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Summary. Consider a trigonometric regression of order m or a polynomial
regression of degree m. Explicit Ds- optimal designs are given for some
subsets of the coefficients. Bayesian type optimal designs are given for
various models involving the order or the degree. The designs are calculated

using canonical moments.

§1 Introduction. Consider the standard regression model where for each x or

level in X an experiment can be performed. The outcome is a random variable
k

Y(x) with mean § Bifi(x) and variance 02, independent of x. The parameters
i=1

8;» =1, ..., k and o2

are unknown while the functions fi’ i=1, ..., k are
known. An experimental design is a probability measure £ on Z. If N obser-
vations are to be taken and & concentrates mass 51 at the points X; where
Ngi = u; are integers, the experimenter takes N uncorrelated observations,
n; at each X The covariance matrix of the LSE of the parameters Bi is

given by (UZ/N)M;](E) where M(g) is the information matrix per observation of

the design £ with elements mij= ffifjdg. For an arbitrary probability measure

*This research was supported by NSF Grant No. MCS-8200631
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or design some approximation will be needed in app]ications.x

One of the more commonly used criterion for choosing a design £ is the D-
optimality criterion which maximizes thedetermiinant {M(¢)|. This criterion was
developed largely by Kiefer (1959, 1961, 1962) and Kiefer and Wolfowitz (1959,
1960) and many others. If only a subset of the parameters is of interest the
corresponding design is usually called a Ds- optimal design. This corresponds

to spliting the information matrix M into blocks

M = (Manz)
- )
21 Moo

where M, is -sXxs. The parameters B are correspondingly split into g = (51,82)

V\hereB2 contains the parameters of interest. The Tower-right block of M']

is the inverse of § = Moo Moy M{} M,5. The D_- optimal design for estimating
the parameters g, maximizes [}|. Since [M| = [M| |Y| this corresponds to
maximizing the ratio [M|/[M;;].

When the regression function is a polynomial on an interval, say [-1,1]
the matrix M(z) becomes the classical H?nke1 matrix with elements mij = b1+j,
where bV are the ordinary moments bV = fﬂ xydg(x). In the papers Studden
(1980, 1981, 1982) and Lau (1983) it was shown how explicit solutions could be
found for the D or DS- optimal criterion. This was done using orthogonal
polynomials and certain canonical moments. To accomplish this the determinants
M| or |M]/[M1]| were expressed in a very simple way in terms of the canonical
moments, allowing obvious maximizations. - The more difficult part was recovering
the design for a specified set of canonical moments. This was relatively
straight forward but somewhat intricate.

The present paper is a sequel to the papers mentioned in the last paragraph.

Here, attention is focused both on the polynomial regression on [-1,1] and the
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trigonometric case. The latter situation has regression function.

(1) g = (1, cos 6,... cos mg 5 <8 <m

sin 8,... sin me)

Canonical moments will again be used to analyze certain aspects of trigono-
metric regression.on the circle -m-< 6 <-r and to show the intimate relation
between the trigonometric regression‘on‘the circle and certain polynomial
models on [-1,1].

In Section 2 a small portion the results for the polynomials is described
and reviewed. Section 3 introduces the canonical momehts for the circle and
discusses some simple properties and related material. Section 4 gives a
different proof of the :iD-optimality for certain uniform designs on the circle
and gives DS- optimal designs for the cosines or sines and indicates the
relationship between these two sets of functions and the classical Chebyshev
polynomials of the 1st and 2nd kind. A Bayes type analysis, originating with
Lauter (1974), which provides for a sort of prior to be put on the cosines and
sines is also discussed in Section 4. In Section 5 the Bayesian type analysis
is carried further in discussing certain robust Bayesian type designs for the
order in the trigonometric model or the degree in the polynomial model.
Section 6 contains a discussion of DS- optimal designs for determing whether
odd or even terms are present while the final section relates certain half

angle trigonometric series to other polynomial type functions on [-1,1].

§2 Polynomial Regression. Beforevstarting a discussion of the trigonometric

regression in (1.1) the canonical moments for the ordinary powers are described
and some material needed in latter sections is reviewed.

Let f(x) = (1, X,..., xm), x: € [-1,1]. For an arbitrary design
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or probability measure £ on [-1,1] Tlet bk= [xkdg(x), k =0, 1,... denote
the ordinary moments of £. Let b: denote the maximum value of the ith moment
over the class of measures with moments b0 b], b2,..., bi—]' Similarly Tlet

b?’denote the corresponding minimum. The canonical moments are defined by

(2.1) v i i i=1,2,...
i

Note that 0 < Py < 1. By convention the canonical moments are left undefined

+
whenever Cj - C4

(1980) and shown in Lau (1983) and Skibinsky (1967) that the determinant

= 0 and the sequence is terminated. It was indicated in Studden

[M(2)| could be evaluated in terms of the canonical moments. This value was

given by
m .
: . m+1-1
(2.2) Dop = IM(e)| = k. 151 (£5.7 E23)
; — m(m+-l) - - - LT 2 =
where km = 2 R QO =1, C-I = p:l, C'I = q1_]P1,13 2 and p1+q1 1. A

simple inspection of (2.2) shows that the D-optimal design maximizing |[M(g) |

has canonical moments

Poisy = 1/2 i=0,1,..., m-1
(2.3) ©omeit] i=1,2,...,01

Poi = Zm-27+1

p2m =1

We have used the fact that the canonical moments p; range "independently"
over [0,1]. The odd moments equal to 1/2 corresponds to measures symmetric
about 0. The sequence (2.3) is a basic sequence; the even moments starting

from the top are simply 1, 2/3, 3/5, 4/7, etc. It was indicated in Studden
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(1980) that these are closely related to Lebesque measure on [-1,1] which has
odd canonical moments equal td one-half and even canonical moments given by
1/3, 2/5, 3/7,... .

Standard procedures are available for recovering the measure or design
corresponding to (2.3) or any sequence where Pp = Qor 1 for some n. Some of
the procedures are described in Studden (1982).and Lau (1983) and will not be
given here. For the D-optimal moments in (2.3) the measure -z, as is well
known, has equal mass on the roots of (1-x2) B&(x), where Bm is the mth
Legendre polynomial orthogonal to Lebesque measure on [-1,1].

The case where estimation of only the highest s coefficients 8

P41
B (r+s=m) is of interest was considered in Studden (1980). The canonical
moments in (2.3) then change s0 that Ppi = 1/2 for i =1, 2,..., r. Certain
weighted regression situations were considered in Studden (1981). Here, the
regression vector f(x) = (1,x, ...,xm) is replaced by f(x) = Mw(x) (1,x,...,xm).
The weighted regression is easily shown to be equivalent to letting the variance
depend on x through cz(x) = oz/w(x). Special cases of w(x) will be used in the
analysis of the trigonometric regression, so the determinants corresponding to:
(2.2) are listed here. The proofs are given in Lau (1983). If f(x) = /W(x)

(1, X9uurs xm']) and w(x) = 1-x% the determinant (2.2) interchanges p; and g,.
That is

= m
i

| | _i+]
(2.4) D, = [ME)]| =k )

-I ('Y. 'Y.
m 5oy t2i-172i
where Yp = Gps vy = pj-1‘qj’ij-= 2,3,... and km is given in (2.2). If
f(x) = M(XJ (1,X5...,x") and ‘w(x) = (1-x) or (1+x) then the corresponding

determinants are respectively given by

= =3

_ m-i+]
(2.5) Dome1 = B (52i%2441)

and o
. <M

Lo m-i+1
2mt1 T A B (Ypi79541)

—
[y
(o))

~—
[ew iy

|



where in S = (m+,1)2 n 2.

Some robust type '.D-optimal designs were considered in Studden (1982).
Here one is interested in getting close to D-optimality for regression of
degree r while guarding to some extent against the coefficients Br+1""’8m
being not zero. In Lau (1983) a rather extensive investigation of the
canonical moments was undertaken. These results allowed for some simplifica-
tion of the proofs of earlier results and provide many new applications.

The canonical moments for the powers can be generalized to the Fourier

coefficients on the circle, where analysis is actually much simpler. This is

discussed in the next section.

§3. Canonical Moments For Trigonometric Functions

Here we are dealing with the vector of regression functions g given by

(1.1). For certain questions it is easier to work with the complex form using

(3.]) h = (e-ime, e-'i-(m—])e" io ) ime)

S I <
The functions in g are simple linear combinations of those in (3.1) so that we
may write g = Sh where S is a nonsingular square matrix of size 2m+1. The

information matrix Mg = fgg'd@3 for a given design on -1 < 6 < 7 can then

be written as

Mg(c) SMh(c)S'

ST()ds"

ST(¢)S

The matrix J has ones down the diagonal from the upper right to lower left
and zero elsewhere and the bar on S denotes complex conjugate. The matrix T

is the classical Toeplitz matrix



_ _ m
(3.2) T = Ton = (&5 50350
where
m
-ik
¢, = [ ¢ '%%o(e) k =0, 1, £2,

The determinant of T, will be denoted by A, =-|T,|.

It is fairly well known that a given sequence c_, Cys iwes C is a

0 2+1

trigonometric moment sequence iff Ap > 0, k=0, 2, ..., ¢+1. In this case,

8+ > 0 provides limits on c

is contained in a specific circle

if Co> c]? cees C, are given the inequality A o+1°

It can be shown that the value of c2+]

depending on Co» Cqs +vs Cp For example cq can be anywhere in the unit circle

so that the first canonical moment is given by ay = ¢cq. If ¢ is fixed then
|2 2

Ay > 0 if and only if |c2 - C% < Ay. Thus ¢, Ties in a circle of center c?

and radius Aq- The second canonical moment is therefore given by

Hv e B e

a
2 A-I A]

In general the (2+1)th canonical moment is given by

2
(3.3) T T I T A TP

where
Coor = Ioignl
T L5=0

The a,.q are defined only as long as A, > 0. A discussion of the a_, and some of

% 4
the material below can be found in many sources. The best for our purposes seems

+

to be Geronimus (1948). He shows, among many other things, that
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k-1+1

k
(3.4) Ay =1E

2
. (]'lail |

If the measure o is symmetric about zero there is a close connection between
the quantities a, defined in (3.3) and the quantities P, defined for the
polynomial case in (2.1). If ¢ is symmetric about zero then [ sin kedo(s) = 0

and the a, are real. There is a 1-1 mapping between' symmetric o.6n the

circle and measures ¢ on [-1,1] defined by projecting o on [~-1,1] by the mapping
X = cos:6. The function cos ko = Tk(x) is a polynomial in cos ¢ of degree k
which is the classical Chekyshev polynomial of the first kind. In this case

¢ = [ T, (x)de(x). Using the fact that the highest coefficient of T, is
:

positive we can argue from the geometrical definitions of a_ and Py that we

2
have

(3.5) a, =2p, -1

That is P, is the normalized distance of bz from the lower end of its range

while a2 is measured from the center.

Some simple properties of p, can be derived readily from more accessible

properties of a,. For example if we rotate (counter-clockwise) the measure o

through angle 80 to give du(e) = do(e-eo) then the resulting moments cé
. fikeo .
satisfy C = © C+ Writing down the definition of a, one can extract
izeo
factors of e from various rows and columns in the determinants involved to

show that

-ikeo

(3.6) a = e 3 k=1,2,...

Using ( 3.6) with 8y = m we can immediately see the result on the Py of reversing
a measure £ on [-1,1]. That is, if £ is on'[-lglﬂ;‘ahd dg'(x) = dg(-X)vthe

resulting transformation on the circle rotates 6 through an angle By = 7>
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. . ' k . . .
in which case a = (-1) ay - The corresponding Py then satisfy Poi = Poj and

P2it1 = 1-P2i41-
In most of the applications below, determinants related to 4, or|Mg|, etc.
will be maximized. The resulting answers then appear in terms of the a; or p..
As in the polynomial case the problem arises of how to recover the resulting
design o. In most cases the problem will involve a design o symmetric about
zero in which case the corresponding £ can be found and projected symmetrically
back onto the circle. To find the £, as mentioned previously, we shall appeal
to results in Studden (1982) or Lau (1983). The procedure in obtaining g is
based on the fact that the support of & consists of the zeros of certain
orthogonal polynomials which are written recursively in terms of the canonical
moments. The weights or mass on the support are then obtained by solving certain
1inear equations. The general trigonometric case is available. In certain
Timiting cases where we have an infinite number of |ail < 1 the corresponding
density is of some interest. For completeness we therefore describe some of
these results.
Given the values Cys Cosenn the canonical moments ays Ay,... are defined
by (3.3). The canonical moment a, will satisfy [ail < 1 as long as Ay > 0.
The corresponding orthogonal system of polynomials is defined by
Cg €1 " ck_1 1 '
C_1% °** k-2 z
(3.7) Pk(z) = ]

Bk-1
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These are orthogonal with respect to ¢ in the sense that

f7Pk(z) pﬁ(z) do = 81 Mk
where hy = Ak/Ak_1 and z = eje. Define P: (z) = ZK PKZ-]) where P denotes that only

the coefficients have been changed to complex conjugate. The polynomials Pk

satisfy
PO(Z)EEﬁ]
(3.8) Pk+](z) =z Pk(z) - 5k+1Pﬁ(z) k=0,1,...
If the sequence a, is such that |a1| <1l,1i=1,2,..., nand |an+]! =1, the

corresponding ¢ is unique and supported on the zeros of P_, .(z) = 0. These

roots are all distinct and all on the unit circle z = e1e. This follows since

n+1

A = 0 and

n+1

2
f|Pn+1(Z)| do = An+-|/An =0

The weights can be found in simple cases by solving certain linear equations.

There are also general formula for the weights. If Zys wees Zpyq Are the zeros

of Pn+](z) = 0 then the corresponding weight is given by

(3.9) %41 (Z)
2.z, Piq(z)

Here Pg+] denotes derivative and the sequence @, is defined as in (3.8) except

k
3 1is replaced by -4 -

The simplest case of the above is when 3y = 0, k=0, 1,..., n and

}an+]| = 1. The support of ¢ is then on the zeros of
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n+1

P (z) =2 -a =0

n+1 n+1

‘These are the n+1 roots of unity if we take a = 1. The corresponding weights

n+1
can be checked, using (3.9), to be equal.

Another interesting situation arises if we consider a sequence A5 Ay ...s @
and then take the infinite sequence by letting a = 0, k > n. The correspon-

ding o has density given by

(3.10) | hn

2m le (e

i 2
19) l

(1-]a;1%)

==
—

where hn = An/An_] =

i
For example if 2, is real the sequence ays 0, 0, ... has corresponding density

.2
(3.11) LY

-T <8 <7

27 (1 + a% - Za] c0s6)

Note the case 3y = 0 gives the uniform measure.- Densiti:es of the type_{3.10)
arise as limiting cases of some of the results considered in previous papers.

For example in Kiefer and Studden (1976) the problem of extrapolating to

xosﬁ' [-1,1] for a polynomial regression of degree m was discussed. As m becomes
large it was shown that the corresponding sequence of optimal designs converged
to a measure with density

(3.12) (xg-- D*® X1 < 1

This can be seen to correspond to the density in (3.11) where



o Xg - /kg -1 if Xg > 1
a, =
1
2 .
Xg * fxo + 1 if Xg < -1

§4 D-optimality and designs for cosines and sines.

In this section some simple design considerations are discussed for the
trigonometric regression given by (1.1). The D-optimal design is well-known
and is usually described as distributing at least 2m+1 points uniformly on
[-m, m]. The usual proof involves an argument to the effect that a rotation
invariant D-optimal design must exist. The uniform measure is therefore
D-optimal. Since the D-optimal design is determined only up to the values of
Cy> k=0 ..., 2m and the corresponding information matrix is unique, a design is
D-optimal iff ck=0, k=0, ..., 2m, these being the values for the uniform design.

This result is also immediate from the fact that [Mg[ is proportional to

2m -
2y 2m=i+1]
(4.1) bom = 1L (1 13519)
This is clearly minimized by a; = 0, i=1,2, ..., 2m. In view of (3.3) this
is equivalent to c; = 0, i=1, .;;, 2m. If the next moment CP is specified
with ]a2m+1[ = 1, the corresponding design is on 2m+1 equally spaced points with

equal weight, the exact location depending on a Many non-uniform type

2m+1°
designs can be found by the method described in Section 3. It should be noted
that the class of D-optimal designs is very large, some being of a singular
nature.

It is well known that D-optimal designs for degree m are also D-optimal
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for any lower order. Further the Ds-optima] design for the highest s pairs
of coefficients also has a; = 0, i=1,2, ..., 2m. These two statements are
immediate from (4.1).

Our next interest is in obtaining Ds-optima] designs for the sines or cosines
separately. In analyzing these cases considerable use is made of the relation-
ships between the trigonometric functions and the ordinary polynomials.
Experimenters often use the fact that for certain types of analysis the straight
cosines series on [0,7] or [-w,m] and the ordinary polynomials on [-1,1] are

equivalent. This is due to the fact that

(4.2) (1, cos 6, ..., cos me) = (1, T](x), e Tm(x))

where cos ko = Tk(x), X = cos, is the Chebyshev polynomial of the first kind.
Less often used are the Chebyshev polynomials of the second kind. These
correspond to the functions

sin (k+1)e
sin 8

= Uk(x) : X = COS 9

These are also polynomials of degree k, as indicated. We thus have

Vi

(4.3) (sin 6, ..., sin mo) = i(]-xz) (1, U](x), cees Um_1(x))

It is seen that these correspond to Tinear combinations of the functions

1 -
f=(1, X, ..., x™ and i(]—X2)2 (1, Xy vuuy XV ]) respectively. Since the highest
coefficient of Tk(x) is 2k'1 it follows from (2.2) that the determinant of the

information matrix corresponding to the vector (4.2) is given by

(4.4) M (0] = 2™ DMy (g
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where Tlog dm = m2(m2-1) Tog 2 and the design ¢ is the projection of 6 onto

[-1,1]. Similarly one has from (2.4) that

m .
_ m=-i+1
(4-5) ]MS(G)I = dm q (Y21_1Y21)

Now if o is symmetkic about zero then terms involving a product of a sine and
a cosine will vanish so that the determinant of the full information matrix

[Mgl splits into two parts. We have thus proven the following result.

Theorem 4.1 If o is symmetric about zero then

|Mg(0)| = |Mc(o)1|MS(o)|

where M (o)| and [M (0)| are given by (4.4) and (4.5).

Corollary 4.1 The Ds-optima1 design for (1, cosé, ..., cos mo) in the full

trigonometric model has canonical moments.

a; = 0 i odd
(4.6)
- 1 -
89§ = e 1=1,2, ..,
Corrollary 4.2 The Ds-optima1 design for (sine, ..., sin me) has canonical
moments
a;= 0 1 odd
(4.7)
By; = e i=1, 2 m
21 = m-2i+ S

The two corollaries follow from the theorem, by showing that the design in
question must be symmetric and then maximizing either |Mc| or IMS{, or using
(2.3) and (3.5). To force the symmetry, note that du(e) = do(-8) has the same

determinant as dq'ForlMgl, M.l and [M_|. By convexity the symmetrized



-15-

measure then has smaller determinant.

Example 4.1 If m = 1 we estimate the coefficients of 1, cos 6 with a design
having ay = 0 and a, = 1, This has equal mass on 6 = 0 and n. The coefficient
of the single term sin 6 is estimated with ay = 0 and a, = -1, which as equal
mass on xn/2. If m = 2 the set 1, cos 8, cos 26 is estimated using a; = ag = 0
a; = 1/3 and a, = 1. This corresponds to masses 1/3, 1/6, 1/3, 1/6 on the
values 6 = 0, n/2, m, 3n/2. For sin 6, sin 26 we use ay = ag = 0, a, = -1/3
and 3, = -1 which has equal mass on the 4 points corresponding to cos o = +1/V/3.
In the design problem the sines and cosines seem to be orthogonal in some
sense.‘iﬁﬁtitss the design o, which is good for the cosines has !Ms(oc)l =0
so will not estimate all the sine terms. Thus the designs in Cor. 4.1 and 4.2
are only useful if it is known before experimentation that one has either a
cosine series or a sine series and not terms of both kinds. I% both kinds of
terms are present a D-optimal design would be more appropriate. If the cosine

and sine part are of different relative importance then the designs from the

following theorem might be useful.

Theorem 4.2  The design o minimizing ]Mc|‘°°|Ms|B where o > 0, o + 8 = 1
has canonical moments

a. =0 i odd

a . = 201

2i T Tz 1T E e

Note that the a, in theorem 4.2 are a convex combination of the corresponding
values from Cor. 4.1 and 4.2. The D-optimal design, of course, has o=g=%.

The design in Theorem 4.2 is not unique and in this respect similar to the D-optimal

ae31gh: T6 find-a conckete~ekampTe we can again let aém+TEF‘]' Form =1,

the first two moments are ay = 0, a, = 206-1. If we let ag 1 we find a 3-point
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design on 0 = 0 and the two values 61 and 9, where cos 6 = -a. The corresponding

weights are L;& R 2(]1&) R 2(11d).' A simple 4-point design can be found by

setting ag = 0 and a, = 1. This has mass «/2 on 6 and m and 8/2 on =/2 and

3n/2.

§5 Bayesian Type Designs

In this section the Bayesian type analysis used in Theorem 4.2 is developed
further. This type of criterion was introduced by Lauter (1974). The idea is
as follows: Suppose the experimenter has different possible models for his
regression function which are indexed by k. If a prior is put on the different

models, say o (ZHk = 1) then a possible criterion for minimization might be

(5.1) Buy In[M, (o)

Lauter proves a Kiefer-Wolfowitz type equivalence theorem for (5.1). Thus if

f, denotes the regression vector for the kth model and dk(e,g) = fkh(e)Mi](d)fk(e)

then o mimimizes (5.1) if and only if ¢ also mimimizes

(5.2) sup ) ukdk(e,o)
0

We have used the symbols 6 and ¢ here. The arguments, of course, are quite
general.
For the trigonometric case, the solution can be easily written down using

canonical moments. Let'&'k and By denote the prior corresponding to the terms

(1, cos 9, ..., cos ko) and (sin e, ..., sin ke) where k = 1, 2, ..., m and

m
J.(e, +8,) =1.
Lk
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Theorem 5.1 The design minimizing

m o m
(5.3) kZ] aklnlMCk(o)I +kZ] BkznlMsk(c)|

has canonical moments ai =0, i odd and

m-%+1 (
o B )
(5.4) ay; = _g=1 It gl i=1,2, ...,m
m=i+1

Proof Using (4.4) and (4.5) with m replaced by k the expression in (5.3)
can be written as the Tog of products of the canonical moments. This can be

shown to be maximized by (5.4).

Example 5.1 If m = 3 and we set B; = 0, the result can be interpreted as
assigning prior aps Gps a3 to the degrees one, two and three in the polynomial
model on [-1,1]. The canonical moments in the present case are

a] = a3 = a5 = 0, a6 = 1 and

a, = %23 . a, =% e tug
%y + Jug Op ¥ 32, + 50L-3
By using a; = 2p1_] the corresponding values for p; are p; = pg = pg = 0
P = 1 and
by % + 2a3 . Dy - gy * Zuz + 3&3
ay + 3ug ajjwhsj-w3

The corresponding design on [-1,1] can be shown to have weight v/2 on +1 and
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(1-y) /2 on VPod, where v = p,p, / (q2 + p2q4). It may be of some interest to
calculate an efficiency for the Bayes design above, obtained from Theorem 5.1;
comparing it to the corresponding D-optimal designs for each degree

k=1,2, ..., m. The usual D-efficiency is defined by

1
< M (2) | YR
syp M En) T/

Here Mk is the information matrix for degree k. The supremum in the denominator
can be calculated from (2.3) and (2.2). Simple calculations show for example

that if ¥ =Gy = g = 1/3 then E] = ,816, E2 = .909, and E3 = .975. The

corresponding values for o, = 1/2, Gy = 0y = 1/4 are
1 2 3

= 906 and E, = .960.

E, = .837, E2 3

1

§6 0dd and Even Terms The analysis used in Theorem 4.1 where the determinant

|Mg| was factored into two parts [M_| and [M | for a measure symetric about

zero can be carried much further. For example if ¢ is symmetric about 0 and
also about w/2, then the terms |Mc[ and [Ms| split further into even and odd
‘terms. The symmetry of ¢ about n/2 corresponds to the projected measure g on
[-1,1] being symmetric about x = 0. This symmetry gives the value Pi = 1/2
for i odd. Let the information matrices corresponding to

(1, cos 26, ..., cos 2ks)

(cos 8, cos 36, ..., cos (2k+1)e)

(sin 20, ..., sin 2ke)

(

sin 6, ..., sin (2k+1)s)
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be denoted respectively by M (c, e; k), M (c, o, k), M (s, e, k) and M (s, o, k).

It can then be shown that

k k-i+1
—_— . ] t

(6.1) M (c, e, k)| = uy 151 (255 1 ©95)
k k-1+1

M (oo 0n k) = v T (255 £p50)
k k-i+1

|M (s, e, k)l = uk iE] (Y21_1 Y21)
k _ k=++1

lM (s, o, k)l = Vi %Eé (Y21 Y21+])

Here 1In Uy = k21n 2, In Vi = k (k+1) 1In 2 and ;% and y% are defined similar to

z: and y; by using only the p. for even i or doubling-up the subscript:i Thus
i . i P

i
S] T P] T Pps %5 TG4y Py T Gpip Ppis T 22 and vy = 0y and g = Ppy ppy-
Usfng the expressions for the odd and even parts, Ds-type optimal designs
can be obtained for 24 - 1 = 15 different subsets of the parameters. In each
case the design must be shown to have the required symmetry. The design is then
obtained by maximizing the corresponding term in (6.1). We shall illustrate
this by considering only one further case. Suppose interest is in obtaining a
design which would estimate the even or odd cosine terms in the full trigonometric
model. This would also give the design for the coefficients of the even (or odd)
powers in the ordinary polynomial model.
The canonical moments are somewhat awkward to write down due to difference
occuring when m is odd or even. The same basic sequence (2.3) however reappears

again, We illustrate by example. In all cases the odd canonical moments are
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equal to 1/2. The even canonical moments are listed in the following array.

P, P4 P Pg Py
even 1/2 1

m=2

odd 1

even 1/2 1
m= 3

odd 2/3 172 1

even 172 2/3 1/2 1
m=14

odd 2/3 1/2 1

even 172 2/3 1/2 1
m=5

odd 3/5 172 2/3 1/2 1

Suppose for example that a Ds-optima1 design is required for the odd coefficients
in an odd degree polynomial model. We proceed by using the canonical moments
in (2.3) on the even coefficients starting at the top. In reverse order the
basic sequence was 1, 1/2, 2/3, 1/2, 3/5, ... These are used on the even
coefficients so that every second even coefficient becomes 1/2. This is illus-
trated by the bottom 1ine in the above array.

The same procedure is used for the even coefficients in an even degree
regression. If the even coefficients are required for an odd degree regression,
say 2m+1, we ignore the highest degree and revert to degree 2m. Thus the design

for the even coefficients for regressions of degree 4 and 5 are the same.

§7 0dd Degree Toeplitz Forms In the trigonometric regression model, using

(1.1), of degree m, an analysis of the full information matrix involves an

analysis of the Toeplitz form T2m given in (3.2). It is natural to ask whether



-21-

the Toeplitz forms T are relevant to any regression models. This situation

2m+1

arises if we use the half angle terms.

£7.1) cos LZ%ill o, sin 42kt k=0,1, ....m

Using the complex form of (7.1) an analysis similar to that used at the beginning

of Section 3 will result in considerations of T The functions in (7.1)

2m+1°
are also related to certain polynomials on [-1,1] in the same way that the
usual trigonometric functions in (1.1) were related to the Chebychev poly-

nomials in equations (4.2) and (4.3). We use the fact that if x = cos ¢ then

7.2 in [(2k+1)6/2 ) 2k+1)6/2 )
7.2) S1ns£é Ie/%] L - W (x) s coscgg [e/%%/ L - Y (x)

are polynomials of degree k in cos 6. The sequences of polynomials in (7.2)
are special Jacobf polynomials orthogonal to the weight function (1-x)¢ (1+x)5.
The sequence Vk corresponds to o = -1/2 and 8 = 1/2 while wk corresponds to
o= 1/2 and 8 = -1/2. The equations corresponding to (4.2) and (4.3) show that

the cosine part of (7.1) is equal to

1.
R

(7-3) * [(]+X)/2] (]: V](X)3 LA ] Vm_](x))

while the sine part of (7.1) is equal to

X
2

(7.4) s[(1-)/212 (1, Wy (x), ..., W q(x)

the information matrices for (7.3) and (7.4) are proportional to those given in
(2.5) and (2.6). Nearly all of the analysis in Sections 3, 4, 5 and 6 carry over

to the regression functions in (7.1). These will not be discussed further here.
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