined (assuming it exists and is unique)
as that 7 € I’ maximizing m(x|7) over all w € I.

Most empirical Bayes analyses proceed by letting I" be all conjugate priors,
choosing the ML-II #, and then doing a Bayesian analysis pretending that # is
the true prior. Although this smacks of adhocery (the ‘prior’ # being chosen in
a data dependent fashion), a number of justifications for the approach can be
given. [See Berger and Berliner (1983) for discussion and references.] Also, the
approach seems to work remarkably well. In section 5 we apply the approach
to realistic classes of priors such as (1.11). Indeed for I' as in (1.11), with
being a conjugate prior and 2 being a reasonable class of contaminations, a
quite attractive estimator is developed (via this approach) which is a data
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adaptive compromise between 6™ and a standard empirical Bayes estimator.
Furthermore, the estimator is shown to be minimax (for large enough ¢) by a
minimax. proof incorporating some novel features.

2. Bayesian Stein-type estimators

2.1. Introduction

There are several advantages to approaching Stein estimation through
Bayesian development of estimators. The first is that one can be certain that
the needed prior information is used correctly. The second is that the resulting
estimator is often admissible [cf., Strawderman (1971) and Berger (1976)].
Related to this is the fact that Bayesian estimators are guaranteed to be fine
conditionally: the original James-Stein (1961) estimator (for £ = I),

oS(x)=(1-(p-2)/1x*)x,

has R(8,8'%) < R(6, 8°), but if p =3 and x = (0.01, —0.01,0.01)* then §'S(x)
=(—33,33, —33)", a ridiculous result. Of course, the positive part version
corrects this obvious conditional deficiency, but only Bayesian development of
procedures can generally guarantee that the procedures are sensible for each x,
and not just on the average [cf., Berger and Wolpert (1984)].

The final and most important practical reason to adopt a Bayesian approach
to Stein estimation is that one can easily obtain confidence sets, perform tests,
etc. The posterior covariance matrix is usually not much harder to calculate
than the posterior mean, and can be used to indicate the variability of the
estimates fcf., Box and Tiao (1973), Berger (1980b), Morris (1983a,b) and
Van der Merwe et al. (1981)]. Trying to develop estimates of variability from
the frequentist perspective has proved enormously difficult, even in the sim-
plest cases [cf., Hwang and Casella (1982)].

The disadvantage with Bayesian development is that the estimators are
sometimes expressible only as numerical integrals, and that frequentist risk
properties can be hard to verify. Situations where good frequentist risks are
known to result are discussed in this section. Note that the conjugate priors,
7y, discussed in section 1.2, do not have good frequentist risk properties, in
that [see (1.6)] )

supR(6,8™) = o0.
8

2.2. Flat-tailed prior distributions

There is substantial evidence [cf., Rubin (1977) and Berger (1983b)] that
estimators developed from priors with flat (polynomial like) tails are Stein-type

J.Econ— D
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and have good risk properties. One example of such a development is Berger
(1980b), in which such a prior is used as an alternative to 7, and results in the
Stein-type estimator (posterior mean)

§%B(x) = x —f-(—“—"-ifl;lzg +A) Y x—p),
Ix — gl

where |[x —plj* = (x — ) (T +A4)"Hx—p) and r(z) is approximately
min{ z, p — 2}. Note the similarity of this estimator with 7 in (1.4). Indeed, if
p and A are accurate reflections of the location of 6, then ||x — p||? will be
approximately p [see (1.7)], and (for moderately large p) 6% will be essentially
87~ If, however, 8 is far from g, then r(||x — p||?)/|lx — w/|* will be small, and
8RB will be essentially 8°. This is the general behavior of estimators developed
from flat tailed priors, and is the source of their good frequentist properties.
[Indeed 8RB is sometimes minimax and always has bounded risk — see Berger
(1980b).] Confidence regions for 8, centered about 8R8, are also given in Berger
(1980b).

2.3. Hierarchical priors

When the prior information consists of structural knowledge about similari-
ties or relationships among the §,, this can often be conveniently modeled by
hierarchical priors. For instance, the usual empirical Bayes situation, in which
the 6, are felt to be similar, can be modeled by supposing that the 6, are
(independently) A" (v, 7¢), and then putting a second-stage (perhaps diffuse)
prior on v, and 77. The resulting estimator (posterior mean) will again be
Stein-type and have good frequentist risk, providing the second-stage prior on
74 has flat tails. There is a huge literature on this approach, with a wealth of
excellent statistical estimators (and associated confidence sets). References can
be found in Lindley and Smith (1972), Good (1980), Morris (1983b), and
Berger (1983b).

2.4. Posterior robustness

An exciting possibility exists for bypassing the (often difficult) verification of
good frequentist risk behavior of a Bayesianly derived Stein-type estimator.
The idea is to look at the range of posterior means for all 7 in a class I' of
plausible priors, such as (1.11). If this range is small, then posterior robustness
obtains, and a Bayesian would be completely satisfied with use of §7°(x). It
seems likely [see Brown (1983)] that the estimate is also then satisfactory from
a frequentist viewpoint. The great appeal of this approach lies in the fact that
posterior robustness needs to be investigated only for the actual observed x.

*
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(Of course, to a Bayesian, this is not just a convenient technique, but is the
only fundamentally sound statistical analysis.) See Berger (1983b) and Berger
and Berliner (1983) for discussion of some of these issues.

3. Ad hoc incorporation of prior information

One can simply incorporate the needed prior information into estimators in
an ‘intuitive’ fashion. One example is Berger (1982a), where a minimax
version of §*8 was developed, incorporating u and 4. This was done by simply
taking an existing class of estimators due to Bhattacharya (1966) and Berger
(1979), and incorporating p and 4. The resulting estimator, when = and 4 are
diagonal, can be written (coordinatewise) as

2

MB( Yy __ % o
61' (X) xl (Uiz'*“Ai) (X, y‘l)
1 & ) 20j—-2)7
. [?,-E,.("f" qf“)mm{l’ 7 = )7 ”

where {07} and {A4,} are the diagonal elements of X and 4, ¢, = 0 /(0> + 4,)
(and a relabelling has been done, if necessary, so that g, > ¢, > --- > q,>0=
d,+1)> and ||x/ — p/|® = L. (x,— p,)*/ (o} + A,). This estimator was shown
to always be minimax and to have good Bayesian properties.

A second example of such an ad hoc approach is that of Bock (1983), in
which minimax estimators are developed which shrink towards the surface of
convex sets (such as a sphere, the positive orthant, or a wedge). These
estimators would be of Bayesian value when the prior information is that 6 is
likely to be near such a surface. (As an example, one might have vague prior
knowledge concerning the length, |6|, of #, and hence want to shrink towards
the surface of the appropriate sphere.)

The chief usefulness of such ad hoc estimator developments is that they
allow (usually by design) proof of minimaxity (or some other desirable
property) of the final estimator, while bearing some relation to the desired
prior input. Their weaknesses are those that have already been mentioned: they
may utilize the prior information in an inferior way; they are often not
admissible; and they do not lead to error estimates.

4. Restricted class Bayes and I'-minimax estimators

A reasonable approach to incorporating prior information into Stein estima-
tion is to restrict analysis to a class of estimators known to have desirable
frequentist risk properties, and within this class seek an estimator good with
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respect to m,. Although there are several examples of this in the literature, we
will restrict discussion here to the restricted risk Bayes problem posed by
(1.10). There is also the closely related I-minimax problem discussed in (1.11)
and (1.12). These two problems are actually equivalent in a wide variety of
situations, as the following lemma shows. For use in this lemma define the
‘orthant at 8"’ as the set

A(87)={6:6,>6;if6;>0and 6, <6, if 6/ <0}.

Lemma 1. Suppose that I is as in (1.11) and that, for each 6’, there exists
Q- €2 such that P2'(A(8’))= 1. Suppose also that 8 is an estimator such that
R(8,08) is non-decreasing in |6,| > K for some K and all i. Then

supr(vr,6)==(1—e)r(w0,8)+651;pR(0,8). (4.1)

nel

Proof. Clearly

sup r(my,8)=(1—¢€)r(m,8)+esupr(Q,8).

mel Qe2
Define M = sup,R(6, §), and observe that, for any A > 0, one can find a point

6* such that |6|> K for all i and R(6*,8)> M — . Since R(6,§) is non-
decreasing for |6,] > K, it follows that

r(Qgr, 6) =/A(0A)R(0,6)anx(0) > M=,

But A is arbitrary, so that

supr(Q,8)=M.
Q€2

On the other hand,

r(Q.8)=[R(6,8)dQ(6) < [MdQ(0) = M,

establishing the conclusion.

Virtually all classes of contaminations 2 that are considered [cf., Berger and
Berliner (1983)] satisfy the mild condition of the lemma, and furthermore, it
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can frequently be shown (for, e.g., unimodal ;) that any 8 minimizing
sup, «rr(m, 8) must also satisfy the condition of the lemma. But it follows
from a standard game-theoretic argument that any 8 minimizing the right-hand
side of (4.1) must also be the solution to (1.10), where ¢ and C are related in a
monotonic fashion.

As a specific example, consider the situation where ¥ =0¢%/ and =, is
A (1, 72I). In Berger (1982b, ¢) it is shown, when p > 3 and C = 0 in (1.10) (or
equivalently e=1 in the Iminimax case), that the approximate optimal
restricted risk Bayes rule is the Stein-type estimator

87(x) =870 (x) = x - (x— 1)

_ o
(e2+7%)
if |x—p><2(p-2)(c?+1?),

=x—2(P—2)02(

x—p) if |x=—p]>>2(p-2)(c*+72).
x = pl?

Since C =0, 8% is minimax, and hence always better than 8° in terms of
frequentist risk. It is convenient to measure the Bayesian performance of §® by
the ‘relative savings risk’ [see Efron and Morris (1972)],

r(m,8) = r(m,8™)
’(770’30)_’('”0’8"") .

RSR(m,,8) =

When RSR is near zero, § is essentially as good as the optimal Bayes rule with
respect to m, (namely, 870), while, when RSR is near one, §™ is no better than
the standard estimator 8°. Table 1 gives RSR(m,, 8%) for various values of p.
These values are startling, in that §® has essentially optimal Bayesian perfor-
mance (at least for p = 5) while maintaining minimaxity. That one could have
such optimal frequentist and Bayesian performance simultaneously is astonish-
ing.

Results in this situation for C>0 (or £<1) are also given in Berger
(1982b,¢) when p>2, and when p=1 in Efron and Morris (1971). The
(approximate) solutions depend in general on modified Bessel functions. For

Table 1
RSR(my, 8%).

p 3 4 5 6 7 8 9 10 15
RSR 0.296 0.135 0.073 0.043 0.027 0.017 0.012 0.008 0.002
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p =1 and p = 3, however, they have the fairly simple form (respectively)

2
61’M=x——(—(;5(:_—72)(x—p.) if (X—;L)2<M(62+T2),

=x = (sgn[x — p])[ Mo*/(0? + 72)]% otherwise,
2

s
(a2+172%)

. 20° + V3Mo?
x—pl* Yo+ 12x—pl

83,M__

=x - (x—p) if |x—p)P<(o?+12)d,

(x—n) otherwise,

where
d=3M+35+ MJ1+8/(3M),
and
M= C =C(02+72).
r(wo,SO)—r(wo,S"ﬂ) po’

Here M indicates the amount that §7** is worse than a minimax rule (for
which M = C = 0) in terms of sup, R(4, 8), normalized to be on the same scale
as RSR(m,, 8). Table 2 presents M, RSR(w,, 87 M), and also values [see (4.1)]
of

sup r(m,87M) —r(my, 8™)

— el
o) ’(7’0’80)_’("70’8%)

, (4.2)

i.e., the suitably normalized I'-minimax risk of §7°¥. It can be shown that

r(e)=(1—¢e)RSR(m, 87 M) +e(1+ M). (4.3)

Table 2
M, e, r(¢), and RSR(my, 87 ™).

P 1 2 3

€ 01 02 03 04 {01 02 03 04 |01 02 03 04
r(e) 033 050 0.64 0751022 037 049 059018 031 042 052
M 14 08 04 04 {06 05 02 02 {04 02 014 01

RSR 010 018 032 0321007 009 019 0.19]005 009 011 013
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Actually, it was more convenient to just give the-results for e = 0.1, 0.2, 0.3,
and 0.4, with M being determined as the corresponding value giving the
optimal (approximate) I'-minimax rule (see the discussion after Lemma 1). The
results are also given for p=2. [See Berger (1982b or 1982¢) for the ap-
propriate estimator in this case.]

The tradeoff between increased minimax risk (M )and Bayesian performance
(RSR) is well illustrated by table 2. When p =1, for instance, one can have
reasonable Bayesian performance, sacrificing only 32% of the possible Bayesian
gains, by being willing to accept an increase of 40% in the minimax risk. For
p = 3 the situation is very pleasant; by allowing an increase of 10% in minimax
risk one surrenders only 13% of the possible Bayesian gains. The data for p = 2
are included because they show that the ‘Stein effect’ is operating even in two
dimensions: the values of M and RSR are much better than when p = 1.

The I-minimax data from table 2 are also worth perusing. For instance, in
p =3, if one elicits u and ? and feels that a normal shape for the prior is
reasonable, but feels that the prior specification could be off (in terms of
misspecified prior probabilities) by, say 20% (ie., ¢ =0.2), then using 6>°2
would guarantee a Bayes risk no worse than 31% from ‘optimal’ by the
standardized measure. [Using (4.2) and (4.3) it is easy to convert this into
actual I~minimax risk if desired.] Thus, for any prior deemed reasonable, 8392
would have excellent overall risk, which should be satisfactory even to
frequentists.

It should be mentioned that, for conditional Bayesians, the estimators
discussed in this section are very sensible, being simply the conjugate prior
Bayes estimator when x is near p (and so compatible with the prior), while
being similar to Bayes estimators with flat tails otherwise. Also, although the
problem becomes much more difficult when 2 and A4 are not multiples of the
identity, good restricted risk Bayes procedures and I'-minimax procedures have
been developed for such situations in Chen (1983).

5. Type II maximum likelihood and empirical Bayes estimators

5.1. The assumed prior structure

Consider the ‘empirical Bayes’ situation in which the 6, are thought to be
independent realizations from a common 4 (», 7?) prior density, but » and 72
are partially unknown. Model this uncertainty in a robust hierarchical Bayesian
fashion, i.e., assume that » and 72 have a prior density

h(r,72)=(1—€)ho(v,7?) +Q(», 1?),

where A is an elicited prior, ¢ is the possible error in elicitation, and Q is a
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member of a class 2 of possible contaminations. The overall prior for 8 is then

77(0)=f[£[1 J;;Texp{—(0,-—V)2/272}]h(v,72)dud72
(5.1)
=(1—¢)m(8)+eQ*(9),
where
':'/'0(0)=/[!.=I_I1 ‘/;;T_Texp{ —(0,-—V)Z/Z'rz}}ho(u,'rz)dvdﬂrz,
and

Q*(0)=/[i=1_[1 ‘/;V_r_TCXp{—(gi—V)Z/ZTZ}}Q(V,’TZ)CIVCITZ. (5.2)

We are thus faced with the class of possible priors
I'={r=(1-¢)m+eQ*;Q0c2}. (5.3)

Notice that this is considerably more refined than the usual empirical Bayes
setup, which effectively assumes that e =1 and 2 = {all unit point masses}, so
that I' is just the set of all # (71, 72I') priors, where 1 =(1,1,...,1)". Usually
prior knowledge about » and 72 is available and, as briefly discussed in Berger
(1982b, 1983c), can provide valuable gains (unless p is quite large).

5.2. The ML-II prior and posterior mean

An ad hoc, but intuitively reasonable method of dealing with I' is to choose
the “most likely’ prior in I'. Recall, from section 1.4, that this is called the
ML-II prior, #, and is that prior in I' (if it exists) maximizing m(x|w) for the
given data x. (Recall that m(x|7) [see (1.1)] is the predictive density of x given
, o that 4 is the ‘maximum likelihood’ prior in the usual sense. Good (1965)
calls this ‘“Type II maximum likelihood’, and we will stick with his nomencla-
ture.)

" This technique is extensively discussed in Berger and Berliner (1983), to
which the reader is referred for further justification. Note, at least, that this
would correspond to the usual empirical Bayes technique [when I' consists of
all A, (v1, 7°I) distributions] of estimating » and 77 via the maximum likeli-
hood method from the predictive density

m(x|p,7?)=AH,(v1,Z+ 7). (5.4)
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When « is as in (5.1), it is clear that

m(x|m)=(1—eym(x|my) +em(x|Q*). (5.5)
Hence

sup m(x|m) = (1 — e)m(x|my) + e sup m(x|Q*). (5.6)

mel oeg

Furthermore, if Q* maximizes this last term, then # = (1 — ¢) 7, + eQ*, and the
posterior mean with respect to # is

() = [ UL T0) 0

m(x|#)
) (5.7)
=A(x)87(x) +(1 —A(x))8¢(x),
~where
A(x) = (1= e)m(x|m) /[(1 = e)m(x|mo) +em(x10)]. (5.8)

Note that, when the data x ‘agrees with’ m,, m(x|m,) will be reasonably large
and A(x) will be close to one. If, on the other hand, x gives considerably more
support to Q, then A(x) will be close to zero. This adaptive behavior of 87 is
what makes it so attractive.

5.3. A special case

The simplest case to deal with is that in which ¥ = 02/, hy(», 7?) is a point
mass at (v, 77) and

g = {all distributions concentrated on 7 > 73 } .

The idea here is that (»,, 77) is simply the best guess as to the ‘hyperparame-
ters’, ¢ is a measure of the strength of belief in this guess, and there is enough
uncertainty to want to allow all contaminations in .2, subject to the constraint
that 72 > 7. (The reasons for this constraint are partly technical, so that the
analysis goes smoothly, and partly to prevent ‘spurious’ precision from creep-
ing in.) It should be mentioned that, while choice of such a large 2 seems to
work well (in a conservative sense) in estimation, other uses of the resulting #
(such as for confidence sets) are suspect [see Berger and Berliner (1983)],
although the problems of so using # here are not too severe.
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For this situation,
— 2
M, -./VI;(VOI, 701),

m(x|w0)=‘/V;,(VOI,(02+1'02)[),

8" (x)=x— (x—vyl), (5.9

9

(02 +13)

and [see (5.2) and (5.4)]
m(x|Q*) =fm(x|v, 2)Q(v, %) drdr2.

Clearly m(x|Q*) is maximized over Q €2 by choosing Q to be a point mass at

the maximum likelihood estimate of (v, 7>) (subject to the constraint 72 > 72,

of course). But, from (5.4), it is clear that the maximum likelihood estimate is
simply

p=x, #*=max{r,[s|’/p—o?}, (5.10)
where
14
=Y (x,— %)
i=1
Thus
m(x|Q) =, (71,(0% +#2)1),
and

2
82(x)=x— ? -x .
(x)=x max{702+02,|s|2/P} (x=x1), G

which is more or less the ‘standard’ empirical Bayes estimate of § in the
exchangeable case. Also )\(x) can be written (after some algebra and letting
max denote max{ 1 + o2, |s]?/p)) as

o+ 7 )”/2

‘A(x)={1+(lie).( s

52 1 1 p()_C—VO)Z -1
xexp{_z—[(02+,,02)—max]+2(02+702)}} ) (5.12)
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Using this with (5.9) and (5.11) in (5.7) gives the ML-II posterior mean, which
will be a very appealing data adaptive compromise between the Bayes estima-
tor for the specified (v, 77) and the empirical Bayes estimator which assumes
that these hyperparameters are unknown. More discussion of this approach,
along with examples of more realistic or richer structures that can be assumed,
is given in Berger and Berliner (1983).

5.4. Minimaxity of §"

The intuitive rationale and justification for 87, together with the fact that the
estimator behaves similarly to more familiar Stein-type estimators in the limits,
lends support to the feeling that the estimator will have good frequentist
properties (as well as good Bayesian properties). It is of interest, however, to
attempt direct verification of this, by attempting to establish minimaxity of 8.
Unfortunately, we were unsuccessful in this attempt, due to technical difficul-
ties arising from the introduction of #. Workers in this area are, however,
familiar with the fact that such estimation of the supposed common mean
rarely affects minimaxity by more than a needed slight alteration of constants,
so we considered the simpler problem of known ». Thus suppose that X ~
A, (6, o?l), m, =N, (v, 721), and

2= {all distributions concentrated on {V =vy, 772 73 } } .

An analysis identical to that of the previous section gives, as the ML-II
posterior mean,

where

2 P

. (4] .
3"=X—W(X—Vol) if Zl(x,-—l’o)2<l?('foz+02),
0 i=
5.13
6?r(v) 1)
=x-— (x—wo1) otherwise,
z 2
v=2 (x;= %),
i=1
v .
=pll+|—F——-—-1JA , 5.14
(o) p[ e )(v)} (514)
2, 2 /2 -1
AA(()): 1+ ¢ (6 +TO)P ? e—p/leu/2(02+102)
(1-¢) v '
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Theorem. For p>5, 87 in (5.13) is minimax [i.e., satisfies (1.8)] providing
€2 ¢,, €, being given in table 3 for 5 <p <26. (For p > 26, ¢, is less than
0.009, so 87 will be minimax for any sensible ¢.)

Proof. By making the appropriate linear transformation, it is sufficient to
prove the theorem for »,=0 and o2+ 707 =1, which we henceforth assume.
Using the familiar unbiased estimate of risk of Stein (1981), to show that an
estimator,

8*(x)=(1-0%r*(v)/v)x, (5.15)

is minimax [where X ~ .4, (8, 6°I) and v = |x|*], it suffices to show that
4a(—igr*(u)+r*(v)u"1[2(p~2)-—r*(v)]20. (5.16)

For v <p, 87 is of the form (5.15) with r*(v) = v (recall 6% + 1@ =1, v, =0),
for which verification of (5.16) is trivial. For v > p, we must verify (5.16) for
r* =r as in (5.14). Substituting (5.14) into (5.16), and after some algebra, the
problem reduces to showing that (for v > p)

K (v)+K,(v)e+ K;(v)c* =0, (5.17)
where

c=e(1—¢) 'pr/rer?,

K {(v)=2up —v?,

1(v) P (5.18)
Ky(v)=0"7"%"*[ap(v—1)—20%],

Ki(v)=p(p—4)v e’

Table 3
&, and vg.

p £, [ P €, vg
5 0.777 11.50 16 0.061 33.65
6 0.604 13.52 17 0.050 35.66
7 0.471 15.55 18 0.041 37.67
8 0.369 17.56 19 0.033 39.67
9 0.290 19.58 20 0.027 41.68

10 0.229 21.59 21 0.022 43.68

11 0.182 23.60 22 0.018 45.69

12 0.145 25.61 23 0.015 47.69

13 0.116 27.63 24 0.013 49.70

14 0.094 29.64 25 0.010 51.70

15 0.076 31.64 26 0.009 53.71
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Since K4(v) is positive (for p = 5), in establishing (5.17) it is only necessary

to prove that the left-hand side has no roots in ¢. Clearly it is only necessary to
consider the case where

K} (v)—4K,(v)K;(v) >0, (5.19)

and then to show that
c> {—K2+(K§—4K1K3)3]/2K3. (5.20)

Calculation shows that (5.19) is satisfied (for v> p) only for v € B, U B,,

where

. 2 13
B2=(p+[p7+—§{p2—16}5} ,oo).

2
Bx=(p,p+[p7—§{p2—16}

e

Algebra also gives that (5.20) is equivalent to
€ p P/t /2P 2T 0/2
>
1-e p(p—4)

where a= —0v?+2pv. For vE€ By, it is straightforward to check that the
right-hand side of (5.21) is negative, establishing the result in this range.

[(2p —a)+(a*—pla+ 4p2)%] , (5.21)

Consider, finally, the functions

¥(v) =072 (2p — a) + (a® — pla + 4p?)'],

H(v) =log{v"/2{(2p—a)+(a2— 2pa +4p2)%]}.
It is easy to check that {(v) is positive on B,. Also, it can be shown that H'(v)

is a positive continuous function, decreasing from oo (at the left end point of
B,) to 0 (at v = o0). Thus

d 1
a}‘log\!/(l))z ——2‘+H'(U)=O

has a unique solution v,, and hence

sup ¥ (v) = ().

vEB,
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[The equation H'(v) = § turns out to be a fifth-degree polynomial equation, so
the computer was used to find the root v, in B,. These roots are also given in
table 3 for the various p.]

Finally, it is clear that (5.21) is satisfied on B, if

€ p P/ er/?
i-a pr-9*"

or if

e>1/{1+p(p—4)p?%e 72 /Y (vy)} =¢,.

This completes the proof of the theorem.

Comments

1.

All previous minimax proofs we have seen, that use Stein’s technique,
depend on the r*(v) in (5.16) being increasing, so that the derivative of r*
can be ignored. A substantial part of the difficulty of the above proof was
due to r not being monotonically increasing.

- A substantial simplification was achieved through the approach of analyzing

(5.17) as a quadratic in ¢ and showing that there can be no roots. As
pointed out in Gleser (1983), this can often be a useful technique.

. The estimator cannot be minimax if p <4. This is mainly because, as

v =00, r(v)—p [see (5.14)], and not to (p—2) as with more familiar
Stein-type estimators. An ad hoc adjustment of &7 could probably be
effected to achieve minimaxity for p = 3 and 4, but the major point of the
theorem was to indicate that the estimator does have reasonable frequentist
properties.

The Bayesian performance, with respect to m,, of 87 will not be as good as
the Bayesian performance of §* in section 4. However, 8% will fare poorly
(though never worse than §°) when 6 is not near y, while 87 will continue to
perform well as long as the 6, are similar (i.e., as long as the exchangeability
assumption is valid). The strength of the Type Il maximum likelihood
approach, with e-contamination classes of priors, is that a number of
different types of prior information can be built into I', and the data will
shift 87 towards the posterior mean corresponding to the most plausible
prior input (in light of the data). Further discussion and examples can be
found in Berger and Berliner (1983).
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