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1. INTRODUCTION.

The results presented here were inspired by a live problem about which the
authors were consulted by Dr. Shirley Bayer of the Biology Dept. at Purdue:
University. The problem is concerned with the development of statistical
methods for the estimation of the total number of cells of certain type
in a specified region of the rat brain [1].  Reviewing the existing
literature in geometric probability ([5], [8]) and the literature on closely
related stereological problems ([3], [4], [9], [10]), it was felt appro=
priate to estimate the number of cells through a volumetric analysis
approach.

Examination of sample data obtained from microtome sections of the
rat brain revealed that the observed cell size sections were noticeably
lacking of small values. This problem is of course well recognized in the
literature ([4], [10]). However, to the best of our knowledge, no specific
adjustment of the mathematical model itself has been considered to account
for this phenomenon. Working closely with Dr. Bayer and her colleagues,
our attempts to explain this Tack of small observed cell sections led us
to the two stochastic models considered here.

Again, the chosen statistical approach for estimating the number of
rat brain cells, required us to estimate first the expected volume of a ran-
domly selected cell. This naturally leads .to the question: Is it pdssib]e‘
to identify the underlying cell-size distribution uniquely from knowing only
the distribution of the sizes of the cell-sections? As pointed out in
([6], [7]), the problem of nonidentifiability in the context of stochastic

mode1ing is often more acute than is usually thought of or looked into or



even reported. This appears to be so as well in the case of stere01ogica1
models. The question of nonidentifiability becomes of particular concern
in the present case, where the models considered do not afford identifi-
cation of that part of the cell size distribution which concentrates on
arbitrarily small cells. Also, in general, it is important to investigate
this question ifrst, before the model is put to any practical use for the
purposes of inferences. Otherwise,in the presence of nonidentifiability,
as indicated by Clifford [2] through numerical eXamp]es in his case, one may
arrive at quite conflicting predictions by using them. Finally, while we
shall investigate elsewhere the statistical estimation problems relating
to the two models considered here, our primary concern here will be to
answer the identifiability question raised above, associated with each of

these models.

2. Model Development

In this section we will describe the two mathematical models which
determine the applicability of our results. Certain apsects of tﬁese models
are specified by the physical process and methods which were of interest
while other features fall into the category of mathematical expedients.

We will identify and provide a rationale for the main features of these
models Tabeling them as assumptions. While the first three assumptions are
common for the two models, they differ in the treatment of small sections
as assumptions 4 and 5 specify.

For convenience in making calculations, it is common to restrict

the object of our observations to some class of geometric shapes. Spheres



are commonly used for this purpose ([4], [9], [10]).

Assumption 1. Spheres of random radii are embedded in a medium. The

radii, Ri’ are mutually independent random variables with a common dis-
tribution function G(r).

A second mathematical condition allows us to compute the probability
distribution for observations made on the spheres.

Assumption 2. Spheres are distributed uniformly throughout the medium.

The method of obtaining observations which we studied, involved
staining tissue sections so that the objects of interest became opaque
and the surrounding material remained translucent. These conditions led
to certain features of this next statement.

Assumption 3. Observations are obtained when a section of thickness. €

is removed from the medium and the projected image of any embedded sphere
is observed on one face of the section. The measurements recorded are

radii of circles projected onto a face of the medium. See Figure 1.

)
(

Figure 1.

When the model is modified to accoeunt for a lack of small circles
observed in practice, there are a variety of possible accommodations.
Here we consider two obvious ones. Model I results when the optical reso-
Tution reaches a minimum threshold below which there is no observation

recorded.



Model I

Assumption 4. A is the smallest observable radius of a projected image

and is independent of R, the radius of the sphere.

The observed circle has a radius Y, a random variable bounded below
by aA. If the embedded spheres have radii Ri which are mutually indepen-
dent random variables with a common probability distribution G then the
conditional probability distribution function of Y, given that Y > 4, is

(1) F(y|Y > a) = _ET%?GT' € J gg(i)e + zlzs £ (ZdG(ri) Jr?;T?__ds
ro+ rc-s

where C(A, G) = P[Y > A] is the normalizing factor.
Model II

Our second accommodation for small observed circles resulted from a
conference with biologists working with stereo]ogical methods. The premise
that the depth of material available to absorb staining chemicals falls

below a threshold and reduces opacity led to our next assumption.

Assumption 5. When the maximum depth of a sphere contained in the section
is less than p, the projected image is not observed.

Notice that the smallest observed radius Y is random and depends on
the sphere radius R. Figure 2 shows the relationship of the projected

radius Y to the cell radius r and the depth of material x.
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Figure 2.




The observed radius, Y, is a random variable bounded below by v 2Rp-p2,
where R is the radius of the embedded sphere. If the embedded spheres
have radii R1 which are mutually independent random variables with a common

probability distribution G then the conditional probability distribution

function of Y, given that Y > v 2Ro-p° , is ,
s+ ('S—p)

y -2
(2) F(y|Y > /2Ro-0%) = D(;,G [E / gE(i)e +/y25 '/dG(r)v gs >
| 0/2 -~ p/2 s (2rH€) Vries

where D(p,G) = P[Y > |/2Rp—p2 ] is the normalizing factor.

3. THE IDENTIFIABILITY PROBLEM

Any researcher applying one of the models proposed in section 2 above
will want to investigafe properties of the distribution of sphere radii.
Most probably moments of that distribution will be of interest. It is
therefore important to know if there is a one to one correspondence between
the distribution G and the distribution F which we observe from experimen-
tation.

Since either model includes the possibility for information about G
to be lost whenever G has support arbitrarily near 0 we surely cannot
distinguish two distributions which differ on the interval [0,A] and we
are using Model 1 or which differ on the internal [0,0/2] and we are using
Model 2. Even excluding these obvious brob]ems the question of identifiability
of G needs to be answered before inferences about & can be considered.

The identifiability question may be stated as follows for Model 1:

If G is not identifiable then there must exist two distinct distributions



G] and G2 so that for all y > A

| Y d6, (r) y ” dG, (r)
1 [~ 45 1 pr
(3) e 10 st f ds
(5.6 7r T € o ¥ €
1 _{x A s | /77

For Model II, a s]ight]y different equation results:

p |
1 dGy(r)
(4) 0(5,6,) €] 2r s 2s o7 + C Vs ds

1/20 1/20 S
2
s-+f§:91~
Yy Yy - 20
dG,(r) dG,(r)
1 2~ i 2 1 2 4s
D p,G2 € 2r + € 2r + € )
1/20 1720 s r-s

We cannot give a complete answer to the jdentifiability questions.
Our results will be given under varying conditions to cover the cases

where G can be shown to be identifiable.

3.1 G HAS BOUNDED SUPPORT.

When the distribution has bounded supporf, i.e., there exists some

number B so that G(B) = 1, then we can show that G is identifiable.



THEOREM 1. (i) If G has bounded support and G(a) = O then G is identi-

fiable for Model I.

(i) If G has bounded support and G(p/2) = O then G is identifiable

for Model II.

PROOF:

To simplify notation we only give the proof for the case when the distri-
butions have density functions. We will write G] for G and 95 for the
density of G and consider the density function equivaients of equations
(3) and (4).

Suppose that there exists a distribution 62 with density function 9o
so that G; and Gz'satisfy equation (3). By setting ¢(r) = gl(r)/c(A,Gl)-
gz(r)/c(A,Gz) and differentiating equation (3) we obtain

6) gl vy ) dr = 0
O R A

Our assumption of bounded support implies that ¢(r) = 0 if r > B.
We will next show that there is some positive number K so that ¢(r) = 0
for r > B implies that ¢(r) = 0 for r > B - K.

‘Let 0 <K < 62/328, K <B be given. Let M= Max |¢(r)]| and
B-K<r<B

choose b€ [B-K,B] SO that'|¢(b0)l > M/2. From (5),

B
by - 0 tE L, s(r)  dr
#(b € 2hg pomm—
b (2r+€) r2-bg

0

so that



2b e B e (r)]
(6) fo(bn)| < 2b
o’ — € 0 5
bO (2r+€) ¥r -bO
2b0 + €
Since T e < 1 when b0 < r we can obtain a bound from (6)
’ | |
rl¢ (r)
(N l6(bg)| < £ /————dr.
o 2 2
Yr~ - b
bO 0

The bound of Mon |¢(r)] and integration of the remaining expression

results in the estimate

B
(8)  Jolbg)] < Z—EM-] L —ar = B0
77
b, Yr - by
0
2

= (B + bO) (B - bo) < 2BK and finally we

O

By our choice of K, B - b

obtain the result

2

: 2M 1/ 2M 2B € =
(9) ]¢(b0)]_i ¢ 2BK < c 328

=

which contradicts the coince of b0 unless M = 0. Since K does not depend
on M and K decreases as 1/B, this argument shows that ¢(r) = 0 for all r.
The same argument is valid if we use equation (4) rather than equation (3)

as our starting point.



To conclue the proof we need only show that_C(A,G]) = C(a,G,) but

5)
that fact follows from the condition that [ dG](r) = dGZ(r) = 1.
A A
Note that when G(A)”> 0 we can still conclude that if some G2 exists

so that equation (3) is satisfied then ¢(r) = 0 for r > A, that is

9](r)/C(A,G1) = gz(r)/C(A,Gz) for r > A.

3.2 G IS A DISCRETE DISTRIBUTION.

When the distribution G has a discrete part the distribution F,

deriVéd from G, will also have a discrete part. In fact, for Model I,

- G(r)- . 1
(10) Falr) - Fglr) = ¢ LElRG( ] C(4,6)

or the same quantity with D(a,G) replaced by D(p,G) in the case of Model II.

THEOREM 2. If G is a discrete distribution and

(i) G(a) = 0, then G is identifiable for Model I,

(i1) G(p/2) = 0, then G is identifiable for Model II.

PROOF: If G] and G2 are two discrete distributions which satisfy equation
(3) or (4) then they must have the same support since equation (10)

identifies the discontinuity points of F and of G1 and GZ' Furthermore we

can equate the right sides of equation (10) for the two distributions to

obtain, for Model I,

(1) G](r) - G1(r') i Gz(r) - G2(r )
C(5,6;) C(4,6,)
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Summing (11) over all points of support and using the condition that
G1(A) = GZ(A) = 0 implies that = [Gi(r) - Gi(r')] =1 and so C(A,G]) = C(A’GZ)'
The exact same reasoning and steps applied to Model II furnishes the

remaining proof to the theorem.

3.3 IDENTIFIABILITY FOR MODEL T.

We will show that the assumption of boundedness is not needed for the
identifiability of G when working with Model I. We are not able to prove

a comparable result for Model II.

THEOREM 3. If G is an absolutely continuous probability distribution and

G(a) = 0, then G is identifiable for Model I.

Proof: For the proof we use the following lemma.

Lemma. Let

Then Q(u) is identically zero for u > B.

PROOF: Define
Mu) = eQu) + [ 8L g,
u

Since M(u) = 0 by hypothesis,

Z M(s) 4. -
12 eM(u) - NS) d4s = 0
(12) (u) fu — s

and the left side of (12) by definition is
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(o]

elequ) + [ AL ggp T As)
u -V

u V/s-u
which simplifies to become

o

gZQ(u)-— fw | Q(s) ds dv
u v

v-u S-v

Interchanging the order of integration above and computing the resultant

integral gives us the equation

Differentiation produces the differential equation

(13) Q' (u) +r Qu) = 0
The solution to (13) is given by

Q(u) = C exp (- wu/ez)
Upon substitution into the origina} equation (12), we obtain

C exp (—WU/EZ) + f' C exp (-1Ts/g ) s =0 ,
u U

which can only hold when C = 0. Thus Q(u) = 0.
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PROOF OF THEOREM 3.

To reduce the statement of Theorem 3 to the hypothesis of the lemma
we proceed as follows: Since each distribution is absolutely continuous,

F(y|Y>a) has a density and differentiating equation (3) we obtain

_ 1 g'l(‘y) o« 1 91(” dr
f(.YIY?_A) ~ C(a,G.) [8 2y+ € + 2y f (2r + €)
i y r2 _ y2
o - s 2
We make the substitution y =+v/u , r =vs and hi(y) = C(4.6; ) (2y+e)
to obtain
hi(/TT) @ h; (Vs)
f(Yu|¥>a) =vu |e ——— + [ ———— ds
vy u u Vs vs-u

Next consider this equation for i = 1 and i = 2, then equate the two

expressions for f. This yields

eh. (V'u) © h,(/s) eh,(Vu) = h,(/s)
| +f 1 ds = + : ds
vy u u vs Vs-u vV u uvs vYs-u
h1(¢TT) hz(/Tf)
and by setting Q(u) = - the
yu Ju

resulting equation is given by

eQ(u) + fm Q(s) ds = 0, for all u.
u

The Lemma tells us that Q(u) = 0 for all u and so h

L (/T = by (/)
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and in turn g, (y)/C(4,61) = g,(y)/C(4,6,).

As before, G(a) = 0 implies that [ gi(y)dy = 1 so that C(A,G]) = C(A,Gz)
A
and the proof is complete.

4. SOLVING FOR THE DISTIRUBTION, G, OF R.

In those instances for which there is a unique G for a given distri-
bution F, i.e. when G is discrete or when F is obtained from Model 1, we
can hope to invert equation (1) or equation (2) in order to find G. Deter-

mining G or some of its moments will be our objective in this section.

4.1 THE CASE OF DISCRETE DISTRIBUTIONS.

Recall equation (11) from section 3.2. We are able to solve for the
discontinuities of G to obtain the expression:

(2Y‘1.+ € ) .

(F(ry) - F(r:))D(E)

(14)  G(r) - 6(r]) = —1 1 1

in the case of Model I. When this is summed over i and if G(a) = 0 then

- D(6) = €/{ E' (2r; + €)(F(ry) - F(ri))?
i=1

and the explicit distribution G is given by

G(r;) - G(r7) = (2ry + €)(F(ry) - F(ry))

(er + e)(F(r‘j) - F(rj))

I1t~1 8

J=1
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In particular,

4.2 MODEL I: THE CONTINUOUS CASE.

Similar attempts to solve the functional equation (1) for the under-
lying distribution G produce less satisfactory results. We consider only

the case when G has a density function and we take the density version of

(15)  flylve) = gy | S -2 [~ -alr) dr

Yo (er +€) ¥ r2-y2

For the purpose of solving this equation for g we first substitute

) b = pefthe

Then (15) is written as

(17)  Fly|vsa) = ch(y) + 2y [ —Dr)l 4y
y 42 _ y2

Next, replacing h(r) by the expression given by equation (17)

produces
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o ( f(r|y>a) w
(18)  flyl¥=p) = €n(y) +2y [ g hls) gl _dr
y € r 2 2 2 2
S -r r -y
|y>a © »
sl ¢ B[ — - B Mg ar
y 2—y2 y r,2_ 2 r 52-r2

changing the order of integration in the last term gives the result

flriy> o
(19) f(y|]Y>a) = € h(y) + 2 + f ——S—lz—éz——-dr - 1%1- [ h(s) ds
Yy

r-y2 Y

Finally, we substitute h(y)/y = Q(y), rearrange terms and find:

oo

i , - f(y)
20 - —5 ds = -
@) ) - g [ osals) 6 - g z

Write N(y) for the r.h.s. of (20), differentiate w.r.t. y and the resulting

differential equation is

(21) Q'(y) + =5 yQly) = N'(y)
€

The solution to (21) is given next.

2 2
_ Tf!- .
2 2
Qly) = e 2¢ [ e 2€ N'(r) dr + C

Substitution for Q(y) and N(u) then produces an expression for g(y).
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g(y) . _f(y) 2 ” f(r)
@) ey Tay T o z ar
€ y 2 2
ro-y
Try2 'rru2
2 2 ©
BT {Z(u) [ flr) dr}du
€ R L B
r- - u
2
Yy
2
+c'e 2€
4.3 EXAMPLES. In some simple cases we can compute f to illustrate the
relationship of f to g.
24° (2r + €)
Example 1. Take g(r) = ir ¢’ 3 for r > A and 0 otherwise.

r

Then we find

2 !
- _2A € Tr ,
fy|Y>a) = c T3 l: T+ 2y-2 ] for y > A

and 0 otherwise. Graphically, when A = 1 and € = 3 this gives figure 3.

1.5 T
1.0 +

0.5 4

Figure 3.
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Example 2. Taking 9(a b)(r) = qa2r + €)r on an interval [a,b] and 0

otherwise gives

\
ZDXOL ': b2-y2’ - /a2_y2 :I for A <y <a
%a - [ e+2vVbe -y ] fora<y<b
0 ' otherwise .
/

When we take a mixture of these, such as,

9(r) = (+3) 94, 5)(r) + (-4 g5 6y (r) + (+3) g g 7y(r)

the graph is given in figure 4.

fly[Y >1)

-l

2 3 4 5 6

Figure 4.



5.

18

CONCLUDING REMARKS.

(a)

Conjecture. We believe that the distribution G should turn out to be
identifiable for Model II even when G does not have bounded support.

Limitations of our technique prevent proving this result. Any

-counter example would exhibit pathological properties which in appli-

cations are uninteresting.

Practical Implications. In any application, when the support of the

distribution G includes arbitrarily small values it is evident that

G will not be identifiable with either Model I or Model II. For example,
observing the cells of an immature laboratory speciman poses a greater
risk for statistical inferences, since presumably, developing cells
would be much smaller than mature cells. If the cells are sufficiently
small to not be observed, then any statistical inferences concerning

cell sizes would be in error.
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