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Abstract

Let X = (X],...,Xp)t to be an observation from a p-variate normal
distribution with unknown mean vector o = (e],...,ep)t

matrix f. It is desired to estimate 6 under the quadratic loss

and known covariance

L(e,8) = (e,—d)t Q (o-8). Suppose prior beliefs concerning 6 can be approximately
modeled by a conjugate prior distribution = which is Np(u,A), where u, A are
known. We find estimators of & which have small Bayes risk and which also
satisfy the constraint R(e,s) < tr(Qf) + c, R(e,8) being the frequentist

risk of §. Such estimators are good from both the frequentist and Bayesian

perspectives.
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1. Introduction

Let X = (X],...,Xp)t be a p-variate normal distribution with known
covariance matrix I and unknown mean vector 6 = (e],...,ep). It is desired

to estimate 6 under quadratic loss
_ t
L(e,8) = (6-8)" Q (6-6),

where Q is a given positive definite matrix. An estimator will be evaluated

by its risk function
R(6,8) = E [L(e,8(x))].

When one has complete knowledge of the prior distribution m of 8, one
would use a Bayes estimator §" which is an estimator minimizing the Bayes risk,
i.e., r(m,8") = min r(n,s), where

8

r(v,8) = E"[R(6,58)].

Unfortunately, the determination of © is often very inexact. In a finite
amount of time, only subjective approximations to m can be constructed and
the Bayes estimator can be sensitive to uncertain parts of the prior specification.
(See Berger (1980c, 1983) for references.)
On the other hand, the minimax principle tries to protect against the
worst possible state of nature. Although a Minimax estimator is the "most

robuts" Bayesian decision rule (in the sense of minimizing sup r(w,s)), it
m



often behaves poorly when looked at from the viewpoint of average risk, and
can often be inadmissible (c.f. Berger (1980a, c, 1983)).

The situation occurring in practice frequently lies between these two
extreme cases. O0Often, we have some idea about the prior distribution of o
but we are not willing to entirely rely on any specific prior. Hence it is
important to consider the robustness (with respect to the specification of =)
of the estimator selected. Thus, a reasonable goal is to develop a procedure
which can incorporate prior knowledge, but iS safe wifh respect to error in
the specification of prior know]edge.

One way to do this problem is as follows: First, we restrict the risk;

for example
(1.1) R(6,8) - R(e,ao) <c

for all o€ Rp, where ao(x) = X is the MLE and minimax estimator of 6 and ¢
is a given nonnegative constant. (Note that R(e,GO) = tr(Q}).) And then, in
the class of estimators satisfying the restricted condition (1.1) find an
estimator which has minimum Bayes risk. Thus, we impose a constraint on
the deviation of the risk of our estimator from the minimax estimator and
then, subject to this constraint, we minimize the Bayes risk.

This problem was first proposed by Hodges and Lehmann (1952) and ha§
been considered for various situations in Efron and.Morris (1971), Shapiro
(1972, 1975), Bickel (1980), Marazzi (1982), and Berger (1982a). It is known
that exact mathematical solution of this problem is very messy and, even in

the case of a spherically symmetric normal distribution, numerical solution



is very difficult (c.f. Berger (1982a), Marazzi (1982)). For this reason,
we will consider various simplifications of the problem.
By using the identity (essentially a variant of Stein's "unbjased estimator

~of risk")
R(0,8) - R(6,67) = E,[8v(x)],

where y(x) = $'](6(x)-x) and ®vy(x) is an expression involving partial

derivatives of Yi(x)’ the condition (1.1) will clearly be satisfied if
(1.2) 9 y(x) < c.

Hence we can formulate the following approximate restricted risk Bayes problem:

Select the estimator & which minimizes r(w,8) subject

to (1.2).

When $Qf is a diagonal matrix (always achievable by a Tinear transformation),
Chen (1983) generalizes an idea of Berger (1982a) to show .that the optimal
estimator in the approximate restricted risk Bayes problem must be a smooth
blending of the Bayes estimator " -and estimator arising from the differential
equation & y(x) = c. Unfortunately, in the nonsymmetric multi-dimensional
case it is generally impossible to solve the differential equation & y(x) = ¢
in closed form. Numerical solution would be a possibility, but in the interest
of providing reasonably accessible and understandable estimators we further

specialize the problem by considering a particular class of estimators for



which solution of the differential equality is possible. We also restrict
consideration to the case where the "approximate" prior that is specified
is Np(u,A), u being the prior mean vector and A the positive definite prior
covariance matrix.

A natural class of estimators to consider is the class of "compromise"

estimators

(1.3) 8,(x) = o(r) "(x) + (1-p(r)) 6’(x)

X = o(r) § (3+A)7" (x-u),

where r = (x-u)t'($+A)'] (x-u), and o is a continuous and piecewise diffekentiab]e
function taking values in [0,1]. Small r support the validity of the prfor
information (if x ~ Np(e,i) and 8 ~ Np(u,A), then r ~ zs ), and hence suggest
use of ¢"(x) = x - $($+A)'1(x-u) (so p(r) should then be near one), while large
r suggests that prior information is implausible and that ao(x) = x should be
used (i.e., p(r) should then be near zero). A "robust Bayes" estimator in this
class was proposed by Berger (1980b). We will find the optimal choice of »
in Section 2 (for the approximate restricted risk problem), a choice which
cah offer substantial improvement over the robust Bayes estimator of Berger
(1980b).

In Berger (1982b) a different type of estimator was proposed, one that
incorporated the prior information u and A and yet was guaranteed to be minimax.
The estimator was Based on a “decomposition to subproblems” technique proposed

in Bhattacharya (1966). In Section 3, we modify this estimator by basing it



on the optimal "compromise" estimators of Section 2. The resulting estimator
appears to have substantially better performance than the optimal compromise
estimator, in the sense of having smaller Bayes risk, while still satisfying
the constraint (1.1).

If minimaxity is desired (i.e. ¢ = 0 in (1.1)), the estimators discussed
above have certain limitations (see Section 4) in very nonsymmetric situation.

A new estimator, called a "weighted" minimax estimator is proposed in Section 4,
and is shown to offer substantial improvement in Bayes risk (while preserving
minimaxity) in certain cases.

Section 5 explicitly discusses the comparative performance of the
v“compromise", "subproblem", and "weighted minimax" estimators for the restricted
risk Bayes problem. The overall conclusion is that last two of these estimators
are superior, and guidelines are presented concerning the use of each of thém.

Instead of using y(w,8) to measure the effectiveness of an estimator &,
it is convenient to use the Tinearly transformed relative savings risk of

Efron and Morris (1972), defined by

RSR(n,6) = (ms6) = y(m,5")
Y(W,GO) - v(m,8™)

This measures the proportion of the potential Bayesian improvement over 60

which is attained by the estimator 6. Small RSR is desirable from a Bayesian

viewpoint.



2. The Optimal Compromise Estimator

Let X be a Np(e,$) and suppose 6 has (approximately) the conjugate
prior distribution = which is Np(u,A), where 1 and A are known. Let

dy > d, > ... Z_dp > 0 be the characteristic roots of the matrix

- -1/2 -1/2 _ B . .
D = ({+A) $Q1($+A) and let t = ) d;/dy. We will consider the
i=1

class of compromise estimators dp defined in (1.3) with Er(pz(r)) < o,
and Er(IPp'(T)|) < o,

First, we need the following Stein identity. (c.f. Stein (1981),
Hudson (1978), Berger_(1982), and Chen (1983)). Let

(2.2) 8(x) = x + $y(x),

where Y 1s a continuous and piecewise differentiable function with

Eg[yf(x)] < » and Eg[ygi)(x)l < », (where ygi)(x) = Sgg'yi(x) and so on).
Then
(2.3) R(8,6) - R(6,6") = Eg[8v(x)],
where
(2.4) 9v(x) = v*(0f0tv(x) + 2 tr(viot)
Y
and V = (Vij) with Vij = 52%7' (here trA = trace of A).

J



Using this identity, we will give a sufficient condition for the compromise

estimator ap to satisfy the constraint (1.1).

Lemma 1. If pz(r) - 4'(r) > 0 for all r > 0, then R(e,ép) - R(e,do) < € for

all e, provided that ®o(r) < c/d; for all r > 0, where
(2.5) 9o(r) = [o%(r) - 40" (1)1 1 - 25p(r).
Proof. Given in the Appendix. ||
Let Dc be the class of compromise estimators satisfying the restricted

condition ¥ o(r) 5_c/d1 for all r > 0, where Sp(r) is given in (2.5). Chen

(1983) showed that the optimal estimator,dp » in the class D 1s

c
(2.6) s, () = x - min(1, o o(r) $ (3+A) 7 (x-u),
c b4
where
‘ +
Z(T;Z) ifc=0and T > 2
K,.q(t)
vl .
(2.7) pc,o(r) = ¢ Zd?t Kv(t) ifc>0and t > 2
C Kv-1(t) .
\m—K—V_(TT ifc>0and 1 <1< 2,

1

v = |t-2|/2, t = %— /er/d; and K is the second kind of modified Bessel
V. |

function of order



The RSR of Gp is given in the following theorem.
o

Theorem 1. For the estimator Gp defined as in (2.6),
c

=1.2 £ (1- -
RSR(n,SpC) =1 -5 fp(b) + pd; (T=y,(b)) - v, (b)

p d. R
-2[1 - 121 EH%J fE pc’o(r)fp(r)dr,

where b is the unique positive solution of the equation o O(r) =1, and fp

and wp are the density function and cumulative distribution function of the

chi-square distribution with p degrees of freedom, respectively.
Proof. Given in the Appendix. ||
When ¢ = 0, the RSR of 6p can be expressed explicitly as follows.
0

Corollary 1. When c = 0 and t > 2,

1 -2
RSR (7,3, ) = E{[p 4(x-2) + ;(a—zLJU -y (2(c-2))1
e-2)1 - 27 £ (26 z))}
When © = p (i.e., (§+A)"V2(4af) (3+A)"Y/2 = 1), then

p

RSR(n,apo) 1 wp(Z(p 2)) B fp(2(p 2)).



Proof. It follows easily from Theorem 1. ||

0 -2 0
Remark 1. Tp,p < RSR(m, 0) <1 p 5 (1 Tp,p)’
where
0 _1 (p-2)
= = 1 f_(r)d
Top =% é?p—Z r( )© f(r)dr

(see Table 4 for values of Tg,p')

Remark 2. For fixed p, RSR('n,Gp ) is a decreasing function of t and has
0

minimum value Tg b when T = p.

3. The Modified Subproblem Estimator

In this section, we use the decomposition to subproblems approach of
Bhattacharya (1966) and Berger (1979) to develop an alternative estimator,

GMB’C, satisfying the constraint (1.1) and yet performance better than ap

o
For simplicity of notation in the remainder of the paper, we will assume that

Q, £, and A are diagonal matrix, with diagonal elements 9> g?, and a5,
respectively. (For similar results in the nondiagonal case see Chen (1983).)

Suppose (without loss of generality) that X; are index so that

dy > dy > ... z_dp, where d; = qio?/(o§+ai) and let dp+] = 0. Then define
the i-th component of 6MB’C as
O'2 d.-d ( )
MB,C _ i _ j _J+l
857 (x) = x5 = = (X5-u5) .E. ] m1n(1,pC olri))s
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where
. oot
(z(i-z) when c = 0
J
K (t.)
C VJ+] ‘J when c > 0
30 oI =17 KT and j =1
K (t.)
c VJ_] J when ¢ > 0
- 2d tj va<tj) and j > 2
. 2 -
(Xs-us) 1 cr, 1
v, = g 11 s to=5 \/ =L Land v, = 5 [§-2].
J i=1 0?+a J 2 d-l J 2

Note that this estimator is indeed based on the optimal compromise estimator

found in Section 2. Motivation for estimators of this form can be found in
MB,c

) (r.) > 1, then s

0 'T; is the

Berger (1982b). Note, at least, that if all p£J
conjugate prior Bayes rule.
Using Berger's (1979) decomposition theorem, it is easy to show that

MB »C ) MB sC

R(e,6 - R(e,ao) < ¢ for all 6. The RSR for ¢ is given in the following

theorem.

Theorem 2.

(45d5a1) (Godnn) e
Jok

RSR(m, "By 1

Il ~T0
n~1o
Il ~TT
o

i=1  j=i i

Il &~10
o
-le
-
=~
-

i



1

where

19 = B2 20-min(1, o{3) (e ) I01-min(1,0 A (r T

Jsk c,0 0
z],...,zp are i.i.d. N(0,1), ry = ni] zi, c* = c/d], and péf% (rj) is
defined in (3.1).
Proof. Given in the Appendix. ||
*

For T < j, K < 10, the values of Tg for some c* are given in Table 4.

,K

MB,0

Remark 1. When c =0, § is the same as 6MB defined in Berger (1982b).

Remark 2. A1l numerical results indicate that the RSR of 6MB’C is smaller
than the RSR of Gp (c.f. Tables 1, 2, and 3), but we were able to prove

o
this analytically.

Remark 3. In Dey and Berger (1983) (See also Efron and Morris (1973b)) the
possibility of estimating, separately, groups of coordinates was considered.

Dey and Berger (1983) discussed a somewhat inferior version of the estimator

sMB.0 namely oMB* - (GTB*,...,BgB*), where
MB* d? P di-d54 (j-2)°
85 (x) = X5 - (xup) g 5 2’
of + 2 J=t k y (Xn'“n)
n=l 2, .
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showing that the "combined" estimator is always better than the "separate"

estimator (in the sense of small RSR), where the “combined" estimator is

MB* 0 1] 1l ° : MB*
S for the entire parameter vector and the "separate" estimator is §

for
two groups of coordinates separately, one group consisting of coordinates
with larger di and the other of coordinates with small di' When considering

sMB,0 MB*

» instead of ¢ , the "combined" estimator can still be shown to be

better than the "separate" estimator. For details see Chen (1983).

4. The Weighted Minimax Estimator

When d] (and maybe d2) is.much larger than the other d; (i.e.,

T = E di/d1 is less than or only sTightly larger than two), then the RSR
i=1

for the minimax estimators § and GMB’O are large. In the following, we

o

will propose a new minimax estimator, Gw’1

, which has smaller RSR than the

previous minimax estimators for this situation.

Let
_ 1 -1,1/2
(4.1) W= B:E'[(I + (p-2) Yo D ) - 1],
where Yo is the positive solution of the equation
(4.2) I Y = At
Pz 45y %

(Lemma 3, given in the Appendix, shows that equation (4.2) has a unique positive
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solution.) Then, define

+
M) = x-min (1, 2By w g (4eh)7T (o),
where W is given in (4.1) and r = (x—u)t(¢+A)'](x-u).
As partial motivation for considering such an estimator, note that the

optimal minimax estimator in the class Dc (see Section 2) of compromise

+
estimators 1is Gp (x) = x - min (1,-§i%:gl—) X ($+A)'](x-u), which has the
0

somewhat unappealing property of giving the same weight to each component of
$($+A)_](x-u). An obvious modification is to give different weights to
different components (usually, the bigger di’ the less the weight). This
will be seen to work quite well.

W,1

Theorem 3. ¢ is a minimax estimator and

RSR(m,o"1) = 1 - ECUUD) (110 )
Proof. Given in the Appendix. ||
Remark 1. It can be shown that t;igD) > ;:g , S0 that
RSR(m, ey < 1 - %53(143’10).
5. Comparisons and Conclusions
§MB sC and gWs1 are difficult. Indeed the

Analytic comparisons among ap >
c

following result was the only explicit analytic result obtained. _



14

1]

Theorem 4. When (i) d1 > d2 el = dp or (i) d] = d2 > d3 = ... =d_, then

A
o)
w
=
——~
3
-
%)

RSR(m, " 1) <
Proof. Given in the Appendix. ||

Of course, Theorem 1 (and Corollary 1), Theorem 2, and Theorem 3,
together with Table 4, allow explicit computation of the RSR of any of the
three estimators and hence selection of the best one for the given situation.
To give a general feeling for the performance of the estimators, however,

we give three examples of application, two in which ¢ = 0 (i.e., minimaxity

6MB’O W,1

is desired) so that sp . , and ¢ are compared, and one in which ¢ > 0

0

so that only Gp and GMB’C are compared.

C

Example 1. (Randomized Block Design) Assume that

1= 1,0.0.,ps 3 =1,...50,

Y..=0L.+BJ.+(-Z'_L_J

ij i
where the g's are i.i.d. N(O,rz) and the eij's are i.i.d. Np(O,cz), independent
of the g's. Also assume that 02 and 12 are known. Under the sum of squares
error loss function, we want to estimate a = (a],...,ap)t. Letting Yj =

t . c . . .
29000y s L] = g0 eesliy > . . - ,Z 3
(Y1J, YpJ) J 1 n, it is clear that the YJ are i.i.d Np(a ), where

2 2 t
= + 1 .
X o Ip T ]p b
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t

and ]p = (1,1,...,1)". Therefore, the UMVU estimator of o is

which is Np(a,n_1z). Suppose o has (approximately) the conjugate prior

distribution Np(O,aI). First, we will transform to the diagonal case. Let

H be a (pxp) orthogonal matrix with first row v1/p(1,1,...,1), and let Zj = HYj,
n
j=T,...on. ThenZ =n"! ¥ Zj is Np(a*,z*), where o* = Ha and z* = n"HzH® =
j=1

diag ((02+p12)/n, oz/n,...,cz/n). Also, a* ~ Np(O,A*), where A* = H(aI)Ht = al.

Let 6*(z) = Hs(y). Then

L(a,s8) = (a-6)%(a=s)

(a%-5%) Y(ax-o%)

L(a*,68%).

Thus, Q* = I, which implies that .

D = (Z*+A*)_1/22*Q*Z*(Z*+A*)-]/2

2 2.2 4 4
=2 diag ( (o +pz”) g ey —2)

a+(02+pr2)/n , a+02/n a+02/n

6MB,O Wyl

2
For p=6,n=3, and a =t =1, the RSR for the estimators sp R s 67

0
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and for some different @ are given in the following table:

Table 1. RSR in a randomized block design.

g v1/2 1 V2 2 3
RSR(ﬂ,dp ) 1.000 1.000 0.935 0.447 0.167
0
MB,0
RSR(w,s ) 0.831 0.600 0.332 0.156 0.073
RSR(ﬂ,dw’]) 0.687 0.419 0.193 0.087 0.05%1

Example 2. Suppose d = (d], d2,...,dp) is the diagonal elements of the matrix

D = (Z+A)-1/ZZQZ(Z+A)_1/2, where £, A, and Q are diagonal matrices. The RSR

GMB,O W,1

, and § ° , for various d, are given in Table 2.

of the estimators 6‘ ’
Po

Table 2. RSR for 6p s SMB’O, and dw’].
0
d RSR(m,5, ) RSR(,s820) | RsR(xm,s¥2Ty
0
(1.0,0.5,0.1) 1.000 .830 .535
(1.0.1.0.1.0,0.5) 1223 -190 164
(1.0,1.0.0.5.0.5) .368 .325 179
(1.0.1.0.0.5.0.1) 549 460 -328
(1.0,1.0.0.1.0.1) 818 .794 465
(1.0,1.0,0.2,0.2) .670 632 .332
(1.0,0.8,0.8.,0.8) .247 158 .139
(1.0.0.7.0.4.0.1) 819 .472 1322
(1.0,1.0,1.0,0.001) 368 .295 .537
(1.0.0.7.0.4.0.1,0.1) 1783 .433 31
(1.0,1.0,1.0,0.5,0.1) 256 .176 .222
(1.0.0.8,0.6.0.001,0.001) 1720 412 -650
(1.0,1.0,0.9,0.8,0.4,0.1) 192 113 167
(1.0.1.0.0.6.0.5.0.5.0.4) 1226 162 -086
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W,1

Remark 1. When dp/d2 or dp/d3 is close to one, ¢ appears to be better

than GMB’O (see also Theorem 4).

W,1 MB,0

Remark 2. When p < 6, ¢ appears. to be superior to § °°, except when

di+1/di is very small (say, less than or equal to 0.1) for some 3 < i < p-1.

Remark 3. When p > 6 and at least four of the dj/d] are moderately close

to one, then SMB’O is often better and rarely much worse than Gw’]

SMB,O

. Hence

is reasonable to use in this situation.

Remark 4. We can use the fact that a convex combination of minimax estimators

MB.,0 and Gw’].

is also nimimax to develop an estimator improving on both §
(See Chen (1983) for details.) The improvement obtained did not seem to be

substantial enough to justify the added complexity, however.

Example 3. Suppose p = 6, ¢ = 0.1. The RSR of the estimators 6p and

MB,c . . . ¢
S for various (d],...,dp) are given in Table 3.
MB,c - -
Table 3. RSR for Gp and ¢ , when p = 6 and ¢ = 0.1.
, c
d RSR(7,5 ) RSR(w,8B>C)
: p
c
(1.0,0.2,0.2,0.2,0.2,0.2) .576 .208
(1.0,0.5,0.5,0.4,0.3,0.3) .352 .071
(].0,1.0,1.0,0.5,0.4,0.13 .183 .049
(1.0,1.0,1.0,0.7,0.7,0.6 .086 .032

Acknowledgment. The author wishes to thank Professor James Berger for his

helpful suggestions and patient corrections.
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Appendix

Proof of Lemma 1.

Using the identity (2.3), we have

(A1) R(s,5,) = R(0,6°) = E;L(6°(r)~to" (r)) (x-n) *(4+A) 71/ 2

D($+A) 2 (x-p)-20(r)trD].
but
(A.2) (- b+m) T 2 (ge) V2 (xe) < e
Together with (A.1) and (A.2), it follows that

R(0,6,) = R(8,8°) < diE [(o%(r)-4p" (r))r-2zp(r)]

<c. ]

Lemma 2. Let X Np(u,B), M be a (pxp) positive definite matrix and p be

a function of r, where r = (X-u)tB_](X—u). If Er(pz(r)) < », then
EX(o(r) (x-u) 5871/ 2087V 2 (x-0)) = (tri/p) EN(ro(r)).

Proof. Let A be the (pxp) orthogonal matrix such that H = AMAT is the diagonal
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matrix with diagonal elements h] 3_h2 > ... 3_hp, and let

z = AB-]/Z(x-u).
Then Z is Np(O,I) and
r = (x-u)tB_](x-u) = 2%
has a chi-square distribution with p degrees of freedom. But
[(x—u)tB-1/2MB-]/2(x-u)]2 §_h$r2,
which implies that
L (x-0) 874871/ 2(x-4)] < o,
Therefore, by the Cauchy-Schwarz inequality
EXCo () (x-u) 587 /4™ 2(x-y)]

exists, and

(A.3)  EX[o(r)(x-u) "1/ 212 (x-)]

EX[o(r) 2 Hz

] hiEZ(p(r)Z?). )

1]
1 ~10

.i
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Since ZI’ 22,...,zp are i.i.d.,

(A.4)  E(p(nZ8) = L ().

1
P

The desired result follows from (A.3), (A.4) and the fact that trH = trM.

Proof of Theorem 1.

It is clear that

P(ﬁ,dpc) - r(w,dﬁ)

= ECD1min(1p, o(r) 12 (x=0) ") 40 (44A) ™ (x-u )y
By Lemma 2,

P(ﬂ,GpC) - P(ﬂ,Gﬂ)

" (max(0,1-p,_o(r)T2ry

! (1-p¢ o(r))%rf (r)dr .

Using the fact that Do, 0(r) = ¢/dy for r > b and noting that

f: rfp(r)dr = bep(b) + p(1-¢p(b))
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and
r(“,so) - r(ﬂsaﬂ) = g d-s
the desired result follows. ||

Proof of Theorem 2.

Let z. = (c$+ai)']/2(x1-u1), and observe that the z. are i.i.d. N(0,1) and

that
r(ﬂ,GMB’C) r(ﬂ’aﬁ)
q 2 d.-d 2
_ g o)
- %121 [°1+;1 4 321 N d? min (1.ego (ra)))] g
d.-d 2

2 .~ .l ) . |

F 3121 i [jzi St emin(ecl (‘”J)))] §

i i+l
i ¢

; (ds-dsyq) (dy=dy 1)

(r)) (=min(1,0 8K} (r )1,

O~

s EZr, 201 s (J
E [Zi(] m1n(1,pc,
The desired result follows.||

Lemma 3. When p > 3, the equation (4.1) has a unique positive solution.
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Proof.

Let

h(y) = y - pl_Z LE] d1.< 1+ ﬂ’afJ 1>]

Clearly, h(0) = 0 and h(y) > 0 for sufficiently large y. On the other hand,

for a sufficiently small positive mumber e, /T+te ~ 1 + %-. Thus we have

Therefore, h has at least one positive root.

But

=
—
<
-
]
w—r
1

| —

I ~1o

1 4

and

Il o~

_ _ - 1-3/2
ORE SR R

i=] i i

for a1l y > 0. Thus, h is concave upward. Hence h has a unique positive root.

This completes the proof. ||



Proof of Theorem 3.

Let
y () = - min(1, 222 ()T ().
Using the identity (2.3), when r < 2(p-2), we have

53(x) = (xa) "¢ +8) 7 WD (xu) - 2tr(uD)

< r(ch (WD) - 2tr(WD)

< 2(p-2)(ch__ (WD) - 2tr(uD).
: 2 2., 2 _ 1 . |
Since ch .. (WD) < ch  (WD+5=5 WD) ,pAz.tr(WD),_1t follows that ®y(x) < 0.

On the other hand, when r > 2(p-2),

It
™
—
1
N
~—

8y (x)

2
] (x-#)% W2D ($+A) 7" (x-u)

o [2252] ()t wn(her) T (x) = 2R erin)

- [He2)] ¢ (x-m) P L (p-2uP0r2uD] ($+M) (xm) + |
L Y‘ T R ’ T -

_.&Lg:él tr(WD)
5.4(r-2) {ch o f(P'Z)W2D+ZWD]7“tF(WD)}

< 0.

Thus & is a minimax estimator of 6.
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For the calculation of RSR(ﬂ,Gw’]), note first that

W,];

r(m,s - r(ﬂ,Gﬂ)

= £((-w)® [1min(1, 2222 1% pgen) T (en)
Lemma 2 implies that

r(r, s 1) = r(r,s™)

p trD - 2 tr(WD) Er[nin(l, 219:3)9%] |

+ tr(w?) E" [kmin(], gLf;:g)—))zr]
Noting that

tr(H2D) = tr(uD),

the desired result follows. ||

Proof of Theorem 4.

(i) Without loss of generality, we will assume that d; = 1. Let

dy = d, = ... = db = t. Then, by Theorem 2,

2 3

r(m,60°0) - r(m,6") = (1-8)% + 2t(1-t) T

sP psP.
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0 .10

p
i ., = + - s
Since 121 d1 1+ (p-1)t and T1,p Z 'o,p

mas o0 dy - (pt o+t (1-£)(1-T0 ) .

(A.5) r( D.p

He~1C
—_

) - r('lTs(Sn) > .
i

On the other -hand,
(A.6) r(ﬂ,éw’]) - r(m,8") = E d. -y (1-T_ ).
Now, if we can show that
(A7) yy 2 pt+t (1+t),

then the desired result follows from (A.5) and (A.6).
From the proof in Lemma 3, we know that showing that (A.7) holds is

equivalent to showing that
(A.8) h(x) < 0,

where

n(x) = x + 2t [1+ et <VisGax - (D fiv 2K

p-2

and x = pt + t (1-t). After a little algebra, the inequality (A.8) is

equivalent to
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~t(1-t)2
(p-2)°

2

(A.9) [(p-z)3 t (4-t) + (p-2)2 t (t7-7t+14)

2

+ (p-2) (-2t“+6t+3) + (1+t)] < 0.

But it is clear that (A.9) holds for 0 <t < 1, completing the proof of

part (i). The proof of part (ii) is similar to that of part (i). ||
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Table 4. Values of Tg*k |

c* =0

QUOWOONOOTH™WN —

—

[SFH

1.0000
1.0000  1.0000
.4675 4675  .2975
.2707 .2702  .1830 .1353
L1723 1723 1191 .0915 .0727
.1160 .1160  .0810 .0632 .0516 .0427
.0811 .0811  .0570 .0448 .0370 .0313 .0267
.0583 .0583 .0410 .0324 .0270 .0230 .0200 .0174
.0427 .0427  .0301 .0239 .0199 .0171 .0150 .0132 0117
.0318 .0318 .0225 .0179 .0150 .0129 .0113 .0101 .0090 .0080

QWSO PR_WND—

]

Cu.

c* = .01
1 2 3 4 5 6 7 8 9 10
.8502
.6462 .5282

.4026 .3417  .2584

.2477 2133 .1684 L1297

.1602 L1388  .1114 .0887 0712

.1084 .0943  .0755 .0615 .0507 .0422

.0760 .0662  .0537 .0437 .0364 .0309 .0264

.0547 .0476  .0388 .0317 .0266 .0228 .0198 .0172

.0401 .0350  .0285 .0234 .0197 .0170 .0148 .0131 .0116

.0299 .0261 .0213 .0175 .0148 .0128 .0112 .0100 .0089 .0079

COWOWONOOT~»WN —

—

c* = .05
1 2 3 4 5 6 7 8 9 10
.6902
.5082 L4109

.3317 2775 .2173

.2136 L1812 L1471 .1169

.1416 L1210 .0995 .0815 .0666

.0971 .0832  .0690 .0572 .0478 .0402

.0685 .0588  .0490 .0408 .0346 .0296 .0254

.0495 .0425  .0355 .0297 .0253 .0219 .0191 .0166

.0364 .0313  .0262 .0220 .0188 .0163 .0143 .0127 .0112

.0272 .0234  .0196 .0165 .0141 .0123 .0109 .0097 .0087 .0077
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Table 4 (Cont'd)

QWU WA —

—

.

c* = .1
1 2 3 4 5 6 7 8 9 10
.5870
L4275 .3461

.2850 + .2381 .1899

. 1881 L1592 L1311 . 1060

.1268  .1080 .0901 .0749 .0620

.0879  .0751 .0630 .0530 .0449 .0380

.0624 .0534  .0450 .0381 .0326 .0281 .0242

.0453 .0388 .0328 .0278 .0239 .0208 .0183 .0160

.0334 .0287  .0242 .0206 .0178 .0156 .0138 .0122 .0108

.0250 .0215  .0182 .0155 .0134 .0118 .0104 .0093 .0084 .0075

OCWONOOOUITRRWN —~

-}

.

c* = .2
1 2 3 4 5 6 7 8 9 10
.4628
.3344 .2728

.2278 L1911 .1558

.1543 L1309 .1097 .0907

.1062 .0907 .0768 .0650 .0547

.0747 .0639  .0545 .0466 .0400 .0343

.05636 .0459  .0393 .0338 .0293 .0255 .0222

.0391 .0336 .0288 .0248 .0217 .0190 .0168 .0148

.0290 .0249  .0214 .0185 .0162 .0143 .0127 .0114 .0101

.0218 .0187 .0761 .0139 .0122 .0108 .0097 .0087 .0078 .0070

QWAL WN —

—]

c*x = .4
1 2 3 4 5 6 7 8 9 10
.3248
.2338 .1942

.1627 L1384  .1159

.1133 .0972  .0833 .0706

.0798 .0688  .0595 .0515 .0442

.0572 .0494  .0429 .0375 .0328 .0285

.0416 .0360 .0313 .0275 .0242 .0214 .0189

.0307 .0266  .0232 .0204 .0181 .0161 .0144 .0128

.0229 .0199 .0174 .0153 .0136 .0122 .0110 .0099-  .0088

.0173 .0150 .0131 .0116 .0103 .0093 .0084 .0076 .0069 .0062
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Table 4 (Cont'd)

CWONOOT AWM —

—r

P

c* = .6
1 2 3 4 5 6 7 8 9 10
.2439
.1755 .1483

L1237 .1068  .0911

.0875 .0760  .0662 .0571

.0626 .0546  .0479 .0421 .0367

.0453 .0396  .0349 .0309 .0274 .0241

.0333 .0292  .0257 .0229 .0204 .0183 .0162

.0248 .0217  .0192 L0171 .0153 .0138 .0124 01N

.0186 .0163 .0144 .0129 .0116 .0105 .0095 .0086 .0078

.0142 .0124 .0110 .0098 .0088 .0080 .0073 .0067 .0061 .0055

QWO TS WN

—

(S

c* = .8
1 2 3 4 5 6 7 8 9 10
.1896
.1366 1174

.0971 .0850  .0737

.0694 L0611 .0540 .0472

.0502 .0443 .0394 .0350 .0309

.0367 .0325 .0289 .0259 .0232 .0206

.0272 .0240 .0215 .0193 .0174 .0157 .0141

.0203 .0180 .0760 .0145 .0131 .0119 .0108 .0090

.0154 .0136 .0122 .0110 .0100 .0091 .0083 .0076 .0069

L0117 .0104 .0093  .0084 .0076 .0070 .0064 .0059 .0054 .0049

QOO WN—

—

c* = 1.0
1 2 3 4 5 6 7 8 9 10
. 1507
. 1087 .0949

.0778 .0691  .0607

.0561 .0500 .0447 .0395

.0409 .0365 .0328 .0295 .0263

.0301 .0269  .0243 .0219 .0198 .0178

.0224 .0201 .0181 .0164 .0149 .0136 .0123

.0169 .0151 .0136 .0124 .0113 .0103 .0095 .0086

.0128 .0115  .07104 .0095 .0086 .0079 .0073 .0067 .0061

.0090 .0088  .0079 .0072 .0066 .0061 .0056 .0052 .0048 .0044
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