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Abstract

For Bayesian analysis, an attractive method of modelling uncertainty in
the prior distribution is through use of e-contamination classes, i.e., classes
of distributions which have the form © = (1-¢) My * €4 Ty being the base
elicited prior, q being a "contamination," and e reflecting the amount of error
in i that is deemed possible. Classes of contaminations that are considered
include (i) all possible contaminations, and (ii) all contaminations such
that = is unimodal.

Two issues in robust Bayesian analysis are studied. The first is that
of determining the range of posterior probabilities of a set as = ranges over
the e-contamination class. The second issue is that of selecting, in a data
dependent fashion, a "good" prior distribution (the Type-II maximum 1ikelihood
prior) from the e-contamination class, and using this prior in the subsequent
analysis. Relationships and applications to empirical Bayes analysis are also

discussed.
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Robust Bayes and
Empirical Bayes Analysis with

e-Contaminated Priors

1. Introduction.

1.1 The Robust Bayesian Viewpoint.

The most frequent criticism of subjective Bayes analysis is that it
supposedly presumes an ability to completely and accurately quantify subjective

information in terms of a single prior distribution. However, there has Tong

existed (at least since Good (1950)) a robust Bayesian viewpoint which assumes
only that subjective information can be quantifiéd in terms of a class I of
possible distributions. The goal is then to make inferences or decisions which
are robust over T', i.e. which are relatively insensitive (or at Teast are
satisfactory) to deviations as the prior distribution varies over r. We will

not consider the philosophical or pragmatic reasons for adopting this viewpoint.
Such a discussion, along with a review of the area, may be found in Berger (1983).
(We also do not mean to imply that the single prior Bayesian approach is
necessarily bad; it usually works very well.)

Very related to thisare various forms of empirical Bayes analysis (c.f.
Morris (1983) for discussion and review), in which the prior distribution is
also assumed to belong to some class T of distributions. Perhaps the major
perceived difference between empirical Bayes and robust Bayes analysis is that
the former mostly deals with situations in which the data provides the bulk of
the information about which priors should be used (the situation is such that
the prior can actually be estimated from the data), while the latter usually

considers situations in which subjective information is the greatest component



of prior information. Since the situations we consider will mostly be
situations in which the subjective component dominates, we will call

the analysis robust Bayes. Empirical Bayes terminology could just as well
have been used, however. Indeed, Section 4 considers some familiar empirical
Bayes problems.

There is a wide variety of methods for implementing the robust Bayesian
viewpoint. These methods are mainly distinguished by two features: (i) the
form of the class T considered, and (ii) the method of utilizing T to arrive
at.a conclusion.

Before discussing these two points, some notation is helpful. Let X
denote the observable random variable (or vector), which will (for simplicity)
be assumed to have a density f(x|e) (w.r.t. some measure), where o is an
unknown parameter 1lying in a parameter space @ . A prior distribution on @®
will be denoted by = (later, in examples, = will be used to denote either a
prior or its corresponding density), and the resulting predictive or marginal

density of X is given by

m(x|r) = E' f(x]e) = é f(x|e) = (de).

The posterior distribution of 6 given X (assuming it exists) will be denoted

by w(+|x) and, in nice situations, is defined by
n(de|x) = f(x|e) = (de)/m(x|w).

Finally, let © denote the space of all probability distirbutions on @.



1.2 Classes of Priors.

The class, T, of prior distributions to be considered in this paper, is

the e-contamination class; namely,
(.I-.l) I':{TTi“: (]'E) 770+€q3 qfeg]’s

where 0 < e <1 is given, ™ is a particular prior distribution, and 2 is
some subset of ®. There are several reasons for consideration of this class.
First, and foremogt,-it.is a sensible class to conéider in 1light of the prior
elicitation process. The extensive and rapidly developing methodology on
prior elicitation (c.f. Kadane, et.al. (1980)) makes specification of an initial
believable prior, mgs an attractive starting point. (Because of the subsequent
robustification, My can often be chosen to be of some convenient functional
form: for example, a conjugate prior.) However, in determining 0 sensibly,
one will make Erobabi]itx judgements about subsets of @ , judgements which
could be in error by some amount e. Stated another way, further reflection might
lead to alterations of probability judgements by an amount e. Hence, possible
priors invo]ving‘suchralterations should be included in T.

Many classes of priors which have been considered are not sensible from
the above viewpoint. For instance, classes of pfiors involving restrictions
on moments force severe restfictions on the allowable prior tails. This makes
little sense from the elicitation viewpoint, since the tails of a prior involve
very small probabilities and are, therefore, nearly impossible to determine.
Similarly, classes of conjugate priors are too Timited, particularly in their
inflexible tail behavior. Also, the commonly considered class, T, of all

conjugate priors, is usually absurdly large, including many completely implausible



distributions (from a subjective viewpoint). Ideally one wants a T which
includes every prior considered plausible (i.e. close to no) and none that
are implausible. The use of T as in (1.1) is @ good starting point.

Two other major reasons for choosing T as in (1.1} are (1) such T are
(as we shall see) surprisingly easy to work with; and (ii) such T are very
flexible, through choice of 2. In this paper we will restrict consideration
to three interesting choices of 2. First, in Seétion 2, the choice 2 = %
(all distributions) will be considered. This choice is easy to work with and
js, in some sense, conservative. 1In Section 3, we consider the class, 2, of
all contaminations such that the resulting = is unimodal (assuming that is
unimodal). It came as a great surprise to us that such an appealing class
cou]d be worked with and provide reasonably simple answers. Finally, in
section 4, we consider = that are mixtures of various classes.. The .purpose.
of the section is to show how easily mixed-contaminations,can-be dealt with

and also to apply the methodology in some typical empirical Bayes situations.

Other articles that have used c-contamination classes of priors include
Schneeweiss (1964), Blum and Rosenblatt (1967) , Huber (1973), Marazzi (1980),
and Berger (1982, 1983). Except for Huber (1973), these articles work
within the frequentist Bayesian framework, whereas our approach will be
almost entirely conditional Bayesian. Huber (1973) is discussed below and

in Section 2.4.

There is a substantial literature working with other types of classes of
priors, and with the very related idea of “ypper" and nlower" probabilities.
Most of the work with classes of priors considers either the nmoment conditions”

or "conjugate priors" classes mentioned earlier. One exception is DeRobertis



and Hartigan (1981). They obtained interesting results for the class of

prior densities
(1.2) r = {m:w(o;)/n(e,) < gy (8)/9, (8,), for all 6;, 6,: € g},

where gy < g, are given, positive functions. We prefer the class in (1.1)
for intuitive content énd ease of analysis.

For a discussion and references concerning upper and Tower probabilities,
see Berger (1983). The basic idea behind them (that of generalizing probability
distributions to functions which can reflect uncertainty in prior probabilities)
is interesting, but we feel that there are considerable conceptual and manipulative
advantages to sticking with probability distributions and incorporating uncertainty

in prior probabilities through classes of prior distributions.

1.3 Robust Bayesian Methodology

The ideal analysis, to a robust Bayesian, is one in which it can be shown
that the inference or decision to be made is essentially the same for any
prior in T. (Indeed, it can be argued - see Berger (1983) - that this is the
only way in which a statistical conclusion can claim to be ultimately soUnd.)
What is needed, to provide such conclusions, is essentially the ability to find
minimums and maximums of criterion functions as = ranges over I'. We illustrate
this approach in Section 2.4, where, for 2 = {all distributions}, the range
of posterior probabilities of a (fixed) set C is given (essentially following
Huber (1973)). This allows finding the range of posterior probabilities of
confidence sets and the range of posterior probabilities of hypotheses, for

such T. Furthermore, the "second-level" problem of finding the smaliest



sized set with posterior probabiiity at least 1 - o (for all 7 € 1)
is solved. The general theory is then applied to the univariate normal mean
problem.
Unfortunately, there are certain inadequacies in assuming that
2 = {é]l distributions} (see Section 2.3), and attempting the above program
with more reasonable I (such as that in Section 3) becomes quite difficult
(though perhaps not impossible). Also, it may frequently be the case that
a proposed inference is not "robust" with respect to all = € T, particularly
when 21s chosen for technical convenience and includes some unreasonable
distributions. A number of alternative approaches to the problem of dealing
with classes of priors have thus been proposed, essentially leading to the
choice of a single "optimal" prior, decision, or inference. The following
are the five major such methods:
(i) Put a prior distribution on r itself, and carry out a
formal Bayesian analysis.
(i1) Use minimax type criteria on posterior measures (i.e.,
posterior expected losses) for =€ T.
(ii1) Use frequentist measures to select a "good" procedure
compatible with =+ € T.
(iv) Use some measure of "information" to select a prior in
I, such as a "maximum entropy" prior (c.f. Jaynes (1968)) or
a "reference" prior (c.f. Bernardo (1979)).
(v) Use maximum Tikelihood methods, essentially choosing the
prior = which maximizes the predictive density m(x|r) over

r.



Discussion and further references for all of these methods can be found
in Berger (1983). In this paper we will mainly utilize method (v), but
first pause fora short discussion of (i). Putting a prior distribution on T
(such a prior is called a hyperprior or a Type II. probability distribution
by Good (1965, 1980)and a second stage prior in certain situations by Lindley
and Smith (1972)) is very natural from a Bayesian viewpoint. Of course, this
corresponds to using a certain single prior (the "average" over T), but one
would suspect that the resulting Bayes rule would be quite robust with respect
to r. The difficulty in doing this is mainly technical: it can be very hard
to put a reasonable prior on complicated T, such as those in Sections 2 and 3,
and carry out the Bayesian calculations. Note also that, ideally, most of
the prior information available will have been exhausted in constructing T.
Hence, any prior distribution placed on T will be, to a large extent, arbitrary.
Method (v) is probably the simplest method of dealing with r'. For
m = (1-¢) my + eq, q- € 2, maximizing m(x|r) = (1-e) m (x|mg) + em (x]q)
over 1 is clearly done by maximizing m (x|q) over q. Assuming-that the
maximum of m(x|q) is attained at (a unique) a € 2, we will then suggest formally

using the estimated prior %, given by

(1.3) m = (1-e) mg + Qe

(Of course, n thus depends on x.) Throughout the paper, 7 will be called the
ML-II prior. Also, any quantities derived from 7 owill appear with the modifier
"ML-TI" for clarity. (The name "ML-II" essentially comes from Good (1965),

who calls the process Type II maximum Tikelihood.)



Choosing a prior with the help of the data always engenders controversy.
Several justifications for doing so can be given, however. First, if m(x|m)
is small, it is simply unlikely that such a = could be "true," and hence
worrying about such = is counterproductive. Recall that (supposedly) all
m €T are deemed to be reasonable representations of priors beliefs, so .
is simply the prior which is most plausible, 1in light of prior opinions and
the data. A more formal way of saying this is that, if all = €I are roughly
equally likely apriori, then m is the "posterior mode" of the "uniform"
distribution on r, and might often be expected to yield a posterior distribution
that is close to the true posterior distribution for such a "uniform" distribution
on T.

The preceding argument for . is, of course, non-rigorous, and the ultimate
Justification for proceeding in this way is simply that it seems to work. Attempts
to demonstrate this will be made throughout the paper. Of course, there is
already substantial evidence in the literature attesting to the success of
the method, both in the Bayesian Titerature (c.f. Jeffreys (1961), Good (1965,
1980), Box and Tiao (1973), Bishop, Fienberg and Holland (1975), and Zellner
(1982)), and in the empirical Bayesian literature (c.f. Maritz (1970) and
Morris (1983)). Indeed, note that the "standard" empirical Bayes methodology
is to choose T to be a class of conjugate priors and then to estimate the
"hyperparameters" of the prior by maximizing m(x|w), yielding . When all is
said and done, however, we recognize that the ML-II technique is not foolproof,

and can produce bad answers (particularly when ' includes unreasonable distributions).



‘1.4 Relationship to Model Robustness and Selection.

The ideas discussed so far have several intimate relationships to the
areas of model selection and model robustness, in which f itself is considered
to be partially unknown; for instance, perhaps it is felt that f(x|e) = h(x-8),
where h = (1-¢) h0 + eg, h0 being a standard normal density and g being in
some class G of possible contaminations. Model robustness does fall, formally,
within the Bayesian robustness situation outlined earlier, as is seen by
adopting the simple expedient of letting 6 also contain any of the uncertainty
in f (such as g above). Indeed Bayesians often see 1ittle reason to distinguish
between the "model" f and a prior = on parameters of the madel, in that.choice
of a model is often a (perhaps extreme) use of sUbjective information. Although
the methods discussed here may work well on model robustness problems, to keep
the paper contained (and avoid a number of technical difficulties) we will
only consider examples in which f is known up to 8. (Also, there are certainly
situations in which knowledge of f is much more precise than knowledge of 6;
robustness with respect to the prior on 6 is then of most interest.)

The two cornerstones of the technique discussed in this paper actually
arose in model robustness research. The use of e-contamination regions has
Tong been a feature of many frequentist studies on model robustness (c.f.
Huber (1981) and Marazzi (1980)). And, Bayesian model robustness studies
often make heavy use of some form of the predictive density m. (A portion of
the literature on Bayesian model robustness is Jeffreys (1961), Box and Tiao
(1962) deFinetti (1961), Good (1965, 1967, 1980), Lindley (1966), Dempster
(1976), and - especially comprehensive and thorough - Box and Tiao (1973),
Dempster (1975) and Box (1980).) Indeed, there is no real conceptual difference

between the use of m in robustness investigations and the use of m in Bayesian
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model selection: if considering various models, a Bayesian calculates the
predictive density for each model, and bases decisions on the relative
magnitudes of these predictive densities (at the observed x). (Some relevant
references here, in addition to those listed above, are Roberts (1965), DeGroot
(1970), Dickey (1971, 1975), Dempster (1971), Zellner (1971, 1982), deFinetti
(1972), Hi11 (1974, 1980), Leamer (1978), Davis (1979), Geisser and Eddy
(1979), and Zellner and Siow (1980). Jeffreys (1961) was the first to
extensively develop these ideas.)

Finally, it should be mentioned that the predictive density has a great
many other important roles to play in Bayesian analysis. A skimpy list of
references concerning these roles is Roberts (1965) (which has some earlier
history), Guttman (1967), Dempster (1971), Geisser (1971), deFinetti (1972),
Aitchinson and Dunsmore (1975), Davis (1979), Geisser and Eddy (1979), and
Kadane, et.al. (1980).

1.5 Useful Formulas and Notation

For priors of the form

(1.4) n(de) = (1-¢) wo(de) + eq(de),

computations give (assuming the existence of the posterior distributions

no(de[x) and q(de|x))

(1.5) m(x|n) = (1-¢) m(x|w0) + em(x{q),
and
(1.6) w(de|x) = A(x) h (de|x) + (1-a(x)) q (de|x), -
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where A(x){e [0,1] is given by

A(x) = (1-¢) m(x|mg)/m(x ).

Furthermore, the posterior mean, §", and posterior variance, V", can be

written (assuming they exist) as

(1.7) 5T (x) = A(x) 6 O(x) + (1-2(x)) 69(x)
and
(1.8) V(%) = a0x) ¥ O(x) + (1-a(x)) VA(x) + a(x) (120} (6 0 (x) - (x))2.

Part of the appeal of the e-contamination class, I', is the simplicity of these

formulas.
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2. Analysis for Arbitrary Contaminations.

A natural suggestion for a class of contaminations of a fixed, elicited
prior T is the class of all possible contaminations. In this section we will
examine inferences, including point estimation, testing, and credible regions,

for such a class, i.e., for

(2.1) T = {m:m = (1-¢) 0 + eq, qi € P }.

2.1. The ML-II Prior and Posterior.

For r defined as in (2.1), the ML-II prior and corresponding posterior

are often quite simple to obtain.

Theorem 2.1. Assume X has a density f(x|e) w.r.t. some dominating measure

on the sample space of X. Assume that the usual maximum Tikelihood estimator
for 6, say 5(x), exists and is unique. For T defined as in (2.1), the ML-II
prior is given by

A

(2.2) n(+) = (1-¢) my(-) + 4, (+),

where ax assigns probability one to the point ¢ = 5(x). The ML-II posterior

is given by

x) + (1-A(x)) a,(-),

(2.3) n(1x) = Alx) wy(-
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where

(2.4) Mx) = (T-e)m(x|mg)/L(1-e)m(x|mg) + ef(x[0(x))].

Proof: Straightforward. ||

2.2 The ML-II Posterior Mean.

Under the assumptions of Theorem 2.1, the ML-II posterior mean of o is

given by (see Section 1.5)

A

(2.5) sT(x) = A(x) 8 0(x) + (1-2(x))6(x) .

~

As an estimator of 6, §" is intuitively appealing, in that it is a
™ A
reasonable data dependent mixture of & 0 and 6. When the data is consistent

with ﬂo,.m(xlwo) will be reasonably large and i(x) close to one (for small g),

A

m
so that 6" will essentially equal & 0. When the data and Ty are not compatible,

however, m(x[wo) will be small and i(x) near zero; &" will then be approximately

A

equal to the m.l.e. 8.
The following example presents §" in an important situation. Some
properties of the estimator are discussed which give a degree of "outside

validation" to the estimator.

Example 1. Let X = (X],...,Xp)tm o (e, ozIp), where ¢ = (e],...,ep)t is

2 is known. Suppose the e]icited.priog wo,for ) is.72p(u,r21p).

unknown and o
(Thus u and 12 are specified.) Since the usual maximum likelihood estimator

ofeiséu)=x,am
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004y = x = (o%/(cB+c2)) (x-u),

formula (2.5) reduces to

A

s"(x) = (1-30x) o7/ (a%+:%)) (x-u) + u,

where

A

Ax) = [1 4 (e/(1=¢)) (14227622 exp |x-ul?/2(c%+<%) 317,

) Note that A is an exponentially decreasing function of |x-u|2, so that
sT(x) + x quite rapidly as |x-u|2 gets large. Because of this, one might
conjecture that the estimator is minimax, in a frequentist decision-theoretic
sense under, say, quadratic loss. Unfortunately, this turns out not to be
the case, although the deviation from miniTaxity is usually fairly slight.

It is also interesting to note that 8" happens to coincide with the

generalized Bayes estimator corresponding to the formal prior
o(de) = (1-¢) m (de) + ery (de),

where po(de) = (2'nr2)J’M2 de. Hence, we have that following result.

A

Theorem 2.2. For all 0 <e <1, 8" is inadmissible if p > 3. For all

~

0<e<1, 8" is admissible if p < 3. (Obviously, if ¢ = 0, s" s admissible.)
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Proof: The proof follows directly from Corollary 6.4.1 of Brown (1971) .||

A

Although &" is inadmissible for p > 3, it is unlikely that there exists

any significantly better estimator.

2.3 The ML-II Posterior Varijance

A

To determine the estimation error in using §", it is natural to Took at

the posterior variance, VT, ‘From (1.8), it follows that

~
A

m ~ "0 > "0 2

VT(x) = A(x)IV V(x) + (1-a(x)) (s “(x)-6(x))"].

It will typically be the case (as in Example 1) that, as i(x) 0, V'(x)
will also go to zero. Indeed, r will usually "converge" to a point mass at
é(x). This is clearly inappropriate; although data incompatible with Ty can

~ ™
be cause for preference of 6(x) to & 0(x), it does not cause one to think that

o equals é(x) exactly.

The trouble here is caused by the fact that I contains unrealistic
distributions. We may feel that L could be in error, but surely a point
mass at 5(x) (when far from the center of no) is not usually a reasonable
contamination to expect apriori. Working with T as in Section 3, which do not

allow such implausible contaminations, would eliminate this problem.

2.4 Robustness as m Ranges over T.

As mentioned in the introduction, the ideal goal for a robustness study
would be to show that a decision or inference being contemplated is satisfactory

for all = € T. When D:is the class of all distributions, it often becomes
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feasible to check this. The basic tool is a result of Huber (1973),
concerning the range of posterior probabilities of a set. This result is
~given in Section 2.4.1. In Section 2.4.2, the result is appiied to testing
of hypotheses. In Section 2.4.3, the result is utilized to solve the problem
of finding the set of minimum size which Has posterior orobability

at least 1 - o of containing o, for all = €rT.

2.4.1 Range of Posterior Probabilities of a Set

The following theorem is given without proof in Huber (1973). Though
easy, we include a proof here, since the reasoning is similar to reasoning

used in more complicated situations later.

Theorem 2.3. Suppose 2 = P . Let C be a measurable subset of @, and

define By to be the posterior probability of C under s i.e.,

"0
=P " (e€C|X=x).

Bo
Then
e sup f(x|s) -1
2.6 inf PT(s€C[X=x) = B, {1 + 17 ,
( ) 1;'21_' ( I X) BO =) m(XITfO) |
and
(1-¢) m(x|1r0)80 + e s:a: f(x|e)

m —v) = 8

(2.7) sup PT(0 € CIX) = Ty ko) estp_F(x]0)

p€C



Proof. Let C denote the complement of C. Also, for any q € 2 = P, let

zq(A) = [ f(x]e) q(de).
A

Clearly

i (1—e)m(x|n0) By t E-Zq(C)

(2.8) P"(e€ C|X = x)

Consider the function

h(z) = (Ky + 2)/(K, + z + g (2)).

i (1-¢) m(xlwo) +e Zq(C) + ¢ zq(f)

17

It is straightforward to check that h is increasing in z > 0 when K, > K; > 0

and g is a positive, decreasing function of z. Setting Ky = (1-¢) m(xlwo) By

K2 = (1-¢) m(xlwo), Z=¢ zq(C), and

g(z) =e [ f(x]e) q(de) - z =€Zq(f),

it follows that (2.8) is minimized when z = zq(C) = 0. Thus

_ (1-€) m(x|my) 8,
inf P"(6€C| X=x) = inf —
TET {q:zq(C)=0} (1-€) m(x|w0) +'€Zq(C)

(]-E) m(xl'"o) BO

1-¢ ﬂ € C
(1-¢) mixfrg) * {q:z:%g)=0}zq( )
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But

sup z
{q:2,(C)=0} q 6€C

and (2.6) follows. Formula (2.7) is established similarly. ||

Example 2. Assume that X d,n(e,oz), 02 known, and that m is %@4,12). It

is well known that wo(de[x) is n(s(x), V2), where
2 . 2.2/ (242,

§(x) = x - (62/(0%+1%)) (%), V -

The usual 100 x (1-a)% Bayes credible region for ¢ is
C={0:8(x) -K<e<s(x)+K,

where K = 2,72 v, 2,72 being the (1-a/2) upper percentile of the standard
normal distribution.

To investigate the robustness of C, we use (2.6) of Theorem 2.3. Note that

| (2re?) Y2 e xg ¢
sup f(x|e) =
6¢C . _1/2

(2naz) exp{- —g?7? (|x-6(x)| - K)2 if xe€C-
(e}

Thus (2.6) becomes, for x ¢ C,
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1+ 8(1+T2/62)]/2 exp [ (X-g)z ]g ,
)

inf PT(e€ C|X=x) = (1-a)
TET - (]-E) 2(02+T2
and, for x € C,
inf P (6€C|X=x)
Te I i '
2, 2,1/2 (x-0)% = (|x=p|V/1-2. ,.1)2 !
= (1-a) §1 + e(T+r7/0") ex . e /2 ;
=) P 77
2(c"+1%)
2 . 1, 12 =2, u =0, and

As a concrete example, suppose that o

.5 is observed. Then the usual 95% Bayes credible

= ,2. First, suppose x

interval for s is (-1.27, 1.93).

inf P"(-1.27 < 6 < 1.93]X=.5) = .868

mTET

and

sup P"(-1.27 < 6 < 1.93|X=.5) = .966.

m€ T

Hence, the standard credible set is reasonably robust. On the other hand,

suppose x = 4 is observed. (Note that, since m(x[no) is N(0,3), this is not
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an "outrageous" observation.) Then the usual 95% credible set is (1.07,4.27).

However, in this case we have that

inf P"(1.07 < o < 4.27|X=4) = .1426
T&T
and
sup P(1.07 < 6 < 4.27|X=4) = .99.

TrEI‘v_Y

Since the posterior probability can get as low as .1426 for x = 4, robustness

is not present.

Two interesting general points emerge from the previous example. First,
robustness with respect to I will usually depend significantly on the x
observed. Second, a lack of robustness may be due to the fact that r is "too
large." When x = 4, for instance, the low probability of coverage (.1426)
is achieved when the contamination, q, is a point mass at 4.27. The resulting
prior would probably not have been deemed to be reasonable apriori. Using
a more reasonab]e I might result in robustness. Also, more robust credible sets
can be found - see Section 2.4.3. In any case, the use of 2 = and Theorem
2.3 is conservative, in that, if robustness of a credible set is achieved for
such r, one knows that robustness is also present for the more reasonable,

smaller T.
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2.4.2 Hypothesis Testing.

Suppose we desire to test the hypothesis HO: 6 € @O;Versus the alternative
H]: b€ - @0.' For a fixed prior w, the usual Bayesian test is based on the

posterior odds ratio Oﬁ(x), defined by

0_(x) P"(o € @01X=x)/[1-P“(e € ®OIX=x)]

-1

IP"(e € a1 - 1
Letting C = @O,NTheorem 2.3 immediately yields the following:

Corollary 2.1. For T as in (2.1),

e sup f(x|e) -]

inf 0 (x)=0_(x) )1+ (1-Z)T;?g ) m(x[mg) )
T€T 0 0 0
and
e sup f(x|e)
e€®0'
sup 0,(x) = R L (PO [ B e &

m
where By = P O(eE @01X=x).

In testing, it will usually be much easier to achieve robustness using

this "too large" T, since extreme x (i.e. x for which m(xlwo) is small), which



22

lead to the unrealistic point mass contaminations, will usually provide extreme
evidence for, or against, @O;' (The difference between the inf and sup of 0_
may be substantial, but they will both be substantially less than one or
substantially greater than one.) Together with the simplicity of the results
in Corollary 2.7, this makes the use of 2 =¢ very attractive for robustness
investigations in testing.

It should be clear that Theorem 2.3 is also immediately applicable to
the testing of several hypotheses and to classification problems. Lower
and upper bounds on the posterior probabilities of all hypotheses can be

obtained.

2.4.3 Optimal Robust Credible Regions.

Definition: A measurable subset C of @ is a level 1 - a, I-credible region

for ¢ if

(2.9) inf P _(8€ C|X=x) > 1 - a.
pe T "
We seek the 1 - o, T-credible region of smallest Lebesgue measure, v, for T
as in (2.1). The characterization given in the following theorem for this optimal

credible region is surprisingly simple.

Theorem 2.4. Suppose that @ g;klRP and that m, has a density w.r.t. Lebesgue
measure. Consider sets An’ Bw, and D¢, defined by

An = {o: f(x|e8) > nl,
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and

(2.10) BW = {0: WO(GIX) > P}, Dw = {0: no(elx) = pl.

Let

ng = inf {n: inf P' (6 €A |X=x) <1 - aand inf P"(6 € A |X=x) > 1 -al,
mET n mET "

where ﬁh denotes the closure of An' Then the level 1 - a, T credible region

of smallest Lebesgue volume is of the form
* = 1D
(2.11) C An U Bw(n) ub
for some n > ny, where 0 < y(n) < = is defined by

(2.12)  (n) = sup {y: Pﬂo(e €A U B¢[JDwIX=x) > (1-a) [T+en/(1-e)m(x[my) ]}

and Dc Dw(n) is an arbitrary set such that

P 0o € CH{Xex) = (1) [T+en/ (Tc)m(x|ng) 1.

Proof. First note that y(n) is well defined for y > ng and is decreasing in n.

Next, denote the desired optimal set by C*, and define n* as

n* = sup f(x}|e).
0 & C*
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Then, by definition, Ah*(E-C*' Furthermore, it must be the case that

n* > ng- To see this, note that, if n* < ngs then

inf P"(0 € C*{X=x) > inf P'(o¢ AxlX=x) > 1 - q,

TE T mTE T

using the definition of o Since the last inequality is strict, it is easy

to show that KH , Or some subset'thereof, is level 1 - a, T credible and has

0
smaller volume that A:.\

Now, let B* = C* - An*' If B* is empty, (2.11) 1is trivally satisfied

with n = n*= o and y(n) = ». Hence, suppose that B* is non-empty and not

of the form Bw(n*)[J D." Let v* = vw(B*), and consider a set of the form

B**=BKU D, Dc D

where K and D are chosen so that (B** n Aﬁgmp]ement) = v¥,

Then
™o "0
P (o€ B*#1X=x) >P (o€ B*JX=x)

and  sup f(x|e) j_n*. Therefore, by Theorem 2.3,

'ﬂ'O TTO
P (e eAn*ﬂX?x)+P (6 € B*|X=x)

. m *% | X= .
Tr12fF P (6 € C**|X=x) > en*/L{1-e)m{x{mg) ]

= inf P"(e € C*¥%x) > 1 - a.
T€ T

Let C+* = B**y A,
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Since the first inequality is strict, we could increase K or decrease D in

the definition of B** to yield

inf  P"(o € C**|X=x) = 1 - a,
TeE€ T ’

and the resulting C** must have smaller Lebesgue volume than C*, a contradiction. ||

Assume that X «;n(e,voz), o2 known, and that mq is W(u;‘Tz)- By a simple

linear transformation, it is sufficient to consider the case 02 =1 and y = 0.

Recall that, then,-m(-|w0) is W(O;J+r2) and no(-[x) is ﬁ(a;Vz), where § = sz

and V2 = 12/(1+r2).
To apply Theorem 2.4 in this situation, note that D, has measure zero for

1
all v, and hence D can be ignored in (2.11). For similar reasons, o is

defined by
(2.13) 1-a= dinf P"(o€ A [X-x)
TE€ T 0
0 l eng !
= Pe A D) L gy §

and y(n) is defined by

"0 _ =x) = €
(2.14) p (o€ Ay By y[Xx) = (1-a) [‘ ' (1-e)mnc<|w0)] '
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Also,
An = (x - ¥ 21og (%a)—] s X +¢/2 log (Aa)'l )
and
B, = (6 - v‘/z Tog (waV)™!, & +v/'2 Tog (yav)™! ),

where a = (2w)]/2. We will give only the results for x > 0. Results for
x < 0 are entirely analogous.

Three possible cases may arise: either

Case 1: C*=A
- 0
. * = - .
Case 2: C An*IJ Bw(n*)’ where v(An* N Bw(n*)) > 03
. * = ’ iy B =
Case 3: C An* U Bw(n*)’ where An* n Bw(n*) é.

(The case where An* and Bw(n*) have only a common boundary can be shown to

occur with measure zero, and hence will be ignored in this discussion.)

To find C*, we consider each of the three cases separately, and find all
the potential "candidates" for optimality. Among the candidates generated
will be the optimal credible set, but our solution process can generate bogus
candidates, i.e., sets of the wrong form (for the case being considered), or
sets failing to satisfy the requirement (2.9) (or (2.14)). Hence any apparent

solution pair, (n*, w(n*)), that is generated should be checked for correctness
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of form and satisfaction of (2.14). A1l satisfactory solutions can then be
compared for size, the smallest being C*.

For notational convenience, denote m(x]no) simply by m, and define R by
R= (1-e¢)m/[e(1-a)].

Case 1. Direct application of (2.13) shows that ng is the largest solution to

the equation
(2.15) 0 = RE([(+2) Tx + (2 Tog (na) )21 v7)
- o([(1+) 'x - (2 Tog (na) )21 V) 4w - 13,
where ¢ denotes the c.d.f. of a standard normal random variable.
Case 2. Itvis shown, in the Appendix, that n* is a solution to the equation
(2.16) n = REo([(1+9) " 1x + (2 Tog (na)™")/21/v)
- o(=(2 Tog (p(n)an)™ )V?) + o - 13,

where

-1 —1)1/2

(2.17) ¥(n) = R " n(2 log (na)

2023y 14,

+ (aV) ™! exp{-[(1+c2) Vx + (2 Tog (na)™ 1)1/
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Case 3. It is shown, in the Appendix, that n* is a solution to the equation

(2.18) o = Ri2e([2Tog(u(n)aV) 112 + o([(14+:2) Tx + (210g(an)™)21/v)

- o([(1+2)Tx - (2l0g(an) )V 21/W) + a - 23,
where
(2.19)  w(n) = (2R)""n(2 Tog(an)™") /2
+ (2a0) Texpt-[(1+9) Tx + (2 Tog(na) ™)/ %1% (2v%) ™y
+ expl-[(1+:2)"1x = (210g (na)"")1/272 (2v®) 111,

As an aid to finding the simultaneous solutions of (2.16) and (2.17), or
(2.18) and (2.19), note that n* must satisfy

], aR}.

ng < n* < min {a
The Jower bound was established in Theorem 2.4, and the upper bound follows
from the fact that.the right hand side of (2.14) must be less than one.
It should also be noted that Case 3 usually does not occur (i.e., usually
the optimal confidence set does not consist of disjoint intervals). Indeed,
it only seems possible for Case 3 to occur when o < e and T2 is small
(compared to 02), both of which will be rare in practice. Furthermore, the
“pattern” will be that for |x-u| small, it will be a Case 1 situation; for
|x-u| Targer it will become a Case 2 situation; then a Case 3 (if it occurs
at al1); and finally a returning to Case 2 and then Case 1 as |x-ﬁ| gets larger

yet.
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It is interesting that Case 1 becomes the Timiting case as |x-u| + e.
Indeed it is not hard to show that the appropriate value of ngs s | x~u| » =,
is

ng = {a(1-e)/[e(1-a)m(x|7g) 13(1+o(1)).
(This equation will actually hold in great generality, not just in the normal
case.) Since m(x]no) + 0 as |x-u| » «, it follows that ng Will go to zero and
A will become arbitrarily large, certainly a not very appealing result.

0
This is another indication that letting 2 contain all distributions will

often be inappropriate.
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3. Unimodality Preserving Contaminations

If the elicited prior, g is unimodal with unique mode Bg> an extremely

attractive class 1 to consider is

r={r-= (1-e)w0 + eq: q € 2, the set of all
probability measures for which = is
unimodal with (not necessarily unique)

mode 64, and (1-e)ﬁ(60) < m(e) < (1+e')n0(eo)}.

When T is unimodal, it will frequently be the case that the only plausible
priors are those which are close to 0 and also unimodal, requirements reflected
very well in the above r. (Often one might want to choose ¢' = ¢, for reasons
of symmetry, but the analysis is the same for general ¢'.) Any prior in T
will typically be plausible (in contrast to the case when all contaminations
are allowed), and T will contain any plausible prior (for large enough ¢).
It came as a great surprise to us that such a reasonable T could be worked with
and provide relatively simple answers.

The situation we consider here is where @g;’ng and the Tikelihood function
f(x|e) is also unimodal (as a function of o, of course) with unique mode
5(x). (Of course, x is fixed, so f(x]e) need only be unimodal for the observed
X, not for all x.) It will also be technically convenient to restrict consideration
to my and f which are positive and strictly monotonic on each side of the modes.
More general cases could be handled, but the results get messier. Finally, we
will only present the results when 9(x) > 8- The case 8(x) < 8p 1s essentially

identical.
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Under the above assumptions, we first determine %, the prior maximizing
m(x|n) = [f(x|e) n(e) do

among all = in T. Those interested only in the basic ideas may wish to skip

the next section.

3.1 Preéliminaries and Notation

For -e' < p < e, define v(p) > 00 implicitely, by

v(p)

BN wglag) (o) (v(o) = o) = (1) | " (o) do = <,
0
and define
v(p)
(3.2) V(o) = Fxlv(e)) (vle) = 8p) - [ Flxe) do .

%

For 0 < © define w(e) > o', implicitely, by

w(e)
(3.3)  (1-¢) ngle)w(e) - &) - (1-e) [ = mo(e) de = e,
)
and define
w(e
(3.4) w(e) = f(xfw(e)) (w(e) - o) - é. f(x|g) de.
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Lemma 3.1.

(a) The quantitiés v(p) and w(s) are well defined, unique, continuous, and
strictly increasing for -¢' <p < e and 6 > 6.

(b) If v(p) > 8(x), then V(p) is decreasing at p. Furthermbre, V(p) = 0 has
at most one solution.

(¢) If 6p < 6 < é(x) and w(e) > 5(x), then w(e) is decreasing at e. Furthermore,
if V(e) > 0, then w(g) = 0 has a unique solution 6g < 0% < é(x).

Proof. (a) At v = 6., the left hand side of (3.1) is zero. As v + =, the left

0°
hand side of (3.1) goes to ». Finally, since ny is decreasing for e > 6,, the
derivative, with respect to v, of the left hand side of (3.1) is easily seen
to be strictly positive. A solution to (3.1) thus exists and is unique.

To show that v(p) is strictly increasing, one can differentiate both sides

of (3.1) with respect to p and solve for v'(p) (i.e.;.é% v(p)), obtaining
Vl(p) = Wo(eo)(V(p)eo)/[ﬂo(eo)(]‘p) = (]'E) WO(V(D))]

Since v(p) » 8g> P < € and 0 is decreasing for o > 8o it is clear that

v'(p) > 0. The verification for w(e) is very similar.

(b) Letting f'(x|e) = é% f(x|e), calculation gives

a5 V(o) = FHUxIV(R)) V' (o) (v(o) - gp).

Since f is decreasing for o > é(x), the monotonicity result follows from part (a).

If V(p) = 0, the unimodality of f ensures that v(p) > 5(x) (for otherwise the
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right hand side of (3.2) is positive). The strict monotonicity of V for such o
ensures that any solution to V(p) = O must be unique.
(c) Letting w'(e) =-é% w(o), calculation gives

(o) = £ (x|w(e)) w'(6) (u(o) - o).
The monotonicity of f and part (a) show that this is negative. Using this, to
show that W(o) = 0 has a unique solution, it is only necessary to show that
w(eo) > 0 and w(é(x)) < 0. Since v(e) = w(eo), it follows that w(eo) = V(e) >0
(by assumption). That w(é(x)) < 0 follows from (3.4) and an easy application

of the mean value theorem (since f(x|e) decreases for o > 5(X)).

Lemma 3.2. Suppose V(e) > 0, and let 8, < 6* f_é(x) be the solution to W(e) = 0.
Then
(a) f(x|e) < f(x|w(e*)) for e € [o*, w(o*)];
(b) For any nonincreésing integrable function g such that fg(e) de = 0, it
follows that

w(6*)
(3.5) é* g(e) f(x|e) do < 0.
Proof. (a) Clearly f(x|e*) < f(x|w(e*)), for otherwise the integrand in
(3.4) would be everywhere larger than f(x|w(e*)) and W(e*) would be nonzero, a
contradiction. The unimodality of f thus gives the result for e < e*.
Now w(e*) > é(x), for otherwise (3.4) could again be used to contradict

W(e*) = 0. The unimodality of f thus also gives the result for e > w(e*).



(b) Note first that it suffices to prove the result for differentiable g.

Letting h(e) =??é%-g(e) (note h > 0) and writing

)
g(e) = K- [ h(g) de,
e*
where
] w(o*) n
(3.6) K= [W(e*) - 6*] je’* é’* h(g) dEdT]s
1 w(o*) .
= w(e®) - 8%] ,é* (w(e*) - £)h(g) de,
we obtain from Fubini's theorem
w(e*) w(6*)
(3.7) [ g(e)f(x|e)de = K [ f(x|e)de
o* p*
(6%) w(o*)

W
- f h(g) [ f(x|e) do de.
o* g

Next we show that, for o* < £ < w(e*),

(6%)

W
(3.8) () é f(x|e) do > (w(e*) - &) f(x[w(e*)).

LN

[v

35
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For ¢ 3_é(x) this is a trivial consequence of the monotonicity of f. For

o* < £ < é(x), note that w(g) is concave (f(x|g) is increasing here) and that

w(o*)
(3.9) p(o*) = [ f(x]e) do = (w(e*) - o*)f(x|w(e*))

p* -
(since W(e*) = 0). Hence, y(z) must Tie above the Tine (w(e*) - £) f(x|w(e*)),
establishing (3.8).

Using (3.8) in (3.7) we get that

w(e*) w(e*) w(o*) '
[ gle)f(x]e) do < K [ F(x]|e) do - f(x|w(e*)) | (w(e*) - £)h(g) dg,
g* p* N

the right hand side of which is zero by (3.6) and (3.9).]]

3.2 The ML-II Prior

Define % as follows:
Case 1: If V(e) > 0, and e* 6[603 é(x)] is the solution to W(e) = 0, Jet

R (1-¢) 0 (o%) for o* < o < w(e*),
(3.10) w(8) =
(1-¢) T (8) otherwise.

Case 2: If V(e) < 0 but V(-e') > 0, find p* € [-¢', e] so that V(p*) = 0,
and let
(1-p*) i (60) for 60 <6 j_v(p*)

(3.11) (o) =
(1-¢) 0 (o) otherwise.



37

Case 3: If V(-¢') <0 and f(x|e,) < f(x]v(-e')), Tet  be as in Case 2

with p* = -¢'.

Case 4: If V(-e') <0 and f(xleo) > f(x|v(-e')), let

. (1+¢') "0(60) for o' < o j_e"
(3.12) T =

(1-¢) wo(e) otherwise,
where o' and 8" are the (unique) solutions to the equations

(3.13) f(x|o') = f(x]e"),.

m(0) de = e.

DY D

(1+e") no(eo)(e‘“-e') - (1-¢)

Lemma 3.1 establishes that all quantities involved in the definition of
= are well defined and unique. (The existence and uniqueness of o' and 8" in
Case 4 is eas& to establish.) Observe that, in all cases, ; has the very
simple and easy to work with form of being uniform in a certain interval, and
otherwise being equal to (1-¢) g Case 1 corresponds to the situation where

the elicited prior, g and the likelihood function, f(x|e), are moderately
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separated, Case 2 to the situation where they are fairly close, and Cases 3

and 4 to situations where they are very close.

Theorem 3.1. The = defined in (3.10) through (3.12) 1is the ML-II prior

in T.

Proof. We only present the argument for Case 1, the other cases being very

similar. The goal is to show that

(3.14)  m(x|7) - m(x]) = [[n(6) - n(6)] f(x|6) do < O

for all ne r.. Letting g(8) = w(e) - %(e), note that

(i) g(6) > 0 for o & [0%, w(e®)], Sincé%(e) = (1-¢) my(0) .hefe and n(6) > (1-¢) m4(6);

(i) g{e) is nonincreasing on [e*, w(e*)], since %(e) is uniform on
this interval and so w(8) = g(6) + ;(e) would have a secondary

mode were g(6) somewhere increasing;

w(o*)

(ii1) K= [ g(e) do = - f g(e) de.
o [o*.u(o%)1¢

Lemma 3.2 (a) and (i) show that |
f g(e) f(x|e) de < f(x|w(e*)) (-K).

[o*,w(e*)]°
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Lemma 3.2 (b) and (ii) imply that

7(9*)(() K_) f(x]6) do <0
8) - N x|e) de < 0.
e M9 [w(6%)-0%] =
Thus
. K w(o*)
(3.15) fa(e)F(x[o) do < F(x|w(e*))(-K) + Trraey=seT g* f(x|6) de.

Since W(e*) = 0, the right hand side of (3.15) is zero, and (3.14) follows. ||

Comments: 1. The key step in the proof of Theorem 3.1 is reé]ly Lemma 3.2 (b),
which shows that one cannot improve on a uniform ™ on [e*, w(e*)].

2. The problem might be susceptible to attack through calculus of variations,
since one is trying to maximize an expression involving an integral of =« over
a class of m. The difficulty is that the m €T satisfy the constraints (i) =

is nonnegative, (ii) = has mass one (iii) (1-€) T ST < (1+e) Ty and

(iv) = is unimodal. Calculus of variations with such side constraints is

quite difficult.

3.3 The ML-II Posterior and Robustness

The prior = can be written as

) Ki for 6 € Bq

") w(e)  foroee B,

where i refers to Case 1, 2, 3, or 4, Bi is the appropriate interval, and Ki

is the appropriate constant. Alternatively, n can be written as
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; = (1-¢) 0 + ea,

where the ML-II contamination, a, is given by
~ =1
q=c [Ki - (1-¢) wo(e)] I (o€ Bi)'

Thus the ML-II posterior is

(3.16) w(a]x) = A(x) mg(elx) + (1-A(x)) q (o]x),

where

(3.17) Mx) = (1-e) m (x|mg)/[(1-€) m (x|my) + em(x]a)]
and

(3.18) n(x|q) = &' JIK; - (1-¢) w5 (o)1 F(x0) do.

1

0f interest in evaluating the robustness of  is Case 1; only when 9
and f(x|e) are moderately separated will answers vary insignificantly for

different m € r.: In this case,
(3.19) q = e (1-e) [ngle*) - my(8)]1 I (6 € [o%, w(e*)]).

As lé(x) - eol + o, it will typically happen that 6* -+ =, (5(x) - %) » o,
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(w(o*) - 6(x)) + o, and ﬂo(e*)/m(x|ﬁ0) > o, It is then easy to see that

i(x) -+ 0 and
(3.20) a(s]%) > Fix|8)/[f(x]8) do.

In other words, r behaves essentailly as a uniform prior over 6. (The uniform
part of ;, that on [e*, w(o*)], comes to dominate, and the interval [e*,w(6*)]
expands to span all except a negligible part of the support of f(x|e).) As the
data and my come into conflict, therefore, the ML-II prior will effectively
ignore i and act as a (noninformative) uniform prior. This kind of behavior

can be labelled "robust" from a number of viewpoints (c.f. Berger (1983)). Also,
this limiting behavior is much more pleasing than that of n in Section 2, which
collapsed to a point mass at 6(x) in the 1imit. Note, finally, that 7 s always
a proper pr{br, so that, although its limiting nature is that of a noninformative
prior, it should not succumb to any problems related to the impropriety of

typical noninformative priors..

3.4 The Normal Distribution

As an example of the preceding theory, we consider the case where X is
n(e,1) and g is m(O;rz). (The more general case where X &;ﬁ(é, rz) and L

2 all known, can be reduced to this case by a linear

is ﬂ(u,\rz), 02, u, and t
transformation.) We will determine ;, and also give explicit expressions for
the posterior mean and variance of ™ Only Case 1 will be considered, it
being the most interesting (and difficult). As before, ¢ will denote the

standard normal c.d.f., and ¢ the standard normal density function.



3.4.1 The ML-II Posterior

For completeness, we rewrite the defining equations for ¢* and w(s*) as

T

(3.21) (1) o (Z) (UL 8 | (o) [o(MEy | o(& = o,

(3.22) o(w(e*) - x) (w(e*) - o*) - [a(w(oe*) - x) - #(o*-x)]=0.

These equations can be easily solved for e* and w(e*), recalling that
6* < x < w(e*). From (3.16) through (3.19) we get after some algebra (and
using (3.22))

n(0]x) = A(x) mo(e]x) + (1-A(x)) a(s|x),
where

2
ﬂO(GIX) is n(s;vz), § =1L x2 and V- =L
1+t

A(x) = 1/[1-B + Cy o(w(0%)-x) (w(e*) - 6%)],

C 5’/l+%_2 ¢(_6_*_)/¢<_L_>’
0~ T
Vi+
molelx) o, w(e*)-s ke
BO =P ([e*,w(e*)]) = ®(f““jr—"") - Q(fir—ﬁ >

42
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and

- 1o € [o*, w(o*)])
(A(x)™ - 1)

9(0]x) (¢, f(x|e) - my(e|x)3.

An alternate formula for %(elx), more useful for purposes such as obtaining

credible sets, is
n(6]x) = A(x) {ng(e]x) T (6 ¢ [o*, w(e%)1) + Cy Fx|e) T (o€ [o%,w(e*)])3.

(Though this posterior looks as though it could be bimodel, it will in reality

always be unimodal.)

3.4.2 The ML?II Posterior Mean and Variance

The posterior mean can be calculated (using calculus and (3.22)) to be

s" = fom(e|x) de
= 30 8+ (1-0x) &9,
where
3 ; X CoPg - Eg *+ (x-8) By ’
O T XTI R T, e(WleR)-x) [W(%)-6%]
Dy = ¢(e*-x) - ¢(w(e*)-x),
= U[o (58) - (2]
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Also, the posterior variance can be calculated to be (see (1.8))

A

V(x) = a0 V2 + (1-3(x)) V9 A(x) (1-A(x)) (s-6%)2

where

~

V9 = L) 11T =G0y (269-x-6%) +C (x-6) 2Lw( %) - 6% T (w( 6%) -x)

- (ex+s-257) E, - [V2+(s-59)2] By + VIw(e*)-0*] ¢([w(e*)-51/v)}.

3.4.3 Limiting Behavior

~ ~

Though easy to calculate, the formulas for s" and V" are too involved to
be easily understood intuitively. The formulas simplify greatly for large x .
We present the 1imiting behavior here, partly to allow intuitive consideration
of the results, and partly to show that the "robust" behavior discussed in
Section 3.3 does hold. The proof, though lengthy, is routine and will be

omitted.

Theorem 3.2. As X » «,

(i) g% = /2121ogx + 0(1),
(ii) w(e*) = x + V2log(x/vZx) + o(1),

. 2 o 1a 2
(111) a(x) = —Uzelx XYL+ (q4501y),

e/(1+17) 2
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(iv) §9 = x --% + o(x'1)

>

(v) VI =1-x ZTeax (1+o(1)).

It can also be shown that %(e{x) does become essentially the uniform
prior concentrated on [e*, w(e*)]. The rapid (exponential) rate at which

i(x) goes to zero means that this uniform portion can quickly become dominant.
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4, Hierarchical Classes of Priors

4.1 Introduction

Hierarchical priors are typically employed when 6 is a vector (e],ez,...,ep),
and the 0; are thought to be independent realizations from a common prior
distribution g. Typically g is assumed to lie in some class Ty ="{gw:w € Q)
of distributions, often the class of conjugate priors, and a "second stage"

prior h0 is placed on this class, i.e., on w. Such a hierarchical prior can,

of course, be written as a single prior, namely

(4.17) wo(e) = f[;g gw(ei)] ho(w) dw.

Q i=1
(We restrict ourselves to densities in this section, for convenience, and also
will not consider hierarchical priors with more than two stages.) Development
of and references for this approach can be found in Good (1980), Lindley and
Smith (1972), and Morris (1983).

There are three possible robustness concerns in working with (4.1). One
could question the assumptions (i) that the ei are i.i.d.; (ii) that the prior
g belongs to r]; and (iii) that h0 is specified correctly. Each of these
concerns deserves careful consideration separately, but in the following we will
simply deal with uncertainty in the second stage (i.e. ho), or in both the
first and second stage together.

Simultaneous uncertainty in different stages or aspects of a prior can
often be expressed most simply by allowing more than one contamination in the

e~contamination model. For instance, one could consider

(4.2) T = {1 = ('I—e-l-ez) Ty * €197 * €585 Oy € 295 Gy € 25},
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where 21 and 32 are appropriate possible classes of contamination. Such an
extension of the e-contamination model vastly increases its flexibility while
causing no real hardship in many applications, because the important formulas

(1.5), (1.7), and (1.8) bécome simply

(4.3) m(x|m) = ('l-e-l-ez) m(XI’ﬂ'O) + € m(x|q]) + €o m(xlqz),

m "0 % 92
(4.8)  6"(x) = [1-a(x)2,(x)T6 T(x) + a7(x) 6 (%) + ap(x)s “(x),
(4.5) VT(x) = (1-A1-A2)V“O + A]Vq] + szqz +_x]A2(6q1-5q2)2
+ (T-Aq=2,)2 (sﬂo aq])z + (1-x X YA (sﬂo qu)z
1T 72/ B [ s - ?

where Ai(x) =gy m(xlqi)/m(x|w) for i = 1,2. Thus one can find the ML-II prior
by separately maximizing m(xlq]) and m(x|q2) in (4.3) (unless 2 and 2,
are related in some fashion) and then easily calculate the resultant ML-II
posterior mean and variance.

Before proceeding, it is worthwhile to note that r of the form (4.2)
might be of interest in other than hierarchical prior situations. Indeed,
whenever one has several possible models in mind, for the contamination, or

even for 0 itself, the uncertainty can be reasonably represented by such a T.

4.2 Second Stage Uncertainty

Suppose, in the situation of Section 4.1, that only h0 is deemed uncertain.
(Knowledge at higher levelsof hierarchical priors will often be more vague

than at lower levels.) An e-contamination model for h would be

(4.6) h(w) = (1-€) ho(w) + es(w), s €.
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The resulting prior for o is

p
/ [.H]gw(ei)] h(w) dw
1=

(4.7) 7(6)

(1-¢) my(e) + eq(e),
where
p
mple) = f [1E]gw(ei)] hy(w) do
and
p
q= [_H] q,(8;)] s(w) do.
'l:

Letting 2 = {q: s €ed}, it follows that the uncertainty in = can be expressed

by
r = {r=(1-¢g) mg * ed> 9 € 2}.

In determining the ML-II prior for this situation, it will be convenient

to define
p
m(x|w) = [f(x]e) [ 1 g (o)1 do,
i=1 @
which is clearly the marginal distribution of X under the assumption that the

p
prior for ¢ is [ 1 gw(ei)]. Note that -
j=1 @ :
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(4.8) m(x|w) = (1-¢) m(xlﬂo) + efm(x|w)s(w) dw.

When od= P = {all distributions}, it is clear from (4.8) that
sup m(x|r) = (1-¢) m(x|n0) +esup m(x|w).
'rrEI‘.l' w

Assuming that m(x|w) has a maximum at &, it follows that the ML-II prior is
N _ Y
(6) = (1-2) ng(0) + L T g(0)],

for which analysis is usually quite straightforward.

Example 3. Suppose that X = (X],...,Xp) v mp(e,ozlp), 02 known, and that the
first stage prior information is that the 6; are independent with a common
ﬁ(u;Tz) distribution, to be denoted g, with o = (u,rz) unknown. Note that
m(x|w) is ﬁp(ul, (02 +12)Ip), where 1 = (1,...,1). It is easy to check that
m(x|w) is maximized at

o= (1) = (% max [0, 3 ] (%07 - 6°0).

il 10

1
P =1

Hence, with contaminated second stage prior as in (5.6) and of = P, the ML-II

prior is
n(6) = (1-¢) mo(e) + eq(e),

where a is np(;],;zlp).



As a very special case, suppose h0 is a point mass at (uo,rg), so that

. L2 .
mg 1s simply np(uol,TOIp). Then the ML-II posterior is .

n(o]x) = A(x) my(e]x) + (1-2(x)) a(s|x),

™ - AN
where m, (e|x) is np (6 O(X), vOIp), q(e|x) is np(sq,vlp), Vg = OZTO/(G 1 )

A

vV = /(‘j T)s

i 2 2 n
§ “(x) = x-—5—5 (x-upl), & (X) — (x-u1),
o +TO c *t
and
A(x) = xln /[sm(xlw + (1-¢)m(x|q)]
) orn - § xmug Y 200Bd)]
= {‘] + (];E) . (O' +T§)p/ e i=] Q(X)}--I
where ~
. _ p _ _
oPexpl- § (x;-Z/2pr i 1(x;-07 < po?
i=1
8(x) = <
1 B —2-p/2 ] .
5—jz](xi-x) ] exp {- > p} otherwise.
TTO !
Note that & - is the usual conjugate prior estimate of o, while §9 is the

50

usual empirical Bayes estimate of 6. The overall posterior mean (see (1.7)) is

thus

A A

ST = a(x) 6 0(x) + (1-a(x)) s%(x),
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A~

™
which will be close to 6 0 if the X; are close to g and close to 89 if

the X; are similar but far from Mg

Of course, only rarely will it be appropriate to choose h0 to be a point
mass. More natural would be a choice such as hO(u,rz) = w(n) v(rz), where
w(y) is n(uO,A) and v is, say, a gamma distribution. Although the ML-II
posterior is no longer expressible in closed form for such a situation, the
posterior mean and variance can be written in a form involving a single

numerical integral over T2 (see, e.g., Lindley (1971)).

Several features of the above example are worth noting. First, the strong
relationship of the ML-II theory with standard empirical Bayes analysis is
apparent. Indeed, if one were to choose e = 1, the standard empirical Bayes
situation would result. As mentioned in the introduction, we much prefer the
analysis with reasonably small e, the choice € = 1 resulting (typically) in
there being a large number of unrealistic priors in r. Of course, the choice
9 =p also suffers somewhat from this deficiency, as discussed in Section 2.3.
An appealing possibility in the above example is, therefore, to attempt to'app1y
the ideas of Section 3 and work with more reasonable 2. For instance, if

independence of u and rz can be assumed, so that

h(y,t2) = w(n) v(z2),

one could elicit W, and Vo» consider
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¥ =idw (]-81) Wo teq Q. W is unimodal},

<
n
"

(1-52) Vo * €p G,V is unimodal},

and apply the ideas of Section 3, first maximizing m(x|r) over ¥ and then over
#(the given order making the necessary unimodality verifications easier). We
do not attempt the analysis here, because nothing new conceptually is involved

and the argument would be moderately lengthy.

4.3 First and Second Stage Uncertainty

The simplest modification of (4.7) that introduces. uncertainty in the
first stage of the prior is simply to add an arbitrary overall contaminatijon.

Thus we consider

w(8) = (T-eqgmep) mg * g Gy * <5 5

where 9, € 22== P,

qq = f [i§1 gw(ei)]s(w) dw € 2= 1q: s €,
and Tgs S and ¢ are as in (4.7). In other words, a4 arises from possible
second stage prior uncertainty, while d, allows for basic error in the empirical
Bayes model.
Allowing arbitrary 4o is again, probably excessively crude. In particular,
complete abandonment of the empirical Bayes structure may be unrealistic. For

illustrative purposes, however, this is convenient.
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As mentioned in Section 4.1, the ML-II prior can be found (here, at least)
by separately maximizing m(xlq]) and m(x|q2). Maximization of m(X]ql) was
discussed in the previous section. And m(x|q2) will simply be maximized
when 95 is a unit point mass at 5, the maximum Tikelihood estimate. Thus the

ML-II prior is (assuming Ag£==63 and letting I(é) denote a unit point mass at 6)

) = (mepmeg) 10l8) + gl § 5300901 + ept(d).
Formulas (4.3) through (4.5) Can now easily be employed to give desired
conclusions. In the situation of Example 3, for fnstance, all calculations can
be carried out explicitely; indeed, the needed modifications toAthe formulae
there are very minor and so will be omitted. The behavior of §", the ML-II
posterior mean, is worth mentioning, however. If the data are compatible with
L (i.e., are near po) then the conjugate priorAposterior mean 60 will dominate;
if the data are simi]ar but not near My then " will be close to the natural

empirical Bayes rule 59; and if the data are not compatible with the empirical

Bayes model, then s" will be close to the maximum 1ikelihood estimate, 6 = X.
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5. Conclusions

The basic message of the paper is that a wide variety of explicit analyses
concerning Bayesian robustness can be implemented. For very reasonable classes
of priors, one can find the ML-II prior and find the range of posterior
quantities of interest as the prior varies. This possibility brings the
philosophically compelling robust Bayesian viewpoint (c.f. Berger (1983)) closer
to the domain of practical statistics, and also introduces exciting new theoretical
problems. Generalizations and applications of many kinds suggests themselves.
One of the most challenging generalizations would be the combining of uncertainty
in the prior with uncertainty in the model for the data.

The success of the approach taken here is based on the use of e-contamination
classes of priors. It is worthwhile to summarize the benefits of the use of such

classes, since other classes are possible and have been considered.

I. Subjective Interpretation: Prior uncertainty should be reflected in

uncertain probabilities,and it is very appealing to model uncertainty by choosing

all priors close to an elicited Tgs since very little extra elicitation effort
is then needed: just the determination of ¢ and the types of contaminations
to be allowed. (Of course, the e-contamination-approach could also be taken
with "objective priors" as the base, no.) The need to consider only actual
probability distributions, and not unfamiliar constructs based on interval

valued set functions, is another attractive aspect of the e-contamination approach.

II. Flexibility: The flexibility of the e-contamination class lies in the wide
range of choices for the contaminations q. One can work very easily with 2
equal to all priors or with 2 equal to all conjugate priors (which we actually
did not do in the paper), and can also work successfully with appealing classes

such as all q for which the resulting prior is unimodal. Finally; hierarchical
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priors can be easily dealt with, as can the often related possibility of

incorporating several different types of contaminations.

III. Calculation: The above properties would be of only theoretical interest
were it not for the surprising ease with which maximizations and minimizations
over the various classes can be performed. This ease is due, in part, to the
fact that, frequently, one need only maximize or minimfze the desired quantity
separately over 2 (or separately over the different Di’ if more than one is
involved). Also, quantities of interest, such as the ML-II posterior, posterior
mean, and posterior variance can all be expressed as simpie weighted averages

of the same quantities for each component of m (i.e., u and the qi). The

advantages of this for calculation and interpretation are considerable. Finally,

the types of robustness analyses envisaged here are easily implementable on
the computer, providing a very attractive systematic alternative to the usual
sensitivity analysis of merely trying a few different priors, which (especially
for the nonexpert) can run a serious risk of not being extensive enough.

As a final point, many of the above advantages of the e-contamination
class also make it attractive if one takes a frequentist Bayes approach to
Bayesian robustness, i.e., if one works with frequentist Bayes measures that
average over both x and 6. For instance, r-minimax problems (even for T such
as in Section 3) often reduce to restricted risk Bayes minimization problems
(of the Hodges-Lehmann (1952) type), which can frequently be given reasonably

simple approximate solutions (c.f. Berger (1982, 1983)).
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'Aggendix
Derivations of (2.16) - (2.19):

Case 2. The probability condition (2.14) reduces to
(A.1) (1-0) (1+en/(1-€)m) =

o([(1+:2) Ix+(210g(na) )21y y - o(-(210g(vav)™1)1/?).

Also, the length, L, of the corresponding interval is given by

-1)]/2

(A.2) L = [x+(21og(na) - s + V(2log(yaV) N 1/?7,

Since we are assuming that the minimum sized set actually occurs in Case 2, it

must satisfy

(A.3) - = 0.

Equation (A.3) simplifies to

(A.4) =y (n)/e(n) = (V)" (Tog(vav) ™) /2 (10g(an) 1) 7172,
where y'(n) = dy(n)/dn.

Next, differentiation of (A.1) w.r.t. n yields

(A.5) R']= _ eXp{-[(1+T2)-]X+(2]09(na)_])]/2]2(2V2)-]} (avn(Z]og(na)-]))]/z)_]
+ (=9 (n)/9(n)) Vp(n) (210g(yav)~1)~1/2y,

Substitution of (A.4) into (A.5) and some algebra yields (2.17). _Simplication
of (A.1) yields (2.16).
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Case 3. In this case, (2.14) reduces to

(A.6) (1-a)(1+en/(1-€)m) =
20([2109(vaV) 11/ 2)=1 + o([(1+:2) Tx+(210g(na)~ ) /2y Ty

- o([(1+c2) Tx=(210g(na) ") /23y 1y,

(Note that the identity o(z) = 1 - & (-z) was used.) The length, L, of

the corresponding interval is given by

L = 2v(21og( av)" "2 + 2(210g(na)" 1) 1/2,

Differentiation of L w.r.t. n and setting the result equal to zero again implies
(A.4). Differentiation of (A.6) yields

(A.7) RV = - [expt-L(1+c2) " Yx+(210g(na) ™) 1/272(2v8) 71y

+ eXP{-[(1+?2)-]x-(21og(na)'])]/2]2(2v2)']}] [aVn(2log(an)1) V27!

+ (=y' (n)/v(n)) {2V(n) (210g(yav) 1) "1/ 23,

Substitution of (A.4) into (A.7) and simplification yields (2.19). Formula
(2.18) follows from (A.6).
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