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CHAPTER 1

INTRODUCTION

1.1. MODEL ROBUST DESIGN IN REGRESSION

Let X be a subset of an Euclidean space. An observation

at x € X is assumed to be of the form
y(x) = £f(x) + € ,

where ¢ denotes a random variable with mean O and variance

62 for =all x, and f € ', a class of possible regres;ions
over X.

A design problem, that is, placement of uncorrelated
observations in ¥, for the estimation of regression

parameters is discussed here.

The class I' can be one of the standard <classes, such as
polynomials of fixed degree. Box and Draper(1958) have
discussed some of the consequences of a strict formulation
of I which ignores the possibility that the true f may only
be approximated by an element of [I. For example [T may
consist of the linear functions while the true f may be =a
quadratic, and in.estimation this may result in a large‘bias

term.



In the subsequent interesting papers, some deal with
. finite dimensional T, for example Karson,Manson and
:Hader(1969), Kiefer(15873,1980); some treat the problem with
Aainfinite dimensional I, such as Huber(1878), Marcus and
1§acks(1976), Notz(1880), Li and Notz (1882),
%esotchinsky(1982) , Li(1981), Spruill(1982), and Sacks and
Ylvisaker(1982).

Huber (1975) addressed the curve fitting probiem in the
first part of his paper. Another approach to curve fitting
is taken by Agarwal and Studden(1978).

In the last part of Huber's(1875) paper, he treats the

'gxtrapolatioh problem in a class of regression functions

with bounded (h+1)th derivative. Two closely related papers

are Sacks and Ylvisaker(1982) and Spruill(1882). In the
former paper, the problem of estimating linear functionals
is considered for I' as in Huber 's(1975) . The latter treats

the extrapolation problem on a closed interval [a,b]l, with ¢
;n the Sobolov space on interval [a,c], where ¢ is the
éxtrapolation point.

In the first part of this thesis, the extrapolation
problem is discussed again for X = [0,=) and X = [-1,1], and
the design problem for the estimation of £tk2(0) for £ in [
and X on [0,=) is also discussed. Those discussions will be
found in Chapter II and Chapter III.

For more detailed discussions and further references, see

Huber(1978) and Sacks and Ylvisaker(1982).



1.2. EXACT D-OPTIMAL DESIGN FOR POLYNOMIAL REGRESSION

Consider the regression design problem where the
regression function is a polynomial of degree (k-1) on

[a,b]. then
Ey(r) = 6'f(x)

where 6=(6,, . . . Brog)', £(x)=(1,x%x, . . . ,xk'f)'
An exact design specifies a probability measure ¢ on {a,b]
which concentrates mass p; at xi,i=1,...r, where p;n = m;,
i=1,. . .,r, are integers. The design problem now is to
choose the design in some optimal way.
If the unknown parameter vector 8=(64,6;,. . .,Sk_;)' is

estimated by the method of least squares, thus securing a

best linear unbiased estimate, say 6, then the covariance
matrix of 6 is given by 02n-IM-1(¢), where M(g) =

Jr(x)r'(x)de(x), M(¢) is commonly called the "information
matrix" of the design &. If the matrix M-!(¢) is "small" or
M(&¢) is "large", then roughly speaking 6 is close to @. A
simple measure of the magnitude of the information matrix
M(¢) is its determinant. Thus an exact D—optimal design 1is

defined as follows:

DEFINITION 1.2.1. An exact design £* is said to be D—
optimal if ¢&¢* maximizes |[M(&)| among all the exact desighs g

on [a,b].



The emphasis above 1s on restricting the m; to be

1

integers. An approach which 1is often taken in optimal

design work 1is to extend consideration to the class of all

"approximate designs"”, i.e. arbitrary probability measures
¢ on X. This approach has the advantage of permitting a
éomplete characterization of certain optimal designs.

ﬁoe1(1958) has obtained the result that an approximate
design is D-optimal for polynomial regression of degree k—1
on [a,b]'= [-1,1] if and only if it concentrates equal mass
2t the roots of (1-x2)P,_,; '(x), where P,_,(x) is the (k—=1)th

Legendre polynomial. Karlin and Studden(1966) have extended

@he result to some special choices of
£(x)=(fo,f1,--.+Fg-1) "+ where f;(x) is x! multiplied by some
weight functions. Its limitation is that, in practice, only
an exact design may be implemented. It is usually the case

that an optimal approximation design is not exact for many
choices of n. For more discussions and further references
about the approximate design, see Fedorov(1972), Karlin and
Studden(1966). Therefore it is our purpose to find the
exact D-optimal design in this thesis for polynomial

regression.

Salaevekii(1968) conjectures that an exact D-optimal
design ¢* distributes observations as evenly as possible
among the k support points of the approximate D—optimal
design. Constantine and Studden{19881) have a simplified

proof of Salaevskii's result that the conjecture holds fcr



sufficiently large n. Gaffke and Krafft(1882) have proved
Salaevskii's conjecture for quadratic regression for all n

using a new and quite simple proof.

In the second part of this thesis, following the new
approach, we are able to prove Salaevskii's result for large
sample case quite simply. Also for polynomials of degree =

9, Salaevskii"s conjecture is proved except for a few cases.



CHAPTER I1I

MODEL ROBUST DESIGN IN REGRESSION FOR X ON [0,«)

2.1. INTRODUCTION

Let X be a subset of an Euclidean space. An observation

ét x € X is assumed to be of the form

y(x)

r(x) + €.,

where Ee, = O, Ee,2 = ¢2 and f e[, a class of possible

regressions over X.

Y This chapter fixes [ to Dbe a special class as in
" Huber(1975) , which is described below, and deals with
"designs, that is, placement of uncorrelated observations in

X, for the estimation of regression parameters.

Huber (1975) discu;sed the design problem of extrapolating
a function f to a point xo = —1 outside X, where X = [O0,=).
% is assumed to be in the class [y, where 'p is defined to
be the collection of 'functions f that are h+l times
differentiable, h = 0, and that the (h+1)th derivative 1is

bounded by €



freh+1)(x)] = €, Xg = x < w. (2.1.1)

Also he confined himself to the use of estimates f, which
are linear functions of the observations, and tried to find
the design which minimizes the maximum risk

~
sup E(f — f(-1))2.
rero
Unfortunately, Huber's proof for obtaining the optimal model
robust extrapolation design wunder the criterion described
above is incorrect. In Section 2.2 we shall give a counter
example and show where the mistake was made. The result

however still seems to be correct.

In Section 2.3 with the restriction that there are
exactly h+l design points, i.e. the minimal number of
design points under certain constraints which are necessary
for keeping the maximum risk bounded, we see tha£ the
optimal model robust extrapolation design on [0,») 1is as
described in the Theorem 8.1 of Huber's paper. The désign
points are found for different values of n, €, 2 and the
peint %o we wish to extrapclate to. The corresponding
weight of each design point is determined by ce%tain
constraints. i

In Section 2.4 the model robust design with exactly h+1
points on [0,) for estimating f¢k2(0), which is the
coefficient of xk if f is a polynomial, is discussed. We

also find the limiting design measure as h goes to « for



(£ (k> (0) and £(P*1-%)(0) for k fixed and the limiting design

for f(Lral)(0) for 0 < q < 1.

In the following, we refornulate the extrapolation

problem into a mathematical setting as in Huber(197%).

Suppose that n uncorrelated observations on the response
y(x) are to be obtained at levels xy,...,Xn, X5 € X. Then

E(y(xi)) = £(x;), and var(y(x;)) = g2, i =1,...,n.

In order to more conveniently formulate the design

problem, let x;,...,x, now denote the distinct levels at
which n;,...,n. observations are taken. Also let y; be the
average of n; observations taken at x;, i=l,...,r, S n; = n.
Put m; = n;/n, thus var(y;) = 02/n; and

r

Sm; =1

i=1

Recall that we are interested in extrapolating f(xg), Xo
< O,IFrom X = [0,2), and f € [p. Also we only consider
linear estimates based on the observations y;, i=1,...,r, to

predict the value of r{xg).

Let

be a linear estimate of f(xg).

The design problem here is to choose r, m;, X;i, @i,
i=1,...,r, to minimize the maxXximum mean square error

sup E(F = £(x0))2 = sup (var(T) + (E(T) - £(x0))2)
f'El_'o fero



felogln 1 my

g2 r a;? r
= sup [—— > + (5 a;f(x;) - f(xo))i
1

0—2 r aiz r :
= — St sup (3 aif(x) = T(xp))?
n 1 m; felg 1 (2.1.2)

The minimization of (2.1.2) is called the exact problem.
If (2.1.2) is minimized w.r.t. {m;} for fixed {a;} and {x;}
and without regard to the integer nature of the n;'s, the

resulting minimum occurs when

and has value

A g2 r r
sup E(f — f(x0))2 = —( 3 la;1)2 + sup(Z a;f(x;) - f(x))?
£ n 1 rf 1
g2 r _
= —( 3 la;1)2 + sup ( f fda)2, (2.1.3)
n 1 f -

where A is a pure jump function, with jumps of size a; at

x;, and a jump size —1 at xg, such that A(x) = 0, for x <xoq.
Let R(A) denote the maximum mean square error w.r.t. A
in (2.1.3). The minimization of R(A) 1is called the

approximate problem.

Note that g contains all polynomials of degree = h.

Hence f f dA cannot stay bounded for 2all f in [ unlesé it
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vanishes for all polynomials  of degree = h. Therefore,

f xJ dA = 0, 0 £j £ h (2.1.4)
or

r

2 agx;? = Xo”

i=1

By Taylor's theorem and (2.1.4), [ f dA can be written as

70 aa = 7 TR (x = )" £Rr(E) dtda
Xo Xo Xo
o o0 (X - t)+h
=y f — da(x) £¢h+12(t) dt
Xo X0 hl
= f7 B(E)P (k) dt,
Xo
where
© (x - t)+h
B(t) = f ———— da(t)
' %o h!
1r
= - 2 ai(xi - t)+h
h! 1
Hence,
sup If £ dA | = ¢ f IB(t)] dt.
f‘el"o
Thus
r
R(A) = ¢2/n-( T la;[)2 + 62(f IB(t)]| dt)2. (2.1.B)

[N
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At this point, we find that for any design which does not
contain the left end point of the interval, i.e. the point
0 when X = [0,%), it is always better tc shift the design
points to the left so that it contains the left end point.

We prove this in the following lemma.

LEMMA 2.1.1. For any signed measure A,;, whose support

points are on x;, i=0,...,r, xg < 0 < x; <...< %x_., and _with

corresponding jump size -1, a;,...,a..

There is a signed
measure A, whose support points xg, Yy < ys <...< y, are
obtained by a linear transformation of {x;, i=0,...,r}, such

that x, remains fixed and y, = 0, and whose corresponding

jump sizes are also -1, a;,...,a,. Then R(4;) = R(A;)..

Proof: Let A; be a signed measure with support points x;,
i=0,...,r, xg < 0 < x; <...< %_. and correspronding Jjump isizé
-1, a;,...,a,.. We define a linear transformation i
such that

Xg = bxg + c,

0O = bx,; + c.
Thus

0 < b= (x; — xg)/(=%g) < 1.
Let

yi =bxi +C, i=1""’rl
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= (bxg + ¢)J = xoJ, j=0,1,...,h.
Therefore, the signed measure A, with support xg, ¥,
i=1,...,r, where y, = 0, and with corresponding jump sizes
-1, a,,...,a, satisfies the constraints (2.1.4), and

Ve
c2/n-(Zla;1)2 + e2(f IBo(s)| ds)?

R(Ay) =
Xo
Yr
= 02/n-(Tla;1)2 + (hi)-2e2(f [Sa;:(y; — s).hl ds)?
Xo
= o2/n-($la; )2
. X,
+ (h!)_2€2’b2(h+1)(f ISa; (x5 — )"l dt)?2
Xo
xr
= 02/n-(Zlaz 122 + €2(f IB,(t)] dt)?
%o
= R(A;).

With the result of Lemma 2.1.1. in mind, evidently

(2.1.8) can also be minimized by minimizing

S 1dAl

vsubject to the condition
J 1B dt = c.

Therefore, the approximate design problem of minimizing the
maximum mean square error can be turned into the

mathematical problem called Ql.



PROBLEM Q1: Minimize

£ 1dal (2.1.86)
subject to the condition

S IB(E)] dt = ¢, (2.1.7)
and the side conditions (2.1.4)

f x93 dA = 0, j=0,...,h.

Huber tried to solve Problem Ql by solving Problem Q2,
which is minimizing (2.1.8) subject to conditions (2.1.4)

and

f B(t) dt = c. (2.1.8)

2.2. ON HUBER'S PROOF

In this section we shall start with an example which
shows that the approach of Huber's proof is incorrect. In
his proof he tried to solve problem Q2 and said that .since
the design is on exactly h+l points, the bias function B(Lt)
does not change sign, therefore the minimal solution of

problem Q2 is the same as that of the problem Q1.

Now if we take his example for h = 1, the optimal model
robust linear extrapolation design §; for xXg = -1 ‘takes
observation at r = 2 points, x; = 0, x, = 1/6, and allocates

a fraction m, = (1 + 6)/(1 +28) to x,;, my = §/(1 + 28) to
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%o, where & is the unique solution of

ne? 8(1 + 26)

0?2 1 + &
in the interval [0,=).
Let ne2/c2 = 12, then 6§ = 1 is the only solution in

[0,»). The resulted total risk for problem Q2 is
€2((1 + 2)2/12 + 1) = €2(7/4).

If we consider another design §,, where
X =O, X2=5, X3=10,

33/25, a, = -11/15, a, = 3/25,

a,
with weight

Iail / Elailr i=192!3;

3
I

then
f B(t) dt = E a;x;2 =1,

and satisfies the condition

We find that the total risk of design §, for problem Q2

is
€2((1.88)2/12 + 1),

which is much smaller than that of the design §;.



This example shows that the optimal design of problem Qi
is not an optimal design in problem Q2, which contradicts

with Huber's proof.

The reason for the mistake is that the solution of
problem Q2 in [0,) does not exist. This can be shown after
finding the solution of problem Q2 in a closed interval

[o,T].

In order to show the solution of problem Q2 in [0,=) does
not exist, we need to go back to the original set-up without
substituting m; = l|la;|/3la;l into the variance part. the

problem can be read as follows, called Q3:

a3
Problem Q3: Minimize J
m;
where m; > 0, i=1,...,r, and 3 m; = 1.

subject to
(h+1)! f B(t) dt = ¢,

2 aixih-i-l - X0h+1 + ¢
and
S azx;d = xpd, j=0,1,...,h;

where {x;, i=1,...,r} are in [O,T].
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THEOREM 2.2.1. If T is large enough, the minimal solution

of Problem Q2 1is wunique, where {x;} are the Tchebyscheff
points of order h+l1 in the interval [0,T]. {a;} are

determined according to constraints (2.1.4), and the weight

“m; = lag1/Sla;l, for all i. i.e.
a' = Vil(xo + 1.),
where
'avl = (al,...,ah+2),
Xol = (1,X0,-..,X0h+1),
1C' = (0,.-.,.,c)1x(h+2),
1 1
X3 . . . Xh+2
YV =
h+1 h+1
\xl . . . Xpn+2

The proof of this theorem will be delayed till the end of

this chapter.

From Theorem 2.2.1 , we know that for any constant c, if

T is large enough,

h+2 a;?2 h+2 2
3 = (3 1a01)

i=1 m;
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h+2 2
=[2|H(Xo—Xj>+Co>/n(Xj"xi)|

i=1 j#=i Jj=i

where x; = T/2[1 + cos{((h+2-j)n/(h+1)], 1 = j = h+2
Therefore,
h+2
lim ( 3 laz D)
T»e i=1

M(1 —cos((j=-1)n/(h+1))

h+2 J#=i
=2
i=1| 00 [ecos{(i-1)n/(h+1)) - cos{((j-1)n/(h+1)]
j=i
= 1.

From the constraints of the problem, we know that

i=1 i=1
which means that the minimum value of Jla;] is not
attainable for {x;, i=1,...r} in [0,%) subject to

constraints (2.1.4) for any h 2 1.

2.3. MODEL ROBUST EXTRAPOLATION DESIGN WITH MINIMAL NUMBER

OF POINTS ON [0,=)

>

In some situations we are interested in the optimal
design with as few observations as possible, which in{ our
case 1is exactly h+l points. In this case we see that the

bias function B(t) is the B-spline function of order h+1l for
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the knot sequence {x;, i=0,...,h+1} multiplied by a
qonstant. So the bias function will not change sign. For
-@ore details about B-spline functions see Carl De

éoor(1978). Therefore, Problem Q1 is equivalent to Problem

Q2.

The corresponding a; 's are determined now Dby the
constraints (2.1.4). In other words, a; = L;(xg) for
i=1,...,h+1, where L;(x) are the Lagrange interpolation
ﬁolynomials on the h+l points =x;,...,%X 41" Also the

integral of the bias function can be expressed as

Xp+1 1 h+1
f B(t) dt] ————(xgh*! - aixih+1)|
Xo (h+1)! i=1

[((h + 1))~ *(xg — X3)...(%Xo = %Xpa+1) 1.,

'qhere the second equality can be obtained either by the
property that B(t) is a B-spline function, or using the
constraints (2.1.4) to compute directly. We shall prove it

using properties of the B—spline function.

Now we shéll find where the optimal design points are in
terms of different values of n, 62, € and xu. Huber's proof

is used for part of the solution.

THEOREM 2.3.1. For any value of xg < 0, the optimal robust

extrapolation design with exactly h+1 points on’[0,=) are on

0 = x; < X <...< X,41, Wwhich after addition of another
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point y constitute the set of Tchebyscheff points of order

h+1 in the interval [O,y].

Proof: Huber took the constraints (2.1.4) and (2.1.7) into
account. Then with the aid of Lagrange multipliers and a
variational argument he obtained the necessary conditon that
the optimal design points need to satisfy, namely that for

some polynomial P,,; of degree h+1,

P,+1(x) = %1,

for all the support points in the optimal design, and

Ph+y (x3) = 0 for all x; > 0.
This implies the stated result. For more details see

Huber(1875).

In the Tfollowing, the notation of =z, will be used
extensively and thus is defined here.
Let

zy = 1 + cos((h+2-k)n/(h+1)), k=1,...,h+1. (2.3.1)

In order to find exactly where the optimal design points
should be, we need to determine the end point of the
interval described in Theorem 2.3.1. Note that (h+1)!-

J B(t) dt can be written as Xo- (2°M"U, (xo,y)) where U,(x,y)
is defined to be the Tchebyscheff polynomial of the second
kind on [O,y]. Also the notation L;(xp,y) is wused to
indicate that the h+l1 points x;,...,%X,+1, over which the

Lagrange interpolation polynomial is defined, are determined
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by y. Thus we have the following theoren.

THEOREM 2.3.2. For any value of xg < 0, and a given p,
Qhere p = 02((h+1)1)2/(ne?), the corresponding value of yo
for the optimal robust extrapolation design on [0,=) as
described in Theorem 2.3.1. is the unique positive solution
of

(-1)h*1xy(2°PU, (%o.¥))

= -yh+1 (2.3.2)
220+1(S |L; (x0,y) 1 )

The corresponding weight of x;, i=1,...,h+1, is

IL; (%0.¥0)] 7 SIL;(x0.v0) 1.

Before proving the theorem, we give an example to see how

to apply this theorem.

Example 2.3.1. Let the regression function be in [y, where

h = 2. We are interested in extrapolating f(-1) from [0,=).
Then from the above theorem, given n = 10, g2 =1, ¢ = 0.05,
the optimal robust extrapolation design with exactly 3

design points is on 0, x», X3, Where

X2 (yo/2)(1 + cos2n/3) = yo/4

X3 (yo/2)(1 + cosn/3) = By,/4,

where yo 1is the wunique positive root of the following
equation

(1 + y/4)(1 + 3y/4)

.y3
25(1 + 12/y + 18/y?)
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where p = ¢2((h+1)1)2/(ne?) = 1440. The corresponding

weight is m; = la;]l / 3 la;l, where a; = L;(-1).
With the aid of é computer, we get yo = 12.78.
Therefore,

the robust design is on

x;, = 0, %, = 3.18, x5 = 9.37,
with corresponding weight

m, = 0.7149, m, = 0.2508, my = 0.0345.
Now we prove Theorem 2.3.2.

Proof: From Theorem 2.3.1. we know the optimal design is on

0 = x; < X3 <...< Xu41, where
xx = (y/2)zy, k=2,...,h+1,

for some y e (0,=). Denote the corresponding signed measure

by A(y). The risk value is

R(A(y)) = (02/n){ZIL;(xo,y)1)2 +

(exo/((h+1)1))2(2 "0, (xg,y)) 2}
= af p(SIL;(%0,¥)1)2 + x02(27"U (x4,¥))2},
where o = €2/((h+1)1)2, p = 02((h+1)1)2/(ne2).

To find the y value which <can minimize the risk, we

differentiate R(A(y)) w.r.t. y and set it to O as follows:



o
It

d/dyR(A(y))

af{2p (TIL; (e, ,y)1)-d/dy(Z L;i(xo,¥y)1|) +
2%02(2°"U, (xo,¥))-d/dy (2P0, (xo, ¥y }.

How to simplify the derivative of (ZlIL;(xp,¥)!|) and
(2-"U,(%p,¥)) w.r.t. y is a major problem here. Therefore
we use the following four lemmas.to get the answer. The
proofs of the lemmas will again be delayed till the end of

this chapter.

h+1
LEMMA 2.3.1. h!B(t) = 3 a;(x; — t)," is a B-spline function
i=1
under the constraints (2.1.4). The integral of the bias is
then
given by
xh,l . h+1
(h+1)! J. B(t) dt = Xoh+l‘ - 2 aixih*'l
Xp i=1
= (xg — %3)...(Xg = Xp41)-
1 /2h—r+1
LEMMA 2.3.2. Z Zi e Zj = _‘< >
| 25i,<...<i Sh+1 ! roo2 r
where z,, k=1,...,h+1l are as defined in (2.3.1).

Lemma 2.3.3. d/dy(SIL;(xp,¥)1)

Xp h h+k
= (_1)h+1 2 (_1)h—k22k—1(h_k+1)< >x0k—1yh—k
yh+ik=1 h—k+1



Lemma 2.3.4. Let 2°"U (x%g,y) = (%o — %x2)...(xo — Xpe1)s

where xy = (y/2)zy, k=2,...,h+1,
then
d/dy(2-rU, (x0,¥))
(-1)b yh*1 d

= —— — —(ZIL; (x0,¥) ).
22h+1 xo dy

Therefore, we get

(_1)h'X° 1
0= p(S IL;(xp,9) 1) + —————y"*1(—U(x0,¥)) (2.8.3)
22h+1 zh

which can be written as (2.3.2).

Equation (2.3.3) multiplied by yh is a polynomial of‘y of
degree 3h+l and has an unique solution in (0,«). The first
term on the right side of the equation multiplied by yh is a
polynomial of y of degree h and all its coefficients are of
positive sign. The second term on the right side 'is a
polynomial of y of degree 3h+1, whose first 2Z2h coeffidients
are O and the rest are of positive sign. Therefore there is
only one change of sign. By Descartes rule of signs(see
Weisner(1838)), there is an unique positive root of (2.3.3),

which completes the proof.



2.4. MODEL ROBUST DESIGN WITH MINIMAL NUMBER OF POINTS FOR

ESTIMATING f ‘%’ (0)/k! ON [0,=)

In this section we are interested in the design problem
of estimating f(x?(0), a linear functional of f, for f in

the class [, where 'y is as defined in (2.1.1).

Again, suppose that we have n uncorrelated observations
at X4,...,%X,, where r of them are distinct and each has n;
observations at it. The response y(x;) has mean f(x;) and
variance 02. Let y; be thé average of the hi observations
at x; € [0,=), and we only consider linear estimates [ = 3
a;y; to estimate f¢k2(0). Therefore, the design problem
ﬁere is to choose r, m;, x;, a;, i=1,...,r, to minimize the
maximum mean sgquare error

A
sup E(f - £¢k2(0)/k!)?2. (2.4.1)
f‘Ero
Let A be a pure jump function, with jumps of size a; at
x;, such that A(x) = 0 for x < x;. Then (2.4.1) can be
written as

~
sup E(f — £ (0)/k!)2
fEro

= sup (var(t) + (E(F) — £ (0)/k1)2)
f'el"o

02 r a;? r
= — 3 + sup ($ a;f(x;) — £ K2(0)/k!))?
n 1 m; fel[p i=1
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c2 r
= —( 3 la;1)2 + sup (f £ dA — £ (0)/ki)2. (2.4.2)
n 1 fEr‘o
with m; = Iail / 2 lail.
Similarly, since g contains all polynomials of degree =

h, we need the following constraints to have R(A) remain
bounded. Let '6;y denote the Kronecker delta where &§;, = 0

or 1 according as j#k or j=k.

§° % da
0

It
n
z
(@)
1A
~
A
T

or

(2.4.3)

I \7 B
(V]
.;C
”L
il
o
‘%
o
A
[
A
o g

By Taylor's theorem and (2.4.3), f f dA can be written as

S oA

f” fw(h!)'*(x — t),h £+ (t) dtdA
0 0 0

) oo(x - t)+h
f T ———— da(x) £hrD(E) dt
c O h!

§7 B(E)PCRT() dt,
0]

where

© (X - t)+h
B(t) = f ——— dA(x)
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1r
=— 3 a;(x; — £)."
h! 1 :
Hence,
sup If £ dAl = € [ [B(t)| dt.
. f‘Ero
Thus

R(A) = 02/n-(F la;1)2 + €2(f IB(t)| dt)2. (2.4.4)

and this can be minimized by minimizing

f ldal

under the side condition
£ IB(E)| dt = c.

Similarly, if we confine ourselves to the design with the
minimal number of points, namely h+1l points, it is easy to
see that the bias function B(t) can have at most h—1 changes
of sign, thus (2.4.2) and a repeated application of the mean
value theorem .shows that B(t) <¢an not change signs,

therefore

f 1Bl dt = | f B(t) dt |
gh+1
= f —— dA
(h + 1)!
The variance term for R(A) is determined by the

constraints (2.4.3).

Let

a = (al,...,ah+1)
~



27

e

1 . . . 1 \
‘k
X . . . X1 i
5 = // . . . . .

h h

X 1 . . M X 1 i

A " /
1, = (o,...,O,l,O,---vO)lxh+1

where 1 is at the (k+1)th coordinate.
Then

a = X~11,, (2.4.8)

~

and a; equals to (¢n;, the coefficient of x™ in the ith
Lagrange polynomial L;(x) which is defined as the polynomial
of degree h which vanishes at the h points x5, j # i, that

is Li(xj) = 555.

An easy computation gives

h+1 h+1 =i ! h-k

2 lasl = 3

i=1 i=1 1 (x; - x3)
J=i

We also know that the bias term is ((h+1)!)-1(J agx; M),

Then by substituting a; in, we have

h+1
S agxsht!
i=1
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h+1 h+1
= (xl"'.’xh+1) X_l'lk
~ ~
xh+1, 1, x,...,xk=1 g .. .,x"
det
X1 1y X2, . . . s Xh+1

i, ¥, « . . , xh
det
X1:%X2, . . . sy Xph+1

. ul,...,um
where det denotes the determinant
: Xpgseosr 1 Xm
ul(x1) uz(Xz) . . . ul(xm)
uz(xj_) uz(X2) . . . ul(xm)
um(x1) um(XQ) . . . um(xm)
Hence
h+1
> agxgntt o= > Ki +.-X;
i=1 15i,<...<i(p+1-w>Sh+1 ! (h+1=-k)

THEOREM 2.4.1. 1In estimating f‘%?(0)/k! for some k, 1 = k

= h, the optimal robust design with exactly h+l points on
[0,o) is on O = x; < X5 <...< X,4+1, Which after addition of
another point yy constitute the Tchebyscheff points of order

h+1 in the interval [0,¥y], where

Vi = 4(p(h+1-k)/(4k)) 1/ (2h+2)
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for given p, where p = 02((h+1)1)2/(ne?). The corresponding
weight m; = la;1/ Sla;l, where a; are determined by the

constraints (2.4.2)

Again, Dbefore giving the proof, we see an example of the

application of this theorem.

Example 2.4.1. Let the regression function f is in [,

where h = 2. We are interested in estimating f¢2’(0)/2!.
Then the optimal robust design with exactly 3 pointé on

[0,») is on O, x5, X3, Where

(;2/2)(1 + cos2n/3) = y./4,

X, =
x5 = (¥2/2)(1 + cosn/3) = 3y,/4,
where
F. = atp/e)i/e
for given p, where p = 02(3!)2/(ne?2). The corresponding
weights m; are [a;|/ 3la;|, where

a; = (X2X3)—1 = (16/3)'512'2,

ags T [X2(X2 - Xg)]—l = 8';2_2-

ag = [X3(X3 - X2)]-1 (8/8)';2_2‘

Therefore, if given n 10, 02 = 1, € = 0.05, then p = 1440
and ;; = 9,5047. We obtain that the optimal robust design

for estimating £¢27(0)/2! has its observations on
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x, = 0, x5 = 2.3762, x5 = 7.1285

with corresponding weight

ml = 1/3, m2 = 1/2, m3 = 1/6.

Now we prove the theorem.

7

Proof: The first part of the proof goes through as in
Theorem 2.3.1 using the variational argument with the aid of

Lagrange multipliers. The second part is the determination

of the value of yyg.

Let A(y) denote the signed measure with support points on
0 = x%; < %5 <...< X,4+1, where x; = (y/2)z;, i=1,...,h+l.
Then, by Lemma 2.3.2.

23 .23
h+1 h+1(y/2)h-k =i 1 h-k

™M
)
I

z
i=1 i=1 (y/2)h 0 (z; - zj)
j=i

22k=-1 h — k + 1/ h+k >

yk k \h+1—k
and
h+1 y\h+i-k 1 h+k
g = (277 L)
i=1 2 ' 2h+1-k\h+1-k
Therefore,

€2 22k-1 hH — k + 1/ h+k 32
R(A(y)) = —————— p . \ ﬂ
((h+1)!)?2 vk k h+1-k



y\h+1-k 1 h+k 2
=
2 2h+1-k\n+1-k |
where p = 02((h+1)1)2/(ne?).

Differentiate R(A(y)) w.r.t. y and equates to O, we get

~

the minimizing yx.,
';k = 4( p(h+1__k)/(4k))1/(2h+2)

The corresponding weight of =x; is m; = la;l/Zla;l, for
i=1,...,h+1, where a; are as in (2.4.3). Therefore: the

proof is completed.

For the use of the next two theorems, the weights given
in Theorem 2.4.1. will be written out in a more explicit
manner by a method similar to Studden(1978). Since the
weight is invariant under scale transformations of x3;, we

shall work with x; in [0,2].

Let
h+1 h+1
Rpse1x) = 3 ozxt =1 (x - X5, (2.4.5)
i=1 S j=1
where x; = z;, j=1,...,h+l, z; are defined as in (2.3.2).

Therefore, by Lemma 2.3.2.

(=1)h=i+l 7 h+i
o = ~———————-< > . (2.4.6)
2h-i+1 h—i+1
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THEOREM 2.4.2. The coefficients B,; of x™ in the ith

Lagrange polynomial are given by

1 Rh+1,m(xi)
Buni; = — . ,i#1, (2.4.7)
xym*t! Rh+1'(xi)

where
m
R|-,+]. m(x) = 2 CXIX’,
i=1
and
CUm+1
By = ————
Rh+l (O)
Proof: R,,;(x) vanishes at z;, i=1,...,h+1.

Hence the Lagrange polynomial is

Rh+1(x)

Li(x) =
Rh+1 '(zu)(x - zu)

Then by equating coefficients and solving for Bn;.,

Up+1 + AUp+223 +...+ dh+1zih‘m
Bmi = , »
Rp+1 (z;)
and
1 h+1 ) Rh+1,m(zi)
2 ajziJ = -
zim+1 j=m+1 zim+l

for R,,;(x) vanishes at z;. Then the result follows.
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Let ¢(h+1,m) denote the optimal design for estimating
£(m)>(0)/m! with exactly h+l points when f e 'g. As h = =,
i.e. f gets smoother and smoother, we study the limiting
behavior of the optimal design for estimating f™7(0)/m!
and fh+1-m>(0)/(h+1-m)! for m fixed and the limiting
design for fl¢h+12al(0)/[(h+1)q]! for 0 < g <1 in the

following theorem.

THEOREM 2.4.3. (i) The design ¢(h+1,h+1-m) converges as h -

e to the design &,; with density proportional to

2 - x/2
——— , 0 < x < 4.
4 — x2

(ii) For fixed q e (0,1) the design e(h+1,[(h+i)q])

converges to &, with density proportional to

2 - x/2

, 0 < x < 4,
(1 + (c/2)x)4x — x2)

where ¢ = (1 — g2)-(2q2)"1*.

Proof: From (2.4.7) the weights on x; have two parts, the
parts Ry, '(x;) in the denominator are proportional to (2 -
x;)-! for i=1,...,h+1; the other parts R,.; m(x;)/x;™*! are
essentially uniform on {x;} for case(i), where &k = h#l-m,
and are essentially proportional to‘the power series (1 +
cx;)"! for case (ii), where k = [(h+1)ql] and ¢ = —(2q2)-!'(1

- q?).
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Note that

Rh+i,k(xi)
—_———— = Up4+1 T Ups2X; +...+ dh+1Xih_k. (2.4.8)

Xik+l

Using the actual values of coefficients o3 from (2.4.7) we

find
Oy 42 (1 + k/¢(h+1) + 1/(h+1))(1 = k/(h+1) - 1/(h+1))
= 2.
Oy vy (2k/(h+1) + 3/(h+1))(2k/(h+1) + 1/(h+1))

Then (2.4.8) may be seen to be essentially uniform for case

(i) when k = h+l-m, and to be essentially proportional to
the power series (; + ecx;)"! for case (ii) when k =
[(h+1)ql.

Moreover the weights are on x; = (Yu/2)z;. also we
consider the transformation X = (yx/2)(1 - cosmlU) where U is
uniform on (0,1). Since ;k converges to the constant 4 for
all k, we obtained the limiting densities for case(i) and

(ii) as described in the theorem.

If Xh+1,m denotes a random variable with corresponding
probability measure £(h+1,m), then the law of Y, ., n = (h +
1)2-X,+1,m converges weakly to a limiting measure or design

which is discrete.

THEOREM 2.4.4. The variable Y,4i m (h + 1)?2-X,41.m

converges to a discrete variable Y. Y has weight w;
proportional to m™/(2m + 1)! on O and
m—1 (-1)J

2 — (izﬂ'z)-j i2m
j=0(2j + 1)! -
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on the points i2n2, i=1,2,...

Proof: The variable Y,,; m has mass on

xy, = (h + 1)2(ym/2)zx, k=1,...,h+l.
As h » o, xp » ((k = 1)m)?2 with k=1,2,... . The terms
Ro+1 (x;) may again be proportional to (2 - x;)~1. Ir

Wmi = dm+1/Rh+1 '(O)’

Wik = (Rps1 (k) xx™* D) 7R 4y m(xx), k = 15
then

h+1

S Wmr = ch2m*l,

k=1
Using the exact expression for oy in (2.4.7). it can be
shown that wyyh-¢2m*1>  k=1,...,h+l, are proportional in the
limit to the w;, i=0,1,... given in the theorem.

2.5. APPENDIX

In order to prove Theorem 2.2.1 rewrite Problem Q3 in

matrix form, then it reads as follows:
minimize a'Wa
subject to

Xa = g + 1
Lo dand ~

~c ’

where 5 denotes the matrix that its ith row 1is
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'

(x,8"%,...,x.i"1), i=1,...,h+2, and W denotes the rxr
diagonal matrix with diagonal elements m; -, i=1,...,r.

’%' = (alsazr LA var)lxr’

xo' = (1,%0,%0%, ... s XoM ) i he2y s

1." = (0,0, ... y0,¢) 1 cne2d
Let & be the design measure with support at points x;,...,%,
and weight m;,...,m.. Then

XW-1x' = rM(£),

where
M(g) = f £(x)f"(x) d&(x) ;
r'(x) = (4,%,...,xh*1),

Follow a similar proof as in Theorem 2.1 of Karlin and

Studden(1966a),

a'Wa = sup [(xo + 1.,d)2/(d'M(&)d)]
~ deUlL, d=0 ~ ~

where U = {d|M(&£)d = 0}.

Then Theorem 2.2. of Studden(1968) is used in our case

where f = (1,%,...,x0h*1), and C=x + 1_°, {s;,
i=0,...,h+1} are the Tchebescheff points of order h+l in the
closed interval [0,T]. As long as T is large enough such

that
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€[(xp — Sg)---(xo — s,) + c] 20,
then
1 1 1 1 1 1
So S Si-1 Si+ Sh+t Xo
eDi(C) = £
h+1- h+1 h+1 h+1 ‘_h+1 h+1
So S, cee Sje1 Sisr1ee+Sp+1 X0 + ¢
h+1
=e¢ TN (sgx-s;0( 0T (%o = s5) + ¢)
j<k,#1 Jj=0,#i

v

0 for i=0,1,...,h+1.

Therefore by Theorem 2.2 of Studden(1968), the optimal

design £, is supported on sy <...<s,,; with mass
m; = [D;(CY|/ T ID;(C)I

In other words, for i=1,...,h+2,
Xx; = s;-1, my = lazl/ Zlasl,

where a = V‘l(i0 + £°)°

h+1
LEMMA 2.3.1. h!B(t) = a;(x; — t),h
=1 :

1

h+1
= (=1)h+t [—(t — %), + T a;(t — x;)."]
i=1
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L]
is a B-spline function under the constraints (2.1.4), and

<h+1)! ‘I‘ B(t) dt = (Xo - Xl)-..(XO - Xh+1)

Proof: From constraints (2.1.4) we know

Qg =Li(XO)' i=1,...,h+1;
where L;(x) are the Lagrange polynomials on Xj,...,Xp+1-
So for i=1,...,h+1,
g(xo)
I-‘i(xo) = )

(xo — %378 (x;)

h+1
if g(x) = 0 (x — x;).
i=1

Then h!B(t) can be written as

h+1
(-1)P+1hi-B(t) = [-(t — xg)aP + T a;(t - x;:)."]
i=1

1
= g(xo)'{— (t = %)M +
g(xg)

h+1 1

(t - xi)+h }
i=1(xe — x;08 (x;)

h+1 (t - Xi)+h
e [ )

i=0  W'(x;)

where w(x) = (x — xg)-g(x). Therefore by the definition of

a B-spline function of order h+l for the knot sequence
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{x;,i=0,...,h+1}, h!-B(t) is a B-spline function multiplied

by (h+1)-'g(xy,) and

(h+1)1-f B(t) dt = glxo) = (xo — x;)...(xo —

Rpei)-

1 /2h—-r+1
LEMMA 2.3.2. > Z; ...23; = ——< >
22i,<...<i . =h+1 1 r 2 r

where z,, k=1,...,h+1l are as defined in (2.3.1).

In the following we shall wuse some results about the

ultraspherical polynomial which can be found in Szeg8(1959).

Proof: Let zy' = cos((h+2-k)n/(h+1)), k=2,...,h+l, which are
the roots of the Tchebyscheff polynomial of the second kind

U,(x) on [-1,1]. Then

2-00, (x) = (x — z2')...(x = z,41")

(x + 2z5")...(x + 2,41,

()
The polynomial U,(x) = P, 1’ (x), where P, (x) is the

ultraspherical polynomial with parameter X\. Moreover

() h+2d—1
P, (1) =
h

We obtain the following results:



40

(i) When r = h

h k 1
Zoe..2Zpey = 1T (1 + cos n) = —U, (1)

k=1 h+1 2h

1 <h+2—1 h+1

2h h > 2h

(ii) When r = h — 1, the property of the ultraspherical

polynomial

(o+ 1)

()
4/dxP, " (%) = 20-P,_; (x)
together with
1 d h+l

— U (x) = 3 W (x+z;")
2h dx k=2 j=k ,

it implies that

1 h+1 h+2-k
—U,'(1) = 2 Ml + cos——

2h k=2 Jj#k h+1

= Z Z; .23
25i,<...<i,.;Sh+1 ! h-1

Also

U, '(1) = 2P, _, (1) = z< > :
h-1

implies that

1 h+2
Z Zi e--23 = < >
25i,<...<i,_1=h+l 1 h-1 2h-1\h-1
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1 2h+1 - (h-1)
2h-1 h-1
(iii) In general, for r = h - k
d* (1, (k+1)
Pr (k) = 25(k1) - Ppiy (%)
dx*
Hence,
1 dk (1) 2h+1 - (h_k)
- P, (x) = 2-(h-k)g]|
2h dxk x=1 h—k

Then comparing with

1 dk h...(h=-k+1)
— U, (x) = z; z
2h dxk x=1 ( h > 1 h=-k
h-k
= k! 2: Z; .23
25ii<...Sh+1 ! h=k

the lemma is proved.

LEMMA 2.3.3. d/dy(SIL;(xe,¥)1)

Xxo h h+k
= (_1)h+1 2 (_1)h-k22k—1(h_k+1)< >x0k-1yh-k
yh+ k=1 h—k+1

Proof: Note that L;(x,y) are the Lagrange interpolation
polynomial on the h+l points x;,...,%,4+41, where x; = y/2-z;.

Therefore,
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S IL; (%91 = 2 (=1)Yi-1L;(xq,¥)

S (-1)i-'L;(x,y) = bo + byx +...+ b,xh.

Then by the property that,

S (-1)97 Ly (x5,y) = (-1)i-t,

for i=1,...,h+1, we obtain by = 1 and c¢an solve for Dby,
k=1, ,h.
(1,by,...,by) = (1,-1,...,(=1)m)v-?t,
0
where V = (vij) is the Vandermonde matrix of {x;,
i=1, .,h+1}. The inverse of V can be easily computed as

(=1)i*3 T (xy = %)

U<y
W, v#i
vijTh = X
n (XU - x‘_L)
1=u<y=h+1
b3 Ko ooexs
2§i1<...<ih+1_J=h+1 i h+1-]j
#1i
for i,.j=1,...,h+1,
Denote
no = ﬂ (xy - xl-l-)
1=u<y=h+1
Hi = I'I (xu — x”_)
1=u<y=h+1

=i
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for i=1,...,h+1;
then

(-1)rh+1
by = m; > Ry .- Xyg
M, i=1 1%i,;<...<ij.xSh+l ! h-k
=i

Now by using cosa — cosB = 2sin(a + B)/2 sin((8 - o)/2) and

arranging terms, we obtain
M, /M = 2h(y/2)~"(h + 1)

ﬂi 2—Zi

Mo (y/2)P(h + 1)/2°"

for i=2,...,h+1; where z; is as in Lemma 2.3.2.

Hence by (2.5.1) and Lemma 2.3.2. by can be written as
(-1)k.2h y\P-k
bk: - Ezi e e 23 +
(y/2)P(h+1) 2 i=1 1 =k
h+1

2 EZi...Zi -(2—zi) }
h -k

i=2 =i !

(_1)k2h
= (Zk + 1) z Z3 A
(y/2) % (h+1) 12i,<...<i,-xSh+l1 ! h -k
- (h-k+1) > Z; ...Z
15i,<...<ij_gx+1 1 h-k+1
(1) 22k-1 h+k
= . (h - k + 1)< > , for k=1,....h.
yk k h-k+1 '
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We obtain the following result

d/dy(SIL; (%0, ¥) | d/dy(1 + b;xg +...+ bPhxo")

= (d/dyb;)xo + + (d/dybP)xgh,
where
d h+k
—‘bk = (_1)k-122k—1.(h_k+1) < > y-(k+1)
dy h-—k+1

Thus the lemma is established.

LEMMA 2-3.5. If Z'hUh(Xo,y) = (Xo - X2)-..(X0 - Xh+1)

where xyx = (y/2)zy, k=2,...,h+1;

then
d/dy 2hU, (x0,¥))

1 1 h

2 22hg=1

h+k
(_1)h-k22k-1(h_k+1)< > xpk tyh-k
h—-k+1

(-1)r yh*1 4 h+il
= —— 3 |L;(x%0,¥) I
22h+1 . dy i=1



Proof:

d/dy(2-PU, (x0.,¥)) = d/dy{(xo — X2)... (%o — Xps1)}

h+1 h+1 1 h+2-1
S m (xp — x;)|— —(1 + cos—)

i=2 j=2 2 h+1
#i
1 h+1 h+1
- — 2 Z3 I (Xo - XJ)
2 i= j=
#1i
1 2
—-|— hxgh-1? = ( — > z;2;)%0" 2%y +
2 2 22i<jsh+1
(_1)h—1
—_—— h Zi v Zy Xok—lyh_k
2h-1 25i,;<...<i, Sh+1 ! h

1 h (~1)P-k (h=k+1) < h+k )
2 xuk—lyh—k

2 k=1 2h-k 2h-k+1 h—-k+1

(m1)h2=he D)y = lyh+1{d/dy(TIL; (x0,y) |}
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CHAPTER III

MODEL ROBUST EXTRAPOLATION DESIGN FOR X ON [-1,1]

3.1. INTRODUCTION

In this chapter we shall discuss the model robust
extrapolation design on [-1,1] under the same class [p of

functions as in Chapter II

Fe = §{ £ | Ifth*i(x)] 2= e, —» < x < o}
If we use a linear predictor ? = Za;y; to e#trapolate to
f(%g),%Xo < —1, we have the same set up as before. Therefore
similar problems arise except that in this chapter the
observations are only allowed to be taken in [-1,1].

Later in this section we shall discuss the similarities
and differences between the case X = [0,») and the case X =
[-1,11]. In Section 3.2, the design problem is connected to
an approximation problem and a complete class of solutions
is specified.

In Section 3.3, the minimizing design for different
values of n, €, 02 and xg is characterized and two examples

are given to illustrate how to allocate the observations.
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Naturally some properties of the optimal design for X =
[0,=) still hold in the case that X = [-1,1]. Firstly the
optimal design has to include the left end point of the
interval ,namely -1 for X = [-1,1]. Secondly under the
restriction that there are exactly h+l points in the design,
the a;'s are determined by the constrains in (2.1.4). They
are actually equal to L;(xe), the value at o - of the ith
Lagrange polynomial over the h+1 points. Thirdly, the bias
function is a B—spline function multiplied by =a constant.
Fourthly a complete class of optimal design can be found by
solving Problem Q2 in Chapter 2 for different values of ¢
where ,

(—1)“*‘.(h+1)!f B dt = c. (3.1.15

In this chapter, we shall work under the restriction that
there are exactly h+l poinés(the minimal number of points).
Once the design points are specified , so are the estimator
‘and the design . Therefore we shall only specify the design

points for each design from now on.

One difference between the designs for X = [0,«) and for
X =[-1,1] 1is that .the values of ¢ we need to consider to
form the complete class are in different intervals. For
case X = [0,2), ¢ Dbelongs to an unbounded open interval
interval (lxoh*!],=). But for case X = [-1,1], it ‘beiongs
to a bounaed half open interval (co,c1j, where

co = | (xqo+1)P*+1 | (2.1.2)
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e; = J(xg+1)(xg—cos(n/h))...(xg—cos((h=1)7/h))(xo-1)1].
(3.1.3)
Another difference is that for X = [0,=) there is only one

"type" of design in the <complete <class of the optimal
design, but there are two different "tyres”" of designs in
the case of X = [-1,1]. Here we use "type” to denote that
the design points are from one special kind of polynomial,
for example Tchebyscheff polynomials of order h+l on

different closed intervals.

The first lemma we shall prove is that the values of c¢ we

need to consider for case X = [-1,1] are in (cg,c;1].

LEMMA 3.1.1. For any signed measure A with support on

{-1.%2,...,%n41}, let

[¢]
It

(-1)P*1(h+1) I f B dt

‘(x°+1)(X0_X2)-..(Xo_xh+1)|- (3.1.4) ’

(i) Thus ¢ > ¢g, ¢ is defined as in (3.1.2.),
(ii) If ¢ > ¢,, where ¢, is defined as in (3.1.3), then the

signed measure A; with support on
{=1,cos((h-1)n/h),. . .,cos(m/h),1}
is better than A.

Proof: We know that the risk function we want to minimize

with respect to A consists of two parts, the variance term
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and the bias term.

Note that the variance term here 1is the same as the
variance for polynomial extrapolation problem of degree h.
It is well known that the design with Tchebyscheff points of
order h on [-1,1] is the ©best design to minimize the
variance for the polynomial extrapolation problem.
Therefore if A has a larger bias term than A, Ai is better
than A.

The lower béund of ¢ is obtained from the fact that

x; > —1,for i 2 2 and
¢ = |(xo+1)(xg—%2)...{(Xo=%Xpe1)].

Thus we shall consider Problem Q2 with X = [-1,1] and
cg < ¢ = c;.

Similarly as in Chapter II, by the Lagrangian method, we
are to find a polynomial of degree h+l and a set of poinﬁs

f=1,%X5,...,%,41} which satisfies (3.1.4), such that
Ph+1(x3) = (~1)i-1, for i=1,...,h+1,

and | (3.1.8)
Ph+1'(xi) = 0,

for all x; in the interior of [-1,1].
For convenience we <c¢all this Preblem Q4. If such a
solution exists for each ¢, it is the solution of the désign

problem.
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Let

cs = 1 (xe+1)(xXo=y2). . (Xo=¥n+1)l,
where

yi = 21 (yo+1) (1+cos((h+2-i)n/(h+1))-1, i=1,...,h+l,
and

Yo = 4/(l+cos(n/(h+1)) ~ 1. (3.1.8)

It is clear that for c¢g < ¢ = ¢,, the Tchebyscheffl

polynomial of the first kind of order h+l on [-1,%,4+421, Xp+2

fIA

Yo. and the set of Tchebyscheff points on [-1.%,4+21]
excluding x,4+2 will serve the purpose just as in Chapter II

and it is uniquely determined by c.

1A

For ¢, £ ¢ ¢,, we shall prove that there exists an
unique polynomial of degree h+l and an unique set of points
x;,i=1,...,h+1l,x, = -1, satisfy the condition in (3.1.5) by

‘turning the problem first into an approximation problem.

The approximation problem is as follows:

Problem Q5: Among all polynomials of the (h+1)th degree with

leading coefficient unity, which are equal to zero at point

v, where v Z v,, find that polynomial whose absolute maximum

on [-1,1] is a minimum, i.e. determine the values of the
coefficient ag,...,d,, where o, vh+...+0o=vPh*! for which
max |xh*! — (a,x" +...+ ¢o)| = minimum.

—-1=x=1



51

3.2. THE APPROXIMATION PROELEM

Before going into Problem Q5, we introduce some notation.
E,+; @ the Euclidean space of (h+1) dimensions.

o = (dg,®y,...,%,) ¢ an element of E, ;.
h
P, (a,x) = & a;x', @ e Ej4y.

Eh+1(v)={d € Eh+llahvh + dh_lvh-l +...+ a0=vh+1}
where v Z vg.

D, (v) = {Ph(g.x),g e E .1V},

It is easy to see that E,,;(v) is a closed subset of E; .,

and P,(a,x) is a polynomial of degree h.

By a similar argument as in Rice(1963) p.24, we have the
following theorem about the éxistence of a solution.; The

proof is included for completeness.

THEOREM 3.2.1. There exists a polynomial of degree h+l

whose absolute maximum on [~1,1] is a minimum among all
polynomials of the (h+1)th degree with leading coefficient

unity, which are equal to zero at point v, where v Z vg.

PROOF: Let {oy, k =1,...,%} be a sequence in E,.;(v) such

that

lim max |xh*! - P, (oy,x) |
koo —1=x=1 ~

= inf max |[xh*! - Ph(a;x)l = X(v).
aeE, ,;(v) —-1=x=1 ~



52

For k sufficiently large, say k > kg, then

max |xh*! — P, (ax,x)] = A(v) + 1.
-1=x=1 ~
Hence with max |xh+d] = 1,
—1=x=1
+ 2. (3.2.1)

max [P, (op,x)l = X(v)
—1sx=1 ~

If we show that (3.2.1) implies that the parameters are
bounded, then use the fact that a closed bounded subset of
En+1(v) is compact in E,+:1(v) to assert the existence of a
minimum in E,,;(v). That the parameters are bounded can be

established by the following argument.

: h
(i) For P, (a,x) = 3 o;x!, there is a u > 0

such that max|o;| 1 implies

1

max |P,(a,x)| 2 u > O.
—-1=x=1

max la;l = (A(v) + 2)/X(v)
i

implies that

v

max |P, (o, %) | A(v) + 2.

—1=x=1

‘Hence the sequence {ay} satisfies
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las w] = (A(v) + 2)/i for k Zko,

where «; x denotes the (i-1)th coordinate of the vector uoy.

This guarantees the existence of a solution.

The characterization and uniqueness of the minimum
polynomial is stated in Theorem 3.2.2 which can be proved
easily by a proof similar to Karlin and Studden(1966) except
we are doing it for polynomials in a subset. Again we

include the proof for completeness.

THEOREM 3.2.2. The polynomial in D,(v) minimizing

max |[xh*! - P, (a,x) | (3.2.2)
-15x=1 ~
for any Vv Z vg, is wuniquely determined, and the unique

polynomial Ph(g(v),x) minimizing (3.2.2) is characterized by
the property that there exist (h+1) points
{x;(v),i=1,...,h+1}, where

(=1=x; (v)<x(v)<...<xp (v)<x, . (v)=1)

such that

(-1)i8{(x;(v)IP*t = P (alv),x,(v))}

= max |x"*! — P, (a(v),x)] = x(v) > O (3.2.3)
-1=x=1

for i=1,...,h+1; where 6=+1 or -1.

Proof: The assertion of the wunigqueness under (3.2.3) is

easily proved with the aid of counting principle where
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double zeros are counted twice. 1Indeed, suppose Ph(gfv),x)
fulfills condition (3.2.3). This means that [-1,1] can
be divided into at least h segments such that on each
segment Ph(gﬂv),x) ranges from x"*! + X(v) to xPM*! — X(v).

In this event any polynomial q,(x) in D,(v) satisfying [xh*!

- q,{(x)] = X(v), for x € [—151], okviously enjoys the
property that Ph(gfv).x) - q,(x) possesses at least h zeros .
(at least one in each segment) where double =zeros are
counted twice. Oalso by the fact that both Ph(gfv),x) and
qn(x) are in D, (v) which "means Ph(gfv),v) = q,(v) = vh*1,
Ph(gfv),x) - q,(x) possésses another zero at v. This would
make Ph(gfv),x) - q,(x) possess h+l zeros. Then by the

property of polynomials that there can be at most h zeros,

we conclude that P,(a(v),x) = a(x).

The above argument proves that the polynomial P, (a(v),x)
deviates least from x"*! in D,(v) and is uniquely determined

by the property (3.2.3).

We now establish the property (3.2.3) by contradiction.
Suppose P, (a(v),x) = F o;{(v)xi in D, (v) satisfies

Olixil
0]

A(v) = min max |xh*1 -
aeE, +;(v) —1=x=1 i

I ™M >

and xh*!

P, (a(v),x) takes on the values iX(v) alternately

Xh+1

1A

at only k h points. We suppose for definiteness that
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- P, (e(v),x) assumes the value +Xi(v) before it takes the

value =X(v). In this case there exist k-1 points
YiseoerYro1 (—1<y;<...<yg+1<1) such that y;"*! - P (alv),y;)
= 0, i=1,...,k-1 and for some u > O

A(v) z xhtt = Po(o(v),x) 2 =X(v) + u

for x € [-1,y,JUlys.¥s]
Av) = p 2 xh*t = Polal(v),x) 2 -X(v)
for x e [yl,yz]U[Y3,Y4]

By Theorem I.5.2 in Karlin and Studden(19686a), there_ exists
a polynomial w(x) whose only zeros on the closed
interval [-1,v] are simple zeros at y,,¥2,...,¥k-1.v and 1in
addition w(x) < 0, for -1 = x = y;.

If p is chosen so that
lpw(x) | = N(v)/2

then

xh*t - Pp(a(v),x) + pw(x)| < x(v), x e [-1,1].

Note that w(v) 0, so

w(v) = 0, (P,(a(v),x) — pw(x)) e D, (v)
Therefore,
_ h
min max [x"+t — 3 o;xi| < A(v)

aeE, ., (v) —1=x=1 i=0
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contradicting the fact that A(v) is the minimum deviation.

Thus any polynomial of least deviation necessarily obeys
"the required property.

Note that the two end points {-1,1} are included in
{x,},i=1,...,h+1, simply because we can not have h of the x;
at the interior of [-1,1]. Otherwise x"**~ P (oa(v),x) wouid
have derivative zero at those h points. Thus from the well
known fact only the first kind Tchebyscheff polynomial on an
interval [~1,%,+2],where x,4,2 < VYo and yo as in (3.1.8), may
have such property. But for those Tchebyscheff polynomials
their largest zero points would be lesz than vg, i.e. they
do not belong to D,(v), which would force x;=-1 and x,,,=1.

Therefore the theorem is proved.

Note that
A(v) = min max [x"*! — P, (&,x)]|
QeE, .1 (v) —1=x51 ~
zZ  min max |xh*! - P, (a,x)|
dEEh+1 —1§X§1
= 2~k > 0,

and P, (a(v),x) is the unique polynomial which deviates least
from xh*! in D,(v). Thus we may divide xh+1 — P _(a(v),x) by

A(v) and normalize it to be 1. Then let

W,(v,x) = e(A(v))-1(xh*t — P (alv),x) for all v 2= Vo,

where € is determined so that W, (v,-1) = 1.
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Now we shall establish the one to one correspondence
between Problem Q4 and Problem Q5 by showing the continuity

property of W,(v,x) in terms of v.

HA

LEMMA 3.2.2. If vyg vi < vs, then x;(vy) < x;(vy),

i=1,...,h.

Proof: (i) If xo(v;) < x5(vy) and

x;(vy) < x3(va) < %;41(va) < x341(vy)
for some i, 2 =i = h-1, then W, (v;,z) would intersect

W,(vy,x) three times between (x5(vy),x;4+1(vy)), (i-2) times

between (x,(vy),x;(vy) and (h—i-1) times between
(k501 (v),x, (v, We also know that x;(v;) = x;(vy) = -1,
Xpe1{vy) = x,41(v2) = 1. Therefore in total Wo(v;,x) and

Wh(vz,x) would. intersect in at least h+2 points, which
implies that Wh(vl;x) = W,(va,x). This leads to a
contradiction. For the case that there are more than two
points of {x;(va.)} between any of (x;(v;),x;4,1(vy)), 2 £ 1 =
h—1 or there is none between them, a similar argument holds.

If x;(v;) = x;(vy), for any i=2,...,h, Wo(vy,x)=W,(vy,x)
would be counted as having two zeros at x;(v,;) which also

would lead to a contradiction

(ii)If x,(v,;) > %x3(v3), a similar argument holds.

By (i) and (ii), either =x;(v;) < x;(vy) or xi(vé) <
x;(vy), for all i=2,...,h.

(iii)If v, < vy, then xa(vy) < xa(vy).

If not, then x;(vy) < x;(v;),for i=2,...,h. They intersect
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h+1 times in [-1,1], and DW,(v,,1) — DV (v,.,1) > O,

where DW,(v;,x) = d/dx W,(vi,x), i=1,2. This and
W,(vy,v;)=0, W (vy,v3)=0,where v, < v,, imply that they must
intersect once again between (1,v;) ,which leads to the
contradiction. Therefore x;(v;)<x;(vy), for i=2,. . .,h,

if vgEv,;< v,

LEMMA 3.2.3. As vy ¢ v (Z vp), from the right, when ke,

x; (vg) ¥ x;(v), for i=1,...,h+l.
Proof: Choose arbitrary h-—1 points 7; from (-1,1),i=2,...,h.
For all vZvgy, W,(v,n;)=€;(v) for some €;(v),i=2,...,h, where

le; (v)I£1. Together with W,(v,-1)=1,W (v,1)=(-1)", it s
easy to see that the coefficients of W,(v,x) are bounded for
all vZv, because €;(v) are bounded for all vZvg.

As vy+v from the right, there exists a convergent
subsequence {vy'} of {vyg} such that W,(vy',x)>G(x) and
G(v)=0. Also because x;(vy') is monotonic and has a lower
bound, there exists a subsequence of {vy'} such that

x; (vi") ¥ pg,i=2,...,h.
If u; > x;(vy") for some i, then there are two polynomials
equal to 0 at v both having the property characterized by
(3.2.2), which contradicts the uniqueness. Thus x;(ve") 4

x;(v) as vi" ¥ v.

Again as vyig»>® by the boundedness discussed in Lemma
2.3.3, we know there exists a convergent subsequence fve '}
of {vyx} such that W, (vy',x)>G(x). In the next lemma we

shall see that G(x) is exactly the Tchebyscheff polynomial
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of the first kind of order h+l in [-1,1].

LEMMA 3.2.4. Suppose W, (v, x)>G(x) as Vi*o, then

G(x)=T,(x), where T,(x) 1is the Tchebyscheff polynomial of
the first kind of order h in [-1,1].
Proof: By the characterization of W,(vy,x) for each vy,
there are h =zeros between (-1,1), say 7g,;, i=l,...,h and
one zero at vi. Then it can be written that

W, (v, x) = Br(x - vi) TI(x — My, i)

i
the product MM is from i=1 to h.
Since W, (vy,—-1) =1 for all vy,
By = 1 / ((—1)"*1(1 + vy)-TI(1 + Neri))-
i

Therefore as vy =+ © ,

Wh(vk,x) =-Bk-n(x - nk,i)x - Bkvk'n(x - xk’i)

i i
converges to a polynomial of degree h. By uniqueness and
the characterization, we know it is the Tchebyscheff

polynomial of the first kind of degree h in [-1,1].

The following theorem will connect the solution of the

Approximation problem with the design problem.

THEOREM 2.2.3. There is a one to one correspondence between

the minimal solution of Problem Q4(the design problem) for
each ¢ , where c;=c<c,, and the minimal solution of Problem

Q5(the Approximation problem) for v,Svy<®). There cx
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corresponds to vg and c; corresponds to the limiting case as

Vir>®.

Proof: It follows quite easily from the continuity property
of the polynomial W, (vy,x) in terms of vyi and the two

‘extremes of vy correspond to the two bounds of c.

3.3. OPTIMAL ROBUST EXTRAPOLATION DESIGN ON [-1,1]

From the discussions of Section 3.1 and Section 3.2, we
have obtained a complete class of optimal robust
extrapolation design for X=[-1,1]. There are two 'types’' of

possible solution in the complete qlass, one is the first
h+1 Tchebyscheff points on [-1,x,.,2] for some x,,25yo, Yo is
defined as in (3.1.8); the other is {x;(v)}, i=1,...,h+1, as
obtained from Section 3.2 for some vZvyg. For the second
type {-1,1} are both in the design.

The following theorems will give us where the optimal
vdesign should allocate for different values of n, €, ¢2 and

VXO.

THEOREM 3.3.1. Let %, = 1xg+1 and y, = yo+l. For given

p=02((h+1)!1)2/(ne?), if p=pgy, where

(-1)hx-,—(2-hUh(x-,-,y7-)) :
Po = yh+t (3.3.1)
22+ 1 (| L; (%, .0 1) ,

then the optimal design on exactly h+l points is on the

firet (h+1)th Tchebyscheff points on [-1,y], where (y+1) is
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the unique positive solution of (2.3.1), with x4 replaced by

X

Proof Once the monotonicity with respect to p of the unique
positive root of (2.3.1) with x, replaced by x, is
established, the theorem is easily proved. This can be seen
as follows. In view of Theorem 2.3.2 , the design with the
first h+1 Tchebyscheff points of order h+l on [0,y(p)] is
the optimal design for extrapolating x,. Therefore if psp,,
then the unique positive solution of (2.3.1) is Sy, and the
design points would fall into [0,2]. Finally by the
location invariant property of the problem, we may transform
it to the interval [-1,1] and the theorem is established.

Now we prove the monotonicity as follows.

Let 0 < p; < pa. From Lemma 2.3.4, we see that

d(Z|IL; (%,,¥y)1)/dy is always negative for x, < O. Therefore

H(p,,y(p2)) < H(p2,y(p3)) < O,

where

H(p;,y) = d/dylp; (ZIL; (x-,¥)1)2 +
X-2(2°00, (x,-,y))2]. (3.3.2)
Again by the fact that there is only one positive root of
(3.8.2) and the root is the minimum point of R(A(y)) with

p=p;., therefore, 0 < y(p,;) < y(pz).

THEOREM 3.3.2. If p > py, then the optimal design is on

{—1,x,(v), ..., x,(v), 1} for some v Z vy, where {x;(v)},

i=1,...,h+1, are defined as in Section 3.2.
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Proof: The proof follows easily from that of - the previous

theorem and is omitted.

Before giving examples of finding the optimal design for
h=2 or h=3 through the procedure described above, we would

like %to know how the optimal design changes as Xg changes.

By observing the two quantities L (-, 90 | and
(270U, (%,,y)) in R(A(y)), where x,-=xo+1 and R(A(y)) are as

defined in (2.3.2), we find that both of them are functions

of (-y/x,). Therefore eguation (2.3.1) can be rewritten as
. p (2-rU, () '
p' = = uh+! | (3.3.3)
(x,)2¢h+1) 22h+1(s|L;(u)l)

It implies that there is a one to one correspondence between
p' and the positive root of (3.3.3). Thus if p < py, and p'
is determined then the root is independent of x.. This

property will be used to allocate the optimal design.

Now we shall give two examples concerning the cases h = 2

and h = 3.

EXAMPLE 3.3.1. For h = 2, if we want to extrapolate to xo,

xog < -1 from [-1,1]. Then the steps for finding the optimal

design for a given value of p are as follows:

Step(i) Compare p with po which can be found easily by
(3.3.3) with y=y,. We provide some of the critical values

Po in Table 3.1 and Figure 3.1.
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P = py , goes to Step (ii) ;

if not, goes to Step (iii)

Step(ii) Let p' = p/(x,.)®, and find the corresponding u from
Table 3.2, where Table 3.2 is made out of (3.3.3). In the

case of h = 2, (3.3.3) can be written as

1 (1 + u/4)(1 + 3u/4)
us

25 (1 + 12/u + 16/u?)

where u = ~y/x._..
Then the optimal design is on {-1, —-(x,.u/4) - 1, —(3.x-.u)/
4 ~ 1}. with corresponding weight m; = [L;(x0)1/ ZIL;(xg) ],

i=1,2,3.

Step(iii) According to Theorem 3.3.2, both end points are in
the optimal design. Therefore for h = 2, there is only one
point left to be determined which can be found explicitly
through some calculation. In Table 3.3., some X, are given

for different p and xg.

For instance; if x4 = -3.00, n = 20, v2 = 1, € = .8887,
then p = 1.8685 > p, = .665. By Table 3.4 %, is —-1.8683.
Therefore, the optimal design is on -1, -1.65, 1, with

weight .3882, .4712, .1395 respectively.

EXAMPLE 3.3.2. For h =3, all the steps are similar to

Example 3.3.1. except in Step(ii) and Step(iii) we look- up
different tables and have different optimal designs. In

Step(ii), we look up u from Table 3.4 or Figure 3.3 and
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(3.3.83) in this case is

1 s(u)

27 t(u)

where s(u)=(1 + ((2-v2)/4).uw)(1 + u/2)(1 + ((2+/2)/4) .u)
E(u)=1 + 24/u + 80/u? + 64/u?

Then the oﬁtimal design is on
{=1,(2=v2) /4. (=x,.u) = 1,(=x,.u)/4 — 1,(2+/2)/4.(-x,.u)

- 1}

In Step(iii), we <can not give an explicit formula for
finding the other two points, but we do provide Table 3.8 of

the optimal design points (x;,%x3) for different Xo and p.
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Table 3.1.
Critical values py, for h = 2, h = 3.

%o po(h=2) po(h=3) Xo po(h=2) po(h=3)
-1.10 . 085 .013 -6.00 1.474 . 262
~1.50 . 227 . 040 -8.50 1.807 . 286
-2.00 .382 . 087 -7.00 1.740 . 303
~-2.50 .526 . 092 =7.50 1.872 .333
~3.00 . 865 117 -8.00 2.005 . 357
-3.80 . 802 . 142 -8.50 2.138 .381
-4.00 . 938 .1686 -2.00 2.270 . 405
-4.50 1.073 .190 -9.50 2.402 .428
-5.00 1.207 .214 -10.00 2.835 . 452
-5.50 1.340 . 238 -10.50 2.687 .478
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Table 3.2.

Corresponding p and u for h

87

p u fo u
.000E-08 .0871 1.048E-02 1.3385
. 000E-08 . 1000 : 2.097E-02 1.8268
.000E-08 .1148 4.194E-02 1.7451
.000E-08 . 1317 8.389E-02 1.8938
.B600E-07 . 1812 1.6878E-01 2.2776
.200E-07 .1735 3.385E-01 2.6009
. 400E-07 .1991 6.711E-01 2.9695
. 280E-08 . 2284 1.342E+00 3.3895
.SB0E-06 . 2820 2.684E+00 3.8683
.120E-086 . 3008 5.369E+00 4.4142
. 0R24E~-0B . 3445 1.074E¥01 5.0366
. 048E-05 . 3950 2.147E+01 B5.7465
.0SBE-0B . 4527 4.295E+01 6.5565
. 192E-058 .5188 8.B380E+01 7.4808
.638E-04 .5943 1.718E+02 8.53686
.277E-04 .8807 3.436E+02 9.7425
. 554E-04 .7794 6.872E+02 11.1208
.311E-03 . 8921 1.374E+02 12.6970
.621E-03 1.0208 2.748E+03 14.85002
. 243E-03 1.1878 5.498E+03 16.5642
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Table 3.4.

Corresponding p and u for h

70

P u e u
.0O00E-10 . 1318 1.074E-01 2.31589
.000E-10 . 1800 2.147E-01 2.588555
.B800E-08 . 1940 4.288E-01 2.8207
. 400E-08 . 2351 8.8590E-01 3.1142
.5B0E-08 . 2846 1.718E+00 3.4387
. 024E-07 . 3443 3.436E+00 3.7873
. 08BE-07 .4161 6.872E+00 4.1834
.B38E-06 .5026 1.374E+01 4.6305
. BB54E-06 . 8068 2.748E+01 5.1128
.821E-05 .7328 5.498E+01 5.6444
. 049E-04 . 8849 1.100E+02 6.2303
.097E-04 . 8727 2.198E+02 6.8755
. 194E-04 1.0685 4.398E+02 7.5860
. 389E-04 1.1762 8.796E+02 8.3681
.878E-03 1.2941 1.789E+03 9S.2288
. 355E~-03 1.4244 3.8518E+03 10.1761
.711E—03 1.5684 7.037E+03 11.2183
. 342E-02 1.7278 1.407E+04 12.3651
.B684E-02 1.9042 2.8185E+04 13.6268
. 369E-02 2.09986 5.629E+04 15.0155
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CHAPTER IV

EXACT D-OPTIMAL DESIGNS FOR POLYNOMIAL REGRESSION

4.1. INTRODUCTION

As introduced in Chapter I, we are interested in finding
the exact D-optimal designs for polynomial regression of

degree k-1 on [-1,1] in this chapter.

Recall that for each % e [-1,1] an experiment can be

performed. The outcome is a random variable y(x), with mean
value e'r(x), where 8 = (Bg,...,6_1)", f(x) =
(1,%x,...,x%¥"1)', and a common variance o02.

Suppose that n uncorrelated observations on the response

y(x) are to be obtained at levels X149+-.+,%Xpn. Let Y =
[y(xy),...,y(x)]", X = (x;3;), where x;; = (x;)9, 1 £ i £ n,
0O = j = k—-1. The . unknown parameter vector ‘ 8 =
(8o,...,6k-1)" is estimated by the classical least squares

estimator 5¥(X'X)‘1X'Y. Then E68 = 6 and cov(8) = ¢g2(X'X)-?t,

An exact design specifies a probability measure £ on
[-1,1] which concentrates mass p; at x;,i=1,...,r , where

pin = m;, i=l,...r, are integers. The information matrix in
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this case is M(&) = X'X. An exact design &* is said to be
D-optimal if &* maximizes IM(&£)| among all the exact designs

& on [-1,117.

Salaevskii(1968) conjectures that an D-optimal design £*
distributes observations as evenly as possible among the k
support points of the approximate D-optimal design.

Constantine and Studden(1881) have provided a simpler proof

of Salaevskii's ‘result that the conjecture holds for
sufficiently large n. Both of their proofs are based on the
Taylor series expansion of the determinant of the

information matrix with respect to the unknown exact b~
optimal design points. Gaffke and Krafft(1982) have proved
Salaevskii's conjecture for quadratic regression for all n Z
3 quite simply. Their proof is based on the geometric-—
arithmetic means inequality of the information matrix.
Since we shall follow the approach of Gaffke and
Krafft(1982) for general case, their clever idea is briefly

desceribed in the following.

If Salaevskii's conjecture holds true for quadratic
regression for all n =z 3, then there are three different

solutions &,, &5, £3. If n = 3p+1, &; puts p+l points on

one of x;*, where x,* = -1, xp* = 0, xg* = 1, and puts p
points on the other two points. 'If n = 3p+2, £&; puts p
points on one of x;*, where ;¥ = =1, x,* = 0, xs* = 1, and

puts p+1 points on the other two points.
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By the geometric-arithmetic means inequality, we have for

any design ¢ and for 1 = y = 3,

detM(¢) = detM($,)(3‘1trM($)M‘I(EV))3. (4.1.1)

Note that detM(£,) = Mp,|F|2? is independent of Vv where F2

will be defined later. So if we Let ¢, = detM(¢,), then

detM(¢) = ¢, min (3‘1trM($)M‘1($y))3.
1=y=3

To establish the theorem one has to show that for al] £,

min ((trM(&)M-1(£,)) = 3. (4.1.2)
1=y=3

Let
d(x,&,) = £ (x)Me=1(E)F(x). (4.1.3)

since trM(£)M-1(g,) =3 d(x;,€,), (4.1.2) was proved by

showing that

n
min 3 d(x;,&,) = 3 ,
1sy=3 i=g

or
n
min ¥ p(p+1)d(x;,¢,) = 3p(p+1).
1=sy=3 i=1
Since &, has support on -1,0,1(the approximate D-optimsl

design points for quadratic polynomial), we know that

P-d(x;,£,) S 1 for all X;.

Let r, be the number of X; such that (p+1)d(xi,$u) = 1.



78
Then

n
S p(p+1)d(x;,.§,)
i=1

A

pr, + (n-r,)(p+1)

A

n(p+l) — r,

If n = 3p+1 then it turns out for each x;, (p+1)d(x;,¢,) =1

for some vV, which will imply maxr, z p+l.

Then
min {n(p+1) - r,} = 3p(p+1l) , (4.1.4)
1=v=3

and the result follows. If n = 3p+2, then for each x;,

(p+1)d(x;,¢,) £ 1 for at least 2. curves and maxr, Z2p+2.

Then (4.1.2) will hold.

For general k and n = kp+t, it will be shown that max r,
Zz tp+t. Then (4.1.2) will hold with 3 replaced by k on the
right hand side of the inequality, and v is from 1 to m,
where m is the usual binomial coefficient with value k!/

(et (k-t)!).

In Section 4.2, following the new approach Salaevskii's
result for large sample case is proved. For polynomials of
degree = 9, by the method we use to prove Salaevskii's
conjecture for large sample case, we are able to give the
value of N such that for n =z N, Salaevskii's conjecture is

true. We give a list of the value of N for polynomial of

degree = 8 in the following:
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degree (k-1) 3 4 5 <] 7 8 a
N 12 15 24 386 48 63 81
For cubic regression we already know that for n = 4, n =

8 the exact D-optimal design coincides with the approximate
D-optimal design. Moreover for n=9,10,11, Salaevskii's
conjecture is proved by using a modification of the new

apporach, which is presented in Section 4.3.

4.2. ANOTHER LOOK AT SALAEVSKII'S RESULT FOR LARGE SAMPLE

CASE

Again recall that the approximate D-optimal design for
polynomial regression of degree k—1 on [-1,1] concentrates
equal mass at the roots of (1-x2)P,., '(x), where Py_;(x) is
the (k-1)th Legendre polynomial. At this point, we
introduce the following notation:

(i)Let {x;*,...,%r*} be the set of the approximate D-optimal

design points for polynomial regression of degree k-1 on

[-1,1].

(ii)Let g;(x),i=1,...,k, be the fundamental Lagrange
interpolation polynomials induced by the points
5 S I

Then it is chear that

g;2(x)
1

IIA

i, x e [-1,11]. (4.2.1)

e =

i
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Suppose that we have n observations, where n = kp+t, for

some 1 = &t = k-1.

k-1
(iii)Let m < > , where the brackets denote the

t-1

]
S
cr =
\‘/

«Q

1]

usual binomial coefficient.

" Then there are m designs which distribute the n observations

as evenly as possible among {x;*,...,xx*}. Thus let £, be
one of such designs, say £, puts pt+tl points
on each of x,*,x,*,...,%,*, where x,* <...< x,*, and

1 2 t 1 t
{v;,i=1,...,t} e {1,...,k}, and puts p points on each of the

noints in S—{x,*,1= i =t}

(iv)Let d(x,£,) be the variance function of design £,

1 £v Enm.
Then d(x,&,) can be written as
d(x,&,) = £ (XM= (£,)0(x) = g GOMg~1(&,)8(x)
k g;2(x) :
=& (4.2.2)
i=1 Pi,v
where
p; L = p+l, if ie{vy,....v.},
Pi,» = P» otherwise.

Now by the geometric—arithmetic means inequality for the
general case where the polynomial regression function is of
degree k-1, we have for any design ¢ and for all &,, 1 = vy =

m,
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detM(¢) = detM(&,) (k- 1ErM(&EIM-1(£, D))k,

Let ¢, = detM(¢,) = n-k.pk-t(p+1)t.F2,

where

F2 = I (Xj* - Xi*)z (4-2.3)
15i<jsk

is the square of the Vandermonde determinant corresponding
to the points x;*,...,%xx*. This in turn implies that for

any §

detM(¢) = ¢, min (k-1trM(&)M-1(¢, D)K. (4.2.4)
1=y=Em

As in the quadratic case, we need to show that for all g

min (trM{&)M-1(£,)) = k. (4.2.8)

1=y=Em

In the following, two lemmas which are useful for proving
(4.2.8) are proved. The first lemma is a generalization of
the 1inequality wused 1in Gaffke and Krafft(1982). More

notation are needed and introduced below.

It can easily be <checked that g;2(x) and gi4+12(x)

intersect only once in [x;*,x%x;,,%], for i=1,...,k-1.
Therefore,

(v)let {x5',...,%xx'} be the set of points where X;' is the
unique intersection point of g;2(x) and gi+12(x) in
[x;%,%5,:%] for i=1,...,k—1; and Xo =%, Xy '=xp*

From (i) it is clear that xg'=x,*= —1,%y '=x*=1,



80

1A
s

A
-

(vi)Let R2(x) = g;2(x), for all x € ;- 'wx: '], 1

~Lemma 4.2.1. There exists pp such that

k Po 1 p 1
S g:2(x) = + R2(x) = +
=1 Pot+il pgtil p+l p+1

R2(x) (4.2.8)
i

for p Z po, and for every X € [-1,17.

Proof: By the fact that S is the set of the approximate D-

optimal design points, it is known that x,*,...,xy-1% are

the local maxima of 3 g;2(x) in [-1,1]. Also

g:2(x;*) =1, j=1,....k.
1

M\7 ko

i
This in turn implies that

k
S gi2(x;’) <1, §=1,....k=1; (4.2.7)
i=1

d k
S g:2(x) = 0,
dx i=1 X=X ;
d2 k
S g:2(x) < 0. (4.2.8)
dx?2 i=1 x=xj*
Let
k 1
R;,p(x) = 3 g8:2(x) — g;2(x),
i=1 p+l

for j=1,...,k; and for all positive integer p.
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Then

R;,p(x;*) = p/p+l ,

and for i=2,...,k-1, j=1,....k,

I
Qo

d/dx(R;, (%))
' x=xj*

From (4.2.8), for fixed i, j, there exists a p;, j,1 such

that for p 2 P;,j,1
d2 -
(Rj, p(x)) <o,
dx? ®=x;¥*
i.e. x;* is a local maximum of Rj; p(x)
Let pj,p = max Pi,j,1s then for p 2 pj 1, it is easy to
2=isk—-1
see that x;*,...,Xx-1* are the only local maxima for
function Rj'p(x). In order to find the absolute maxima of

R; p(x) for p 2 p;, 1 at the interval [x;',%j.5 ], we need to

check the values of Rj,p(x) at the boundary points x;' and

Xj+1

In view of (4.2.7), there exists a p;,» such that for p Z

Pj,2 and for i = j or i = j+1,
Rj,p(xi') = p/(p+1),'
Thus for every j, 1 = j =2 k, we have

1A

Rj,p(X) P/(p'*'i).
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v

where x e [x;-;'.,%x;'] and p max (p;,1,Pj,2)-
Let
Po = max (pj,],,pj,z), (4’2'9)
1=j5k
‘then for p Z pyg.,

R; ,(x) = p/(p+1)

for every x € [xj_l',xj'], and for all j=i,...,k. Therefore

the first inequality in (4.2.8) 1is proved. The second

A
-

inequality follows from the fact that R2(x) for

x e [-1,11].

LEMMA 4.2.2. For p Z po, Pg is as defined in (4.2.9)

1, for x e [x, -;',x,"'],
J J

1A

(p+1)d(x,&,)

IA
=

1 =vy; £t and for all 1 =

Proof: Divide the interval [-1,1] into k subintervals by the

points x;', i=0,...,k, such that
k

[—1’1] = U [xi—],

In view of (4.2.2), for every v, 1 £ Vv = n,

k t .
P(p+1)d(x.£,) = (p+1) 3 £:2(x) = I £,2(x)
i=1 Jj=1 J

where {v;,...,v.} is a subset of {1,...k}.
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If 1 e {vy,...,v}, then by Lemma 4.2.1 it implies that

for x e [-1,x,'1],

k t
(p+1) 3 g:2(x) - g;2(x) - S g,2(x)
i=1 j=2

p(p+1)d(x,¢&,)

1A

t
P+ R2(x) - g,2(x) - I g,2(x)
j=2 J

A
e/

Similarly, it can be proved that,
(p+1)d(x,£,) = 1, for x e [xu__l y %X, '],
J J

Thus the lemma is proved.

In view of Lemma 4.2.2, we see that there are at least g

out of ‘m functions of {d(x,&,)} such that

(p+1)d(x,¢,) = 1,

A
A

for every x e [x;_,",%x;'] and 1 i k. In other words,
for every x e [-1,1], there are at least q indices v such
that (p+1)d(x,£,) = 1. The particular indices depend on the

interval x is in.

Now we are ready to prove the main theorem.



THEOREM 4.2.1. For n = kp+t Z N = kpo, where 1 =t = k-1,

and », as defined in (4.2.9), there is an exact D-optimal

1A

design ¢* = ¢,, for some V, 1 £v m.

Proof: As discussed previously, once (4.2.8) holds for all

&, the theorem is true. From (4.2.2), we have

n
ErM(E)M-1(E,) = 2 £ (xIM (g, (x5)
i=1

1=

n
=3 d(x;,§,), (4.2.10)

where x;, i=1l,...,n are the support points of a design §£.

Now let r, be the number of i's for which

IiA
a2

(p+1)d(x;,.¢&,) =1, 1 =V

In the following, we shall prove that for p Z Po
max r, Z tptt, (4.2.11)
1=v=m
then
n .
p(p+1) min ( 3 d(x;,¢,)) £ min (pr, *+ (n—-r, ) (p+1))
1=y=m i=1 1Sy=Em
= (kp+t)(p+l) — max r,
1=y=m
= kp(p+1).

Together with (4.2.10), (4.2.8) is obtained for all £.

Now we prove.(4.2.11) for p Z po. Let X; be the number

of observations in the interval [%5_4 >%3'1, for 1 =i =k,
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and let {A;;;} be the ordered number of {Xi}'such that

> > >
)\[1] =>\[2] = e e . =>\[k]‘

therefore,
k k
n = kp+t =3 A; =3 A;;i,-
i=1 i=1
From Lemma 4.2.2., we claim that for p Z py, there exists
t
an s,, where s, = 3 X\;;, such that r, 2 s, Z tp+t.
i=1
For p Z py, from Lemma 4.2.2, we know r, Z s,.

The second inequality can be obtained as follows:

If s, < tp+t, it means that

t
2 Apig < tptt = Arey < (p+1),
i=1
and
k
2 Mig =n - 3 g
i=t+1 i=1
't
= (kp+t) - 2 X[i]
i=1
> (k = t)p
2 Xre+13 > PtHi,
which contradicts that A;y; > A;t+15. Therefore the theorenm

is proved.

It is natural to ask that how many observations are

sufficient for the theorem to be true . In the following,
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for polynomial of degree from 3 to 9, we give a list of the

smallest pg and N values such that Lemma 4.2.1 holds.

‘Therefore Theorem 4.2.1 is true for n zZ I = kpo-

degree (k -1) 3 4 35 6 7 S 9
Po 3 3 4 5 6 7 8
N 12 15 24 36 48 e3 81

4.3. CUBIC REGRESSION FOR N = 8, 10, 11

In the case of cubic regression, for p = 2, it can be
checked that inequality (4.2.8) holds for x e [-1,-€¢] U
le,1], for =a constant € = 0.03. Also the left side of the

inequality is greater than the right side by only a small

amount for x e [—€,€]. Therefore after making some
modifications of the proof in the previous section, we are
able to prove the conjecture for n = 9,10,11.

Again by the geometric—arithmetic means inequality, we

have for any design &', ¢" with 4 or more design points,
detM(g') = detM(é")(k'ltrM'l(S")M(E'))k,

which can be written as

detM(£") /1 k
detM(g') = detM(sy){ —trM- 1 (E"IM(E") }-(4.3.1)
detM(&,)\k



87

For convenience, we divide the interval [-1,1] inte S
subintervals. Let
Il = [—11X1'], Iz = [Xl’,—0.0SJ,

[0.103,X3']p I4 = [X3,,1],

—
w
it

Is = [-0.03,0.03].

1A

Case(i) n = 9. Then there are 4 designs ¢&,, 1 2 vy 4,

where ¢, puts 3 points on ¥,* and 2 points on each of S-—

{x,*}.

From the proof of Lemma 4.2.2. it is easy to see that

for x € I,,

lIA

3-d(x,¢,) =1, 1. sy = 4.

Therefore for any design & with 3 points or more in any one
of the intervals I,, 1 = v = 4, from the proof of Theorem

4.2.1 , we have

IiA

detM(¢) = detM(£,).

Since in the set [-1,1] - I; there can be at most 8
support points of design &, then there is at least one point
in Iz. Now consider designs with one or more design points

in Ig.

Let ¢" be the exact design with 10 observations, which
has support points x,*, X2%, %3%, X,* with corresponding

weight 2/10, 3/10, 3/10, 2/10. Then
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1 9 4 g,2(xi)
ErM-l(E"IM(E) = -3 2
9i=1 y=1 Py

1 S 10 10 icC 10
= - 2 —_glz(xi) + __g22(xi) + —”gaz(xi) + __g42(xi)
g i=1 2 3 ] 2

10 9 {g12(xi) g22(x%;)  g32(xy) g42(xi)}

= — + + +
g i=1 2 3 3 2
10 S

= — 3 d(x;,&")

9 i=1

where d(x,&") is the variance function of design €&".

It is clear that 3-d(x,¢") = 3/2 for every x € [-1,11].

Also it can be checked thét

3-d(x,&") £ 1, for x e I,VUlg,

and since

3-d(x,&") = (25/84){2(x? - 1)2(5x2 + 1) +

3(x2 - 1/8)2(x2 + 1)},

we have
3..d(x,£") = 3:d4(.04,¢") < .g40187 , for x € Ig.
Therefore,
S 3d(x;,¢") = (.840167 + 4 + 6)

(10.840167). ,

1A
N

Together with the fact that for 1 = Vv
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detM(§,) = g9-4.23.3.p2,

detM(g") 10-4.32.22.F2

where F2 is as defined in (4.2.3),

it implies that

A

detM(g&) detM(¢&,).

Therefore &, ,1 = y = 4, are the exact D-optimal designs.

For cases(ii) and (iii) with n = 11,10, the conjecture
can be proved along the lines of that of case(i). We

outline the proof as follows: Let I =[-1,1].

Case(ii) n = 11. First eliminate those designs with more
than 8 points in any of the following four intervals I - I,,
I - I,, 1 - Io = I, -1g5, 1 - I; - Iy by the property of the
variance function of design &, with 11 design points. Then
choose £" to be the one with support on x,%*, x,%*, x,*, Xg*

and with corresponding weights 3/10, 2/10, 2/10, 3/10.

Case(iii) n = 10. Similarly, first eliminate those designs
with more than 6 points in any one of the following four
intervals, I, U I,, I, U I,, I I, = I4, I - 1I,~1,. Then
choose ¢" to be the one with 11 design points on X%, x,%,
X3%, %4*% and with corresponding weights either 3/11, 3/11,

3/11, 2/11 or 2/11, 8/11, 3/11, 3/11.

‘REMARK. For n = B5,8,7, we do not have a proof yet. It will

be studied in the future work.
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