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ABSTRACT

We give a weak system of consistency axioms for “"rational" behavior.
The axioms do not even assume the existence of an ordering for axioms.
The conclusions are still that utility functions exist, both unconditionally
and conditionally given the state of nature; the unconditional utility is
a weighted linear combination of the conditional utilities; and the sépar-
ation of the weights from the conditional scales is not necessary and

even the possibility is questioned.



0. Introduction. There have been many axiomatic approaches to "rationality",

all of which obtain as a conclusion a Bayesian approach. Some of these,
e.g. Ramsey (1926), de Finetti (1937), only consider the "truth" of state-
ments about the state of nature, or about uncertain events. Others, e.g.
Rubin (1949a,b), Chernoff (1954), were not influenced by these sources

but took an approach based on the simple construction of a cardinal utility
function by von Neumann and Morgenstern. Some, such as Savage (1954),

were influenced by both sources.

To be as convincing as possible to a non-Bayesian, the axiomatic
assumptions should be intuitively reasonable, and as weak as possible.

The approach we take is based solely on the notion of choice of action
to be taken; while we certainly allow the consideration of hypothetical
actions, we do not consider the abstract question of "truth".

Two observations led to the weakening of the axioms and ultimately to
this paper. The first, an oral communication from Herman Chernoff, was
that there is no way to prevent the decision maker from randomizing, and
so the question of whether one action is preferred to another may even be
meaningless. We show that this is not so, but we do not assume it away.
The second was made by the author many years ago; formally the problem
of passing from one state of nature to an unknown state of nature is the
same as that of passing from one individual to society. The implications
are clear; unfortunately, while the conditions in Arrow (1951) are not
satisfied because of the treatment of randomization, the conclusions even
get worse; how can one compare the utility scales of two individuals?

From that, I came to question the comparison of the utility scales for



different states of nature. That this is a problem was already noted by
Ramsey; in this article the attempt by de Finetti, and also by Savage, to get
around this problem is questioned, and I reject their solution.

The only effect of the rejection of the necessary comparability of
utility scales for different states of nature is that one can no longer
separate utility from probability, the impact on "rational behavior" is
essentially unchanged. I am not at all disturbed by this inability to
make this separation; the use of "weights" rather than "personal proba-
bilities" has no observable consequences for the rationalist, and may

be more palatable to the user.

Another important observation is that the "prior" is essentially a
mathematical consequence of the existence of utility, and does not come
from a separate argument.

This does not mean that one is required not tq use a separate utility
function and prior, or even to add axioms requiring this, but that it is
not necessary for coherent behavior to require this, and coherent behavior

still remains Bayesian.



1. Utility. We give an axiom system for utility which we feel is

substantially weaker than most which have been proposed. The basic
concept is that of a choice set. We permit randomization from the
beginning; if S is any set, H(S) is the set of all random combinations
of elements of the set. We identify an element x of S with the proba-
bility distribution assigning probability 1 to x. Implicit in our
notation is the assumption that a lottery of lotteries is equivalent
to the obvious single lottery. This enables us to use ordinary alge-
braic notation, and equate finite probability mixtures with finite
convex combinations, as is usually done. Formally, we assume

Axiom 1. There is a choice-set function C defined on all subsets

of the action space: G . For all E, C(E) < H(E), and if E has 1, 2, or 3

elémeﬁts; C(E) 0.
Axiom 2. If T cH(S) and H(T)NC(S) # 8, C(T) = H(T)nC(S).

--Restwrigting the choice to a smaller set has the obvious conse-

quences.

Axiom 3. If C(S) # ¢ and 0 < a < 1, C(aS+(1-a){x}) = aC(S) + (1-a)ix}.

This is the statement that if a choice is given with probability
a, the choice made given this information is the same as the free
choice.

The remaining two axioms are more technical. The first seems
eminently reasonable, and is absolutely necessary for the existence
of choice sets if there are an infinite number of distinct choices,
such as choosing an integer. The second is essentially an Archimedean
axiom, and we shall discuss the consequences of removing it in the

appendix.



Axiom 4. If x; € H(S) and for all V cH(S), %€V and C(V) # § implies

x € C(V), then x €C(S).
In other words, if the possible choice x is not in the choice set of
S, it is not in the choice set of some subset of H(S) which has a non-

empty choice set.

To state the next axiom, let C({x,y}) = {x} and C({y,z}) = {y}.
For 0 <a <1, let U, = ax + (1-a)z. Then we need one of the
axioms.
Axiom 5k. If x,y,z, and a are as above, there is an a€ (0.1) such that
(a) C({y,ua}) = {y}
(b) C(iy,u3)) = u_
(c)
(d)

a

c) ye€ C({y,ua})

d u € c({y,ua})

(e) {fy,uyeC({y,u})

It is only necessary to assume one of these forms for all
X,¥,2z as above. The actual usermade will be to show that for some a,
C({y,ua}) = [y,ua], or y is equivalent to u . We shall now proceed

to prove

Theorem 1. Given axioms 1-5, there is a unique (except for positive

linear transformation) "utility function" U such that for all sets

E, C(E) = {x: x€H(E) and for all y€E, U(x) > U(y)}.
We prove this in several stages.

Lemma_1. Using Axiom 1 ‘for two element sets, Axiom 2, ggg_Axiom 3,

x#y, C({x,y}) is one of {x}, {y}, [x,y].
First, let u#x, u€ C({x,y}). Then u€ C({x,u}). For any ve€ (u,y],
u=ax+ (1-a}v,0 < a <1, and hence v€C({x;v}). But also u€C{{x,v}),

so vE€C({x,y}).



Thus if any interior point of [x,y] belongs to C({x,y}), all of
[x,y] does. If both x and y belong to C({x,y}) and 0 < a < 1,
u=ax + (1-a)y €C({x,u}). Since also x€ C({x,u}), u€ ({x,y}).

We define the preference re]ation;>~by

Definition 1. x »y if x€ C({x,y}), x.~y if {x,y}  C({y,x}), X <y if x € Cix,y}

Most treatments of utility start with the assumption that the
relation > is a complete transitive reflexijve relation and define
x€ C(E) only for x€E by x€ C(E) if for all y€ E, x 7 Y. This assumes
that only nonrandomized strategies are to be considered in establishing
the choice set and that there is a "preference relation" among all
randomized strategies. They then adjoin randomized strategies by
closing C(E) under mixtures, whereas we approach things in the other
direction.

Lemma 2. The relation 3 is transitive, i.e., x€ C({x,y}) and

y€ C({y,z}) imply x€ C({x,z}).

We need only show x€ C({x,y,z}). By the same argument as in
Lemma 1, at least one of x,y, and z is an element of C({x,y,z}).
If z€ C({x,y,z}) then since y€ C({y,z}), y€ C(ix,y,z,}). If
y€ C({x,y,z,}) then since x€ C({x,y}),x €C({x,y,z,}), q.e.d.
Lemma 3. For all E, x€ C(E) if and only if x€ H(E) and for all

YEE, x 2.

First, if x€ C(E) then x€ H(E). If y€E, then {x,y}NC(E) # ¢,
and hence x€ C({x,y}), so x zy.

Now suppose x€ H(E) and X.zy for a]T y€E. It is easily seen
that x >y for all y€ H(E). Let V be any subset of H(E) such that



x€V and C(V) # 8. Let y€ C(V). Then x€ C({x,y}). Then by Axiom 2,
x€ C(V), g.e.d.

Lemma 4. Let x >y and y,;?z, and not z > x. Then there exists a
unique a, 0 < a < 1, such that y~ax + (1-a)z.

Consider the relation y >bx + (1-b)z, 0 < b < 1. This holds if
b=0, and it is easily seen that if it holds for any b it ho]ds for all
smaller b. Thus there is a unique a, 0 < a < 1 such that
y 3bx+ (1-b)z holds ifb< a, and fails if b > a. We wish to show that
y~ax + (1-a)z. This requires the use of Axiom 5. We require that
a fixed form holds for all triples.

Before doing this, let us observe some geometrical consequences
of the axioms, in particular of Axiom 3 and the fact that partial
ordering is a connected transitive relation. In particular, if we fix

X then the transformation
y't =y + (1-2)x

preservés z1f X is positive and interchanges zand xif A is negative,
provided the transformed points correspond to actions. This enables
us to assume that a # 0 and a # 1, and that if one undesirable
inequality confronts us, we can reverse that inequality.

Let us now return to the proof. Form (5e) of the axiom gives
us the result immediately. Otherwise, assume yAv = ax + (1-a).

If y >v, then x >y and y > v, (5a) or (5¢) immediately
make y >u for some u€ (v,x); however this contradicts the definition

of a. Ify <v, then v >y and y > z. However, we can find an



affine transformation yielding y', v, and z' such that z' » y' and y' » v'.
Then (5a) or (5¢) immediately make y'>u' for. some u'e(z',v'). Then the
preimage u e(z,v) and y < u; however this also contradicts the definition
of a. A simi]ar.argument holds for (5b) or (5d), reversing the order.

We can now define a utility function. Let x and y be given, x s y.
Let £ > n be real numbers. By Lemma 4, for any z there is a unique a, such
that z = a_x + (1-az)y, where this is interpreted by the usual rules of

algebra if 3, < 0 or a, > 1. It can be shown that

= ha, +_(1-A)aw. Define U(z|x,y,g,n) = ag + (1-az)n. Then it

z+(1-2)w
is easily seen that

Lemma_6: For any x » y, & > n the function U(z|x,y,&,n) is a convex-linear

mapping of A into the reals, and z P w if and only if

U(z](x,y,€,n) > U(w|x,y,€,n). Furthermore, if U(u|x.y,E,m) = u, U(V|x,y,E,m) = v,

">V, then U(le,YaE,n) = U(ZIU,V,LI,\))-

Lemma 7: If x» y, & >n, £ >n', then there exist o, t such that

U(z|x,y,&",y") = o U(z]x,y,E:m) + t, o > 0.

Let us now prove the theorem. By Lemma 6 and the properties of ., if
we define Z = {x: x e H(E) and for all y ¢ E, U(x) > U(y)}, Z must be a
subset of C{(E). If C(E) # #, Axiom 2 then tells us Z = C(E). Now let
Ve E, Zn H(V)# d,andC(V) # 4. Then the same argument shows that

C(V) = Zn H(V). Hence the theorem follows from Axiom 4.

2. Choice with many "states". We assume that there is a set @ such that

the choice problem is envisioned for each w ¢ © and also an overall choice
problem is considered. Two immediate examples come to mind: @ may be the
class of states of nature, or @ may be the set of all individuals in a

population. Suppose we assume that the choice process given w is "reasonable"



for each w € @, and the overall process is also reasonable. We will need
an additional "obvious" condition.

We assume that there are choice sets C, and for each
w e Q,Dw, such that C and all Dw satisfy the assumptions of the preceding
section. We also assume that if one action is at least as good as another
for all w, it is at least as good, i.e.,
Axiom 0: If x e Dw {x,y} for all w € @, x e C{x,y}.

By Theorem 1, there exist utility functions U and Vw, w e §, correspond-

ing to the choice sets C, Dw. Axiom 0 then yields

Lemma 8: If Vw(x) 3_Vw(y) for all w, U(x) > U(y),

Corollary 9: lj_vw(x) = Vw(y) for all w, U(x) = U(y).

| Let us define vx(w) = Vw(x). Then Corollary 9 states that U(x) is
determined by the function Vs i.e., there is a functional & such that
for all actions x, U(x) = @(vx). Now lemma 8 states that if f = Wy s
g = vy f > g implies o(f) > e(y). Also from the convex-linear properties

- of utility, o(af + (1-a)g) = ad(f) + (1-a)e(g). This implies that
Lemma 10: If {f;,f,,91,9,} < 8(e) and f,-f, = 91-9,, then U(f])-U(fz)

= U(g]) - U(gz)'
. ] 1 _1 1
This holds because §-f] + 59, =3 f2 + 7 9 and we can then use

the linear-convexity of .

Let us now define, for f,g e 8(e), ¥(f-g) = o{f)-o(g). Then

Lemma 11: v is a well-defined function on {f-g: f,g e 8(2)}; also ¥ i

linear-convex and for all o with |a| < 1, ¥(ch) = a¥(h), and if h > O,

y(h) > 0.
Lemma 10 gives the uniqueness, and Lemma 8 the positivity. The rest

follows from the linear-convexity of @.



We may also extend ¥ to all multiples of elements in its domain.
We also call this extension¥. Then

Lemma 12: V¥is a positive linear functional on a linear space.

Since "positive linear functional" is another term for "finitely
additive integral", we have established the following.

Theorem 2: Under the assumptions of this section, "rational" choice

is equivalent to maximizing a utility function, and the difference of the

utilities of two actions is a finitely additive integral of the difference

of their utility functions as functions on q.

3. Scaling and the existence of a "prior". We have already observed that

utility U can be replaced by U' = oU + t. Similarly Vw can be replaced

by o V. + A . Then¥(f) =L ¥(o-f). In the finitely additive case, an
integral need not correspond to a measure. For example, suppose ¥ is the mean
with respect to the "diffuse" prior on the 1ntegers? and let P, T w- Then
¥'(h) is the mean of bé@).. If this is not 0, the function h is unbounded;

yet the finitely additive integral can be well-defined for all those h
hiw)
W

for which is bounded. In the countably additive case, the integral still
‘may be - the integral with respect to a heasure,vf'bui?»this:wnéasurrei

need not be finite. Thus the problem of the meaning of "prier" is raised.

In the second situation in section 2, we are considering the problem

of a so-called "social welfare function". It is extremely unclear how one
could possibly compare the utility scales of two individuals. Our axioms

are not quite compatible with Arrow's [ 1 ],but our conclusions are even
stronger -- a social welfare function must be dictatorial if it corresponds

to "rational" behavior and can be computed from the individuals' orderings

only.
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In the case of unknown state of nature, there is a conceivable way
of establishing a separation between the utility scale and the measure scale.
To show why it is necessary to be so finicky, let us considér a typical
‘argument about establishing a posterior. The usual method is to say that
a set @ € @ has prior probability p i for ¢ small (positive or negative) the
amount to pay to receive e ifwu€ @ 15‘€P€s and P_ approaches p as >~ 0.
To see why this is not so, suppose that for w € ® there is high inflation
and for w ¢ @ there is no inflation. Clearly, the equating of equal amdunts
of money with equal changes in utility does not seem reasonable.

In an earlier unpublished report of the author (with stronger axioms),
it was assumed that there are two non-equivalent actions which lead tb fhe

same _history of the universe. independent of w. Since the state w is usually

highly associated with the history, and may in fact even have some components
determined by it, this gives some difficulty. This is not an absolute
difficulty, as the action space may contain purely hypothetical elements,

but the assumption no Tonger convinces this author. In this case we can

use these two actions to normalize the utility function and obtain a prior.
If we further assume that only the history of the universe affects the

utility, then the integral is the integral with respect to that prior.

4. Appendix. (1) If we assume that the action space is closed under

countable combinations, then we can show that the corresponding utility
is bounded.
(2) We can ascertain what happens if Axiom 5 is violated.

Theorem 3: From Axioms 1-4 there exists an ordered set Q of utility func-

tions, such that for any actions x and y, x.~ y ﬁf all g€ Q have q(x) = ql(y),

and if x# y, the first q € Q with q(x) # q(y) determines whether

X>yorys x.



n

Proof: Consider pairs of pairs of actions X1 < X5 Yy < Yoo Define

: _1 1 : . . .
Zij =7 X +§-yj. Then Z]],< 2195297 < Zoo- Then if we consider mixtures

of Z1 and z there is a cuta such that if 0 <8 <a, (1-B)z]1+6222'< Z109

22°
and if o < B <1, the reverse ordering holds. If 0 < a < 1, the differences

Xy = X and Yo - ¥y are comparabie; if o =0 Xo = X1 is infinitely greater

;ﬂgg_yz SRAL Let Xo > Xq3 We can set up a scale of all differences comparable
to, or infinitesimal compared to, Xo = X1 This gives a utility difference
scale to those differences. Let D be the collection of all comparability
classes; we then have a set of functions A such that for each de D there
is a 8€ A with 8 giving a utility difference scale on all intervals com-
parable to or infinitesimal compared to an element of d.- It can be shown by
use of the axiom of choice that there can be constructed a set of Tinear-
convex functions Q cofresponding to elements of D such that if x > y and
x-y € d then (a) if d' > d, qd.(x) = qd,(y)and (b) if & corresponds to d,
§(x-y) = qd(x) - qd(y). This establishes the theorem.

If the action space is also closed under countable combinations, Q

is well-ordered.

It is not clear how to extend this to the multiple state case, as a given
overall utility may involve different Tevels of individual utility functions,
and we may even be involved with infinitestimal sets of states with one

level of utility comparable to large sets of. states at a lower level.
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