A Note on Dolby's Ultrastructural Model

by

Leon Jay Gleser
Purdue University

Technical Report #83-30

Purdue University
West Lafayette, Indiana

July, 1983

This research supported by the National Science Foundation
under Grant No. MCS 81-21948.



A Note on Dolby's Ultrastructural Model

by

Leon Jay Gleser
Purdue University

SUMMARY

It is shown that in the unreplicated case of Dolby's (1976) ultrastructural
model where the ratio k] of error variances is known, maximum likelihood
estimates exist for the intercept, slope, and unknown error variance, even when
the ratio k2 of the variability of the means to the variability of the errors
is unknown. This corrects an incorrect assertion in Dolby's paper. The resulting
maximum Tikelihood estimators are shown to be consistent and asymptotically
normal, with consistently estimable covariance matrix. On the other hand, the
corresponding estimators of Dolby, which require knowledge of both k] and kz,»are

shown to be inconsistent.

Some key words: Errors in variables, functional relation, maximum 1ikelihood,
consistency, asymptotic normality, asymptotic confidence intervals.
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A Note on Dolby's Ultrastructural Model

by

Leon Jay Gleser
Purdue University

1. INTRODUCTION

Dolby (1976) has proposed a model in which independent pairs (Xij’yij) of
random variables are observed;
X3 Uj 5 €5
= |- + , (1)
Yij oFBU; 5 fi
where
Ujj = ¥ oL 0
.. 2
€43 are i.i.d. N(O, Oa ) (2)
2
fij 0 of
1<is<m 153§ <n. The parameters of this model are o, 8, u = (uys Hps -oos 1o )'s

02, o% and oi. The model (1), (2) is called ultrastructural by Dolby because

the ui.'s are allowed to have different unknown means (the pi's). When
MY = Mo T el T, the model reduces to the usual structural errors-in-variables

model based on mn observations. On the other hand, when oi = 0, the model
reduces to a (replicated) functional errors-in-variables mbde].

The replicated (n=1) case of the ultrastructural model has been studied by
Dolby (1976) and by Cox (1976). Each author independently finds maximum likelihood
estimators {(MLEs) for the parameters of the model in this case, and determines

asymptotic (m fixed, n -+ &) properties of these estimators. Gleser (1983) shows

that Dolby's replicated ultrastructural model can also be described as a replicated
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functional errors-in-variables model with inequality constraints on the parameters,
and uses results of Anderson (1951) to provide a brief alternative derivation of
the MLEs and their asymptotic properties.

The present note concerns the unreplicated (n=1) case of Dolby's ultra-
structural model. Here, MLEs of the parameters do not exist unless restrictions
are imposed on the parameter space. Dolby (1976) asserts that for MLEs to exist

it is sufficient for the ratios

2 2 )
k. = Of , k, = %4 (3
1 — 2 5

Ue Ue.

to be known, and determines MLEs of the remaining parameters a«, B8, 02 and u

under this assumption. Unfortunately, the MLE & of 8 is not found explicitly, but

only as a root of a certain quintic polynomial.

Dolby (1976) also claims to obtain the asymptotic covariance matrix of the

MLEs &, §, 82 of a, B8, and 02 when k] and k2 are known. However, it is not

clear what he means by "asymptotic," since the Fisher information matrix which he
uses for his derivations is well defined only when m is fixed. In fact, it is

shown (Theorem 3) in Section 2 that the MLEs &, 8, 32 are inconsistent (m.» )

estimators of o, B, og, respectively, when k2 > 0. Consequently, these estimators

are not asymptotically unbiased, and Dolby's Fisher information calculations cannot
yield the asymptotic_covariance matrix of these estimators.’ (See,élso Patefield (1978).)
Dolby (1976) briefly considered the unreplicated ultrastructural model when

k] is known, but k2 > 0 1is unknown, and asserted that MLEs of the unknown parameters

(a, B, qg, H=“k2) donot exist in this case. In Section 2 (Theorem 1) it is shown

2, u* of a, B, 02

that this assertion is incorrect. Indeed, the MLEs o*, B8*, (cg) v o



-3-

and u are identical to the MLEs of these parameters for the usual functional
errors-in-variables model with known error variance ratio kl(G1eser, 1981),
corresponding to the special case of the ultrastructural model in which k] is
known and k, = 0. [Not surprisingly, the MLE.kgf of K, is k3 = 0.] Theorem 2
)2

of Section 2 then shows that a*, B*, and 2(03 are consistent {(m -~ ») estimators

of o, 8, and og, reépectively, reQard]ess of the value gf_gz.

Finally, the asymptotic (m > =) joint distribution of o*, g*,and 2(05)2

is given in Section 3.

The results of this note overlap to some extent with those of Patefield
(1978). Patefield demonstrates the inconsistency of Dolby's MLE g (but not of the
MLEs of the other parameters). His argument, however, fails to show that the

2

inconsistency is not a trivial one, such as is the inconsistency of (o*)° for

02.‘ Patefield also suggests estimators for o, B, and 02 based on o*, 8*, and
(c*)z, but derives these estimators by an ad hoc adjustment of the Tikelihood
equations for Dolby's model Gk] and k2 known). He asserts consistency of these
estimators under somewhat more general sequences of the incidental parameters
ui.than those given by (13), but only for normally distributed errors. Finally,
he gives a formula for the covariance matrix of his estimators in large samples.
Although the 1eading'(order m']) term of this formula agrees with the results
given in Theorem 4 of this note, Patefield's formula is actually obtained fEOm
an asymptotic expansion of the finite sample covariances of his estimators in
powers of m']. For this expansion to be rigorous, it is necessary that the
estimators in question have finite second moments. .However, it is well known
that E|g*| = » for all finite sample sizes m. Theorem 4 of the present note,

on the other hand, shows asymptotic joint normality of the estimators, and

gives the covariance matrix of this asymptotic normal distribution.



2. MAXIMUM LIKELIHOOD ESTIMATORS

Since n = 1, we drop the subscript j in (1) and (2).

X§ U %
= +.
yi \a+8ui fi
Ui = ¥ ot , 0 |
e. are i.i.d. N(0,| "o ),
i 0 e 2
f. °f
i
1< i< m Alternatively,
%\ (M +
.V-i) 0¢+Bli-i -
where

e. ./ _ _ _ - |
e =(’1>»'*</ ) (u;-u,) are i.diude N(O,3),0.
f. ’ - B ) T ' :
i \B/.

and
e *eu 210y, (Y1
-2 % |\0 k 2 \s8 e)
Bou 1 ‘

We assume that ky = qe'z 0% is known, k, >.O.

Thus,vthe model is

(4)

(5)

2

For notational convenience, we drop the subscript on og; thus, o° = 02.

Note from (6) that
[2] 70" (kytkpk,tkog©)

and that

i1 = o2 lle"{( ol ?) v <€B\ <?B>l} "
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Consequently, the likelihood of the data X = (x],...,_xm)', y= (y],..., ym)' is

exp - l—é-Q(a,B,g,kz)

L X’ ’B’ L Sk = ?
(X,y[a,8,07 1 2) (2w02)m (k+k koK B?)m/z
17172 7277
where
m 2 m 2 m . 2
ke 3 (Xe-ws)© Y (ys-Bus-a) + k, ) (yi-Bx:-a)
5 T 27710 g2y 01 2 52971
Q(asBsB,kz) = 3 2
(k]+k]k2+ 587)
_qm _ M
Let 1= (T.1,..., D':mx1,x=m :Z X;s y=m -Z ¥i» and
» i=1 i=1
mo = =\ B -
1 <x1. - (Xi - X ] <Sxx Sxy>
S=m ) _ _ | | .
ELAY; -y A\ -y Sy Syy
Lemma 1. For each fixed 8, k,, 0 < ko<im,and all a, qz,'g, :
LOxay) [0sBs0%usky) < L{xoy) 6(8).8.5°(8),3(8)K5) 5 (8)
where
Aoy = o A 2, - .
a(8) =¥ - 8%, u(e) = (ky+s?)™! Lkyx + 6ly - a8)1)]
N - -B -B .
o“(g) = (2(k]+82)) ] ]S ) (9)
1 1
and
Lix, yla(8), 84 6%(8), ii(8). k,) |
= __exp {-m) B (10)
[225°(8)] " (k]+k]k2+k232) m/2 ;

Proof. Fix 8, o% and ko. To maximize the likelihood over y and a, we see from

(7) that we need to minimize .Q(a, 8, u, k2). Minimizing first over u (o fixed),
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it is not hard to show that this minimum is attained for u = g (a,B) where
A _ 2,-1
a(a,8) = (ky#89)7 [ky x + 8ly - alp)].

Substituting E(a,B) for y in Q(a, B, u» kz) and simplifying yields

2

/

. Q(OL-;B,Q(G;B) :kz) = =]

a3

(11)

i

ky + 8

Minimizing this expression in turn over o, we see that the minimum is attained

for a = 3(8) =y - 8X. Plugging in a(g) for a in g(a,B) and (11) yields
2(a(8),8) = u(B).
and - ~ L, e
.Q{a(e),8,u(8)) = =1 = \ 1
k1 + 8 ky + 8

. . . N 2 A
Finally, we maximize L(x,y|&(8).8,07,{i{8),k,) over o2 (8sk, fixed), and arrive

at the conclusion given in (8), (9) and (10). .00

2.1 The Case k,; Known, k2 Unknown

1

Using Lemma 1, we can find the MLEs of a, 8, 02 = 02, u and k2 for the

~

model (4) when Ky is known.

Theorem 1. For the model (4) with k] known, the MLEs of a, B, 02, u and k2 are:

-1

L ux o= (k0T (kgx + eri(y - ax 1),




and
3 , 2 L2 1/2
p* = syy k] Sxx * I:(klsxx " syy) * 4klsxy]
2s.’
Xy
Proof It follows from Lemma 1, that to find MLEs we must maximize
L(x,y|a(8), 8, 82(8), u(8), k,) over g and ky, or equivalently (see (10)) minimize
-8\’ -8 2 .
S 2
16(8sk,) = | \1 1 (ky¥kqkotkos”) (12)

k] + 32
over B and k2. For fixed 8, it is apparent that -G(B,kz) is minimized over
k2 > 0 when k2 = 0. Minimizing )G(B,O) over 8 then yields the result that the
minimum occurs for g = g*, The formulas for a*, (o*)2 and g* result from

plugging g* in for g in (9). O

It may be useful for future hypothesis testing problems to note that the

maximum likelihood in Theorem 1 is

L (5,x|u*,s*,(c*)2,g*,k2*) = _ exp (-m)
[2n(o*) 2]

This is equal to the maximum 1ikelihood for the special case of the model (4)
in which k1 is known and k2 = 0 (which, as already noted, is equivalent to the
classical functional errors-in-variab]eé model with known ratio k] of error
variances). Consequently, it is not possible to test the hypothesis H:k2 =0
(equivalently cﬁ = 0) in the unreplicated ultrastructural model (3), at Teast
by Tikelihood ratio methods.

In fact, using the methods of Section 2 of Gleser (1983), it can be shown
that the parameter 03 cannot be consistently estimated (m + =), since this
parameter is confounded with the variation of the unknown means Hys Hoseens Moo

On the other hand, 03 can be consistently estimated (m, n > «) in the replicated



-8-

ultrastructural model (1), (2). To summarize: The unreplicated ultrastructural
model (4) with k] known, ké = 0;2 oﬁ unknown, cannot be distinguished statisti-
cally from the unreplicated functional errors-in-variables model with known ratio
k] of error variances, but the replicated cases of these two models can be
distinguished. This fact is of interest because one of Dolby's motivations in
introducing the ultrastructural model was that "it may be specialized to the
functional and structural relations, thereby facilitating a unified approach to
both."

Next, we show that o* and g* are consistent (m »~ =) estimators of « and g,

respectively, while '2(0*)2 is a consistent estimator of 02 = 02

o
Theorem 2. Suppose that as m » =,
S _ . -1 7 2 _
Timy = limm .}, we = u, limm ) (“i - ) =4, (13)
Moo Moo i=1 Moo i=1
exist. Then, provided that A and k2 are not both 0,
Tim o* = o, Tim 8% = 6, lim 2(0*)% = o® = 0% , (14)

1 et Mo >0

with probability one for all a, 8, o and K-

_Proof. Using arguments similar to those used to prove Lemma 3.1 of Gleser (1981),

when (13) holds it can be shown that

3 10 N1\
Hm(x>=<u >, 1im S = 02< >+ (k202+A) ( ><) , (15)
Mo \ Yy o + Bu M-»e0 0 k-l B/ '\B

with probability one for all a, B, 02, and k2. Since o*, 8* and 2(0*)2 are
continuous functions of x, y and S (except when Sxy = 0, an event of zero
probability), the assertion (14) follows directly from (15) and the formulas

for o*, g*, (c*)2 given in Theorem 1. O



Remark 1. The results in Theorem 2 do not require that (ui - Wi €y fi) have,

for each 1, a trivariate normal distribution. For Theorem 2 to hold it is

sufficient that (xi, yi) satisfies the model (5) with the e;'s 1.i.d. , with

common mean Q and common covariance matrix }. The common distribution of the

e;'s need not be normal.

2.2. Case when k1 and k2 are known

Now consider the model (4), when both k] and k2 are known, k2 > 0. Since
we have additional information about the parameters, we would intuitively expect

that the MLEs for this model would be more efficient (accurate) than the MLEs for

the model where k2 is unknown. However, the MLEs a, B, and 82~are“not~even

consistent estimators of their respective parameters. (Nor is 282 consistent

for 02.)
Lemma 2. The MLEs of o, p and 02 = 02 for the model (4) with k] and k2 known
are
oo o - 22y-1 - . -
a =y - BX, E‘(k'l'*'s) (k]),f'*'B(}z"OL]m)),
8 (-8
. S
5% =\ 1 1>
2(ky + 8°)

where the MLE 8 of B minimizes G(8, kz) defined by (12).

Proof. Follows directly from Lemma 1. O

Theorem 3. If as m » =~ the limits in (13) exist, and if k, > 0, then with

2
probability one, all o, 8, 02,

lima=o+ (1-g)8, 1im § = ¢8
Moo Mo

and
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2, 2
Tim 202 = 02 + (C-])z 8 (o kZ_fz
Moo k-|+Z;262

where z,z # 1, is the unique value of z minimizing

2, 2
h(z) =l;2-])2 8~ (a"kyta) + 02(k1+k1k2fk28222). (16)
l k»|+8222

Proof. Since g minimizes &(8, k,), (d/de) G(8, k,) is Jointly continuous in g

and the elements of S, and (d/de)2 . G(8, k2) is not O when g8 = g, all S, it
follows from the implicit function theorem that 8 is a continuous function of the

elements of S. Consequently, (15) implies that Tim B exists with probabi]ity ong.

- m_>w F— ,’
Let ’ o
1im 8 = zgB. (17)
Mo - N
.Then -BL a -Bckbz
‘ R < Tim S)( - 2 9
Tim  G6(8,k,) =\ 1 /\mo 1 /] €k, +kok,+k,8525)
2 171 "172 "2
Moo 2.2
k-l + B¢

with probability one, where h(z) is defined by (16). It is straightforward to
show that ¢ must uniquely minimize h(z). [Consider zg8* as an alternative
estimator. It can be shown that VG(zB*,kZ) converges with probability 1 to h(z)
as m +~ <. Hence, if ¢ does not uniquely minimize h(z), then for large enough m,
8 does not minimize ;G(B,kz), contradicting Lemma 2.] Finally, when k2 > 0,

8 # 0,

d  h(z) = 2k.o" 82 > 0,

z=1 2

[« 8
N

and (d/dz) h(z) is continuous in z in a neighborhood of z=1. Consequently, z=1
cannot minimize h(z), and hence ¢#1. The limiting values for & and 282 follow
as a direct consequence of (15), the formulas for ¢ and 32 in terms of 8 in

Lemma 2, and (17). O
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What has gone wrong with the usually reliable maximum likelihood method?
One possibility is that we have been given toolmuch information. When k2 was
unknown, the maximum Tikelihood estimation procedure simply ignored the fact
that the variables U could be nondegenerate random variabTes, and variation in
either the'ui's or in their means Wy was assigned to the variation of the ui's.
However, if we are told the value of k2, and k2 is not 0, the maximum 1ike11hoqd
procedure tries to separate the variance of the ui's from the variability of the

2 2

”ils' Because o, = kzoe, the estimation procedure borrows information in the

data about 02 to help identify 03. This biases the estimate of qg, and consequently

the estimate of 8. The moral here is that "a little knowledge can sometimes be
a dangerous thing."

Remark 2. Dolby (1976) asserts that when k]=0, k2>0, the MLE 8 of B is

a
2

Teissier's (1948) estimator (s . /s__)=.

vy Sxx This is clearly incorrect since B can be

1
negative while (syy/sxx)? is nonnegative, and.sxy contains information about the

sign of 8. In fact, in this case

S
XX

A . ' S 3
B = (sign of Sxy) <:QQL> .
Although with this modification Teissier's estimator may have the theoretical
status of an MLE, this status is somewhat an empty one since, as Theorem 3 shows,
B is inconsistent for B as m -+ =,
Remark 3. Theorem 3 does not require normality of the randqm vectors

(Uifui,ei,fi). See Remark 1.

2.3 Discussion
As estimators of the basic parameters o, 8, cg of the unreplicated structural
model, the estimators o*, g*, 2(0*)2 are clearly preferable to a, 8, 232(or 32)

even when k2 is assumed known. Not only are a*, B*, 2(0*)2 consistent estimators



~12-

2

for a; B, o > respectively (while a, B, 52 are not consistent unless k,=0, in

which case &=a?; éﬁe*; 82=(o*)2); but their calculation does not require knowledge
of the value of k2 (robustness with respect to misspecification of kz). Finally
(Theorem 1), these estimators are easily computed from the data.

In Section 3, it is shown that a*, g*, and 2(_0*)2 have a large-sample (m - «)
trivariate normal distribution, and that the covariance matrix of this large-
sample distribution can be consistently estimated. Hence, it is possible to

2

construct large-sample confidence intervals for o, g, and Og*

3. ASYMPTOTIC NORMALITY
Assume that the limits defined in (13) exist, and that

f = kyot + 2> 0. (18)

Using arguments similar to those on pp. 38-9 of Gleser (1981), replacing

Lemma 4.4 (which is false) by a direct proof of Corollary 4.1, it can be shown that

and
O‘2+T2
R | R R L)
- k;oz;TZBZ ‘
where
200 28 0 1\ /1\
A= 04 0 k10 +02r2 28 52+k] 2k]s + (2T4-A2) B
00 2k 0 2k;8 4k8 i\ g2

Further, (X,y) is independent of (Sxx’ Sxy”? syy).

Standard Taylor series expansions (the "delta method") and Slutzky's theorem
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can be used on the formulas for o*, g* and 2(0*)2 given in Theorem 1 to show that

Consequently, the following result can be demonstrated.

Theorem 4. If the limits defined in (13) exist and (18) holds,

a* o 02(k1+62)+u2¢ -y
|| e st —E— N (0, “p U
2(0*)2 '02 ' 0 0 204
where
2 (ko k,+8%
p = asymp. var of g* = ¢~ (] + (1 ))
4 2
T T

Remark 4. The above results continue to hold if (xi,yi) , 1 =1,2,..., satisfy
the model (5), with the §i's i.i.d., but not necessarily normally distributed.

However, the common distribution of the gi'S must have mean vector 0, covariance
matrix I, and third and fourth moments and cross-moments identical to those of
a bivariate normal distribution with mean vector 0 and covariance matrix z.
(See Gleser, 1981, Section 4.)
To obtain large-sampie 100(15a)% confidence intervals (or joint confidence

regions) for o, B, and 02 = 02, we need a consistent estimator of the asymptotic
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covariance matrix of (o*, B*, 2(0*)2) . This clearly can be constructed,

estimating p by X 02 by 2(0*)2 and 8 by g*, provided that we can find a consistent

estimator of 12. One such consistent estimator is provided by
. ]

k Ko\
1 1 )
s
2 = <s*> <6*> kg 2le%)

(ky (%) )2 T kM)’

It can be shown that %2 is positive with probability one. Note that although

02 = k202 cannot be consistently estimated (see Section 2), and A also cannot be
.L‘ 0
consistently estimated, their sum r2 can be consistently estimated. Fortunately,

this is all that is needed to estimate the asymptotic covariance matrix of

(OL*, g*, 2(0*)2)I-

Using the methods outlined in Gleser (1983, Section 2.3), it can be shown

that when k2 is unknown (and T2 > 0), and the limits (13) exist, the estimators

2

a*, B*, 2(o*)" are BAN within the class of all asymptotically unbiased and

asymptotically normal estimators of d, B 02=02 whose asymptotic covariance matrix

e
depends on the sequence {u1:1=1,2,...} of unknown means only through the Tlimits
u and A. Since this class includes all estimators which depend upon the data
X, y only through X, y'and S (and are'regu]ar enough to permit Taylor series
éxpgnsions in X, y}_sxx, Syy? and Syy)’ this provides justification for the use
of a*, g*, 2(0*)2 in practice.

Research on this paper was supported by the Nationa] Science Foundation

under Grant No. MCS 81-21948.
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