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%. INTRODUCTION. Poisson processes are generally characterized by the

independence of increments (for arrival processes) or counts (for point
processes). We show that the weaker condition of independence of [no

arrivals] or [no points in sets] for non-oﬁerlapping intervals (disjoint sets)
is sufficient to characterize Poisson processes among processes where events
occur one at a time and no point has positiﬁe probability of being the site

of an event. The reader may refer to an earlier work due to Kallenberg (1973),
(1974), where the homogeneous Poisson processes are characterized under

different conditions.

%. DEFINITIONS. Leﬁ A be a random function on {0,») to the non-negative integers
such that A(0) = 0 and A is right continuous nondecreasing with unit jumps. We
shall refer to such a function as an arriﬁal process. In order for an arrival
process to be a Poisson process, the following definitions are most commonly

made in literature (see, e.g., Ginlar (1975), Doob (1953), Hoel, Port and Stone
(1972), Karlin and Taylor (1975), Parzen (1962), Prabhu (1965), Rényi (1970),

and Ross (1983)).
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DEFINITION 1. An arrival process {A(t), t > 0} is said to be a homogeneous
Poisson process if the following two conditions hold:

(i) for any n > 1 and 0 Sty <ty <e.es t < the random variables
A(tl) - A(tO), A(tz) - A(tl),...,A(tn) - A(tn—l) are mutually independent;

(ii) for any t, s > 0, the distribution of A(t+s) - A(s) is independent

of s.

DEFINITION 2. An arrival process {A(t), t > 0} is said to be a possibly non-
homogeneous Poisson process if the following two conditions hold:

(i) for anyn > 1 and O j_to < t1 <euo< tn < «, the random variables
A(tl) - A(to), A(tz) - A(tl),...,A(tn) - A(tn_l) are mutually independent;

(ii) a(t) = EA(t), t > 0, is continuous for all t > O.

Another approach is that of point process (see Karlin and Taylor (1975),
P. 31). The intuitive idea is that there is a complete separable metric space
X and on X there is a random point set Q. If X = [0,»), one way to get such
a point process is to take the set Q of arrivals of an arrival prdcess; although
the space need not be [O,w), this appraoch is almost general. We assume that

there is a collection C of Borel subsets of X satisfying the following conditions:

(a) The collection Ccovers X and separates the points of X, and if
C € C, N(C) = number of elements of C N Q is a (possibly infinite)
random variable.

(b) For every C ,...,Cm‘E C, there exists a finite collection 8 of disjoint

1

Di S C, i=1,2,...,n such that each Ci is a union of a subfamily of 8.

(¢) TFor every C with P(N(C)=0)=0, there exists a sequence‘{Ei} of elements

of C such that C=UEi and P(N(Ei)=0) > 0 for each i.



(d) For every C € C, there is a sequence {ﬂj} of finite partitions of € in C

such that

P(N(C) # sup M(wj)) =0, (1)
3

where M(7m) denotes the number of cells K of the partition 7 with N(K)>0.

Clearly N(C) > M(rw) for every partition m of C. Note that condition (c)
implies the nonexistence of a point in X which is almost sure to be in Q. Also
here we are not requiring that C be a semi-ring; howeﬁer,in view of condition (b),
the collection of sets closed under finite unions of the sets of C forms a ring

which we shall denote by R. We introduce the following definitions:

DEFINITION 3. A point process Q defined on a space X (along with a collection C)
as above is said to be a possibly nonhomogeneous spacial Poisson process provided
that for any n>2 and disjoint sets Cl""’cn € C, the random wvariables
N(Cl),...,N(Cn) are mutually independent Poisson random variables.

Note that for such a'point process Q, the sets C € C with EN(C)<e form a

covering of X for every e>0.

DEFINITION 4. Let A be a nonnegative finitely additive set function defined
on C. Then a point process Q defined on a space X as above is said to be a
A-homogeneous spacial Poisson process if it satisfies definition 3 and if for

any disjoint sets A A.In and disjoint sets Bl,...,Bn all in C,

120"

CIA(A,) > IA(B,) = P(Z N(A,)=0) < P(Z N(B,)=0). (2)
i i j J i i j J

Note that it is possible for A(B) # A(C) whenever B # C, so some condition

of the type (2) is needed.



%. RESULTS. Let Q be a point process defined on a space X (together with
the collection C) as in section 2 and let Z(C) be the event C N Q # ¢ (empty set)

or equivalently that N(C)>0. ‘Then we have

THEOREM. If the events Z(Ci) are independent for disjoint Ci'st C and if

for every ¢>0 and every A € C with P(Z(A))<1, there exists a finite covering

of A'by sets {Ci} in C, each with P(Z(Ci))<e, then Q is a Poisson point process.

If in addition P(Z(C)) satisfies the condition (2) for some nonnegative

finitely additive function X on C, then Q is A-homogeneous and E(N(C)) is

. proportional to A(C).

Before we prove the theorem, we need the following lemma.

LFMMA 1. Let Y be a Poisson random variable with mean 6>0. Let Y'=0 if

Y=0 and Y'=1 if_Yz;. Then

0 < P(YY') < E(¥-Y') < 02/2. (3)
Proof.
P(YAY') = ) P(¥=k)
k=2
< Y (k-1)P(¥=k)
k=2
= E(Y-Y') = 6-(l-exp(-B)) < 62/2. O

Proof of the Theorem. Here all the sets will be considered in C unless

stated otherwise. The idea of the proof is that if a set C is divided into
"small' sets Bi's, the number of points in C is certainly at least the number

of Bi's with N(Bi)#O; since points do not coincide it will be unlikely that



any N(Bi)>l. We modify this approach slightly. For each C we define

n(C) = - gn [1-P(Z(C))]. Note the independence of the Z's for disjoint sets

in C is equivalent to the additivity of n on C. Let Ai’ i=1,2,..., I,

be disjoint elements of C. Since n(A)=0 implies N(A)=0 a.s., without loss

of generality we assume‘that n(Ai)$0, i=1,2,..., I. We consider first the case
when n(Ai)<w, for all i. We shall proﬁe that N(Ai)’ i=1,2,..., 1, are mutually
independent having Poisson distributions with means n(Ai), i=1,2,..., I.

Note that for each Ai’ there exists a sequence {“ij}'Of finite partitions of

Ai such that

(i) m,., < C,
1]

(ii) ﬂi,j+l refines ﬂij,

(iid) sup n(K) > 0, as j - 0,

KEm, .
1]

(iv) P(N(Ai) # sx;p M('nij)) =0,

where

M(r, ) =) Y(K), (4)
1] KEr, .,
ij
and Y(K) are independent Bernoulli random variables with P(Y(K)=1) =
(1-exp[-n(K)]). Here (ii) follows from (b), (iii) follows from condition
assumed in the theorem and condition (b), and (iv) follows from condition

(d). Now for each K € ﬂij define W(K)=0 when Y(K)=0 and when Y(K)>1,



let W(K) = r with probability

L @17 expl-n(®)] A-expl-n@®DF,  r=1.2,..., (5)

so that W(K), KEﬂij are mutually independent Poisson random variables with

means n(K). Now let

L(r,,) = ) WEK). (6)
+u KEﬂij

Then Li has a Poisson distribution with mean n(Ai). Moreover since the Ai's are

disjoint, the Li's are mutually independent. Also using the lemma we have

PA®) #WEK) <3 1%, Q)
so that
. l v 2
L PO FWE) <5 ) [n®)]
Rem, | Ker, .
ij i]
<Llse n®1] n®
Kem, . REr . .
ij ij

n(A;) sup n(K),
Rem, .
ij

N =

which tends to zero as j»» in view of (iii). Thus P(M(ﬂij) # Li(ﬂij)) tends

to zero as j>». Also, in view of (iv), P(N(Ai) # M(ﬂij)) tends to zero as jo,



so that it follows that P(N(Ai) # Li(ﬂij)) tends to zero. Consequently
N(Ai)’ i=1,2,..., I, are mutually independent Poisson random variables with
means n(Ai), i=1,2,..., I. Consider now the case with n(Ai)=w for some i or
equivalently with P(N(Ai)=0)=0. Since in view of conditions (b) and (c)

. . o«
there exists a nondecreasing sequence of {E,_},
i

such that each E,, can be
j=1 ij )

expressed as a finite union of disjoint sets in C, Ai = UEij with n(Eij)+w;
since as j-o, N(Eij) are Poisson random variables with means n(Eij)<oo for all j,
it is easy to see that P(N(Ai)=W)=1. In either case we can say that N(Ai),
i=1,2,..., I, are independent Poisson random variables With means n(Ai),
i=1,2,..., I. Finally if condition (2) of definition 4 is satisfied

for some nonnegative finitely additive function A on C, it follows that the
process Q is A-homogeneous. The only thing that we still need to prove subject
to (2) is that EN(C) = n(C) is proportional te A(C). In this context we

note that since both n and X are finitely additive, their definitions can

be extended to the ring R. Also for the last part of the theorem we find

it convenient to work in terms of these extended Qersions of n and A defined

on R. The assumed condition (2) in terms of their extended ﬁersions can now

be rewritten as

A(8) > A(B) = n(A) > n(B), V A, B €R, )
or equivalently

n(A) < n(B) = A(A) < A(B),. VA, BER. 92)

Also the condition of the theorem satisfied by n(A) for all A € C with



n(A)»~, and the condition (b) on C imply (%) given below for the extended

version of n on R.

For every €>0 and every A € R with n(A)<w, there exists a finite

o . (*)
partition of A in R, say'{Di} with A=UDi and h(Di)<e for every Di'

The proportionality of n and A now follows from lemma 3, which in turn needs

lemma 2 giﬁen below. O

LEMMA 2. Let two nonnegative finitely additive set functions n and A be

defined on sets of a ring R and satisfy the condition (8). Let n satisfy the

conditions (*) and (c) given above. Also to avoid trivial cases we assume

that there exists a set B € R such that 0<n(B)<x. Then we have

(1) A(C) = 0 e n(C) = 0,

(ii) A too satisfies the condition (%*),; and

(iii) for sets A; and A, €R

MA) < MAY) <@ n(A) < nA). (10)

Proof. (i) That A(C) = 0= n(C) = 0 follows by using (8) with A = ¢ and

B=C. Conﬁersely let n(C) = 0. Since 0<n(B)<= so that n(C)<n(B), using (8)

we haﬁe A(B)>0. Again in ﬁiew of (*), for an arbitrary n, there exists a

finite partition of B in R, say {Di}such that UDi=B and h(Di)<[n(B)/nJ for all i.
Evidently the #{Di's:'n(Di)>0}>n. Howeﬁer,since for such Di's, 0=h(C)<h(Di),

we haﬁe X(C)<X(Di) so that

iz n(@)>0} < {i: ”Di)>°}' (11)



Consequently since

#{D,'s: n(D,)>0} A(C) < ] )\(Di)iz MD,) = A(B), (12)
1

Di: n(Di)>0

we have A(C) < A(B)/n for all n>1, so that A(C) = 0.

(ii) Let C € R be a set with n(C) and A(C) both finite. Since when

A(C)=0 (*) is triﬁially satisfied, in view of (i) we let both n(C) and A(C)

be positive. Now for eﬁery n, using (%), there exists abfinite partition of

C in R, say {Di} with C=UDi and n(Di) < [n(C)/n].for all i. Let D* be a Di with
n(D*) = min {n(Di): n(Di)>0}. Then 0<n(D*) < n(C)/n. Since n(Di?=0@ X(Di)=0,
we also have A(D*)>0; in fact we can choose D* to be such that A(D%) =
min{A(Di): A(Di)>0}, so that 0<A(D*) < A(C)/n. Now take a new finite partition

of C in § say {BR} such that n(ﬁ%)<n(D*). From (%) it follows that
B < A% <A/, ¥ 2,

which prersv(*) for A. Next consider the case where C € R, h(C)=°° but A(C)<e.

In view of cbndition (c), there 1is a sequence C, -~ C with CkG R s O<h(Ck)<°°

k

and n(Ck) x ©, as k>, Likewise X(Ck) -A(C). Choose k, large enough such

0
that A(C\C, )<e. Now treat the set C as aboﬁe since both A(C, ) and n(C, )
k k k k

0 0 0 0

are finite. The finite partition of Ck
0
(C\Ck YE R, yields the desired partition of the set C.

0

so obtained together with the set

(iii) Let Al, A2 € R, A(Al) < A(Az) < o, With €=A(A2)—X(Al), in view of

(*) there exists a finite partition of A, in R, say'{Di}, such that A =UDi’

2 2
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A(Di)<e for all i. Without loss of generality, let Dl be such that A(Di)>0 and
hence n(Dl)>0. Consequently A(Az\ Dl) > A(Al) so that using (8) we have

\
n(Az\Dl) z_n(Al). Hence

n(a,) = n(A,\D;) + n(D) > n(a\D;) > n(a)). O

LEMMA 3. Let n and A satisfy the conditions of lemma 2. Define §(x)=y

if for some A € R, A(A)=x and n(A)=y.

(1) ¢ dis uniformly continuous over a dense set in [0,a) and hence

can be extended uniquely to a strictly monotone ¢ with its

domain = [0,a), where o = sup A(4).

AR

(ii) The extended Y satisfies

VaHR,) = Y(x) + Bk, 0 <x L X, <@ x F x, < a, (13)

so that P(x) = Bx, for some B>0 and hence 1 and A are proportional.

Proof. (i) Clearly the domain of the function ¢, say 8(¢), is dense in [0,a).
It is sufficient to proﬁe that for eﬁery £>0, there exists a §>0 such that

: LY ; § 4 %
if Ofxl<x2<xl+6, Xys X, € 8(y), we have w(xz) w(x1)<e. In view of condition (%),

' 1
there exists A € R with 0<n(A)<e, for a given e>0. Take § = E—A(A). Now

for 0 < Xy < XZ < 8§, X1 X, € S(), let E

= A(El) and x

1 and E2 € R be such that

%y 9 = A(Ez). Then

0 < A(E)) < A(E,)) < & < A(A),
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from which, using lemma 2 (iii), follows

o
A

n(E;) < ’n(Ez) < n(A) < e,

so that n(EZ) ~‘n(El) = w(xz) - w(xl) < g. Again for the case with

0<xl<X2<xl+G, XZ

for some El’ E2 € R. Then using lemma 2 (ii), there exists a finite partition

> 8, Z1s X, € 8(¢), as before let x, = A(El) and x, = A(EZ)

{Di} of sets in R such that E, = UDi and A(Di)<6,;for all i. Thus there exists a set

9
C, which is union of some of the Di‘s such that 6§ < A(C) < 28 = A(A) holds,

so that

A(Ei\C) = x(Ez) - A(C) = X, - A(C) < x, = 8 < X, = A(El). (14)
Consequently,
P(x) > PAENC) = n(E,\C)
= n(E,) - n(©)
> Y(xy) - $(A(A))
= ¥(x,) - n(d)
> h(x,) - e.

Here the strict inequalities follow from (8) and lemma 2 (iii). The same
reasoning applies to justify the strict monotonocity of the extended y to the

domain [0,a).
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(ii) TLet >0 and § be as defined in the proof of part (i) above. From part (i)

it follows that for 0 < x., x, < @, x. + X, < O, there exists C € R, such that

1° 72 1 2

|acc) - (x1+x2)| < §/2. (15)

Then in view of lemma 2 (ii), there exists a finite partition {Ei} of sets

in ® with C = UEi and'A(Ei) < 8/2 for all i. Consequently there exist disjoint

sets Cl and CZ’ both unions of different Ei'svsuch that C = ClU C2 and

|r(cy) - xll < 8/2, |acc,) - le < 8. (16)

Using part (i) abo#e, (15), (16) and the fact that n(C) = n(Cl) + n(Cz), it
follows that In(C) - ¢(x1+x2)|<s, ‘n(Cl) - w(xl)l<e and |n(C2) - w(xz)i<€, S0

that
| (xptx,) = W(xp) = DGy ] < 3e. an

The number & being arbitrary, we have proved (13) and the lemma. O

We observe that the usual methods of extending measures to a o-field can

be carried out also in this case, so that we have

COROLLARY 1. Under the assumptions of the theorem and the added assumption:

(=]

P(N(C) = 0) = T P(N(A,) = 0)
i=1 *

e ()

.ﬂ Ai’ Ai‘diSJoint.
i=1

Wheneﬁer Ai, CeEC, C=



13

N(Bi) are independent Poisson random variables if Bi's are disjoint elements

of the o-field generated by C.

Here the condition (**) is merely the o-additivity of n.

COROLLARY 2. If {A(t), t>0} is an arriﬁal process on [0,») such that

i) If 0 f_to < t1 <..a< tn the events [A(ti) = A(ti—l)] are

independent, and

(ii) for each t > 0 and e>0 there is a 6>0 such that P(A(t+S) =

A((E=8) v O) > 1 - &,

then A is a Poisson arriﬁal process. If (i) holds and P(A(t+s) = A(t)) is

NOTE. After this paper was written our attention was drawn to a recent paper

due to Brown (1984) appeared in The American Mathematical Monthly, Vol. 91,

pp. 116-123, which deals with the same topic as ours. Howeﬁer; the main point
of our paper is that we only assume independence property for the emptiness

of disjoint sets rather than for the numbers of points in them, and we do not
even assume this for all measurable sets, but only for "sufficiently many"

of them. Also the special case of arriﬁal processes with X = [0,») was

already dealt with in a Ph.D. dissertation of Huang (1983).

ACKNOWLEDGEMENT: The authors are grateful to the referee for insisting that
they proﬁide some of the missing details which led them to remove some gaps

in an earlier version of the paper.
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