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CHAPTER I
INTRODUCTION

1.1 Optimal Design for Polynomial Regression

Consider the linear model

Y(x) = gy + px b+ B x4 e = gTE(x) + e (1.1.1)

where x ¢ [a,b], ByaBys-..»B, are unknown parameters, and e is a

random variable with mean 0 and variance 02 which is independent

of x and 02 may be known or unknown.

Suppose the experimenter wants to estimate g. Given N uncorrelated

observations at X]’XZ""’XN’ it is known that if

m
Ty x
X = : :
] X X
N N

+
and X X is nonsingular then the Teast squares estimator
B = (XTX)~]XTY is the minimum variance unbiased estimator

of 1 and the covariance matrix of g is given by
E(3-8)(8-8)" = o(xTx) 7.

Suppose the experimenter agrees to use the least squares

estimator. The problem now is how to choose Xqse Xy such that

the matrix (XTX)_] is "minimized" in some sense. A design or choice

of the N points found in this way is called an exact design. Due to



the fine structure of these designs, the problem is hard to solve.

Let us write
1 b T
M(g) = § X' X = [ f(x)f(x) de(x)
a

where dg(x) denote the proportion of observations taken at the point
x. Kiefer and Wolfowitz (1959) extended the class of exact £ to the
set of all probability measures on [a,b]. So the problem becomes
choosing a probability measure £ so that the information matrix M(g)
is "maximized". The resulting measure (design)is the so-called
approximate design. It was shown by Kiefer (1961) that from the
approximate design an exact design can be obtained which is optimal
to within order %; In this thesis, we will restrict our discussion
to approximate designs only.

There are many criteria that have been introduced to measure

the "size" of the information matrix M(g). For example, the Qp

optimal design is the one that minimizes

mt+1

Gy tr WPENVP = Gy T P (1.1.2)

i
where A; are the eigenvalues of M(g).

The case p = 1 can be interpreted as the design that minimizes
the trace of the covariance matrix and is called the A-optimal design.
Ifp->0 (p~ e, resp.), (1.1.2) becomes ]M"1(g)|, the determinant of
M_](g) (the maximum eigenvalue of M'](g), resp.). So the QO(QW resp.)
optimal design can be interpreted as the design that minimizes the

determinant (the maximum eigenvalue) of the covariance matrix. They



are referred to as D-optimal (E-optimal) designs in the literature.

Kiefer (1961) proposed using Ds—optima1 designs to estimate s out
of m+] parameters. The criterion is to find the design that
minimizes the generalized variance of the estimator of the s
parameters that are of interest given the presence of the other
parameters. It is also used to detect the presence of the s-highest
coefficients. For more details about the criteria discussed above,
see Kiefer (1974).

Federov (1972) introduced the linear optimal design which
minimizes tr AM_1(g) for a given non-negative definite matrix A.

For example the IG optimal design is the one that minimizes the
integrated variance tr M—](E)M(o) for a given measure o. More
examples can be found in Federov (1972).

The experimenter is now faced with many possible criteria.
Certainly the criteria chosen should reflect what he wants from the
experiment and thus it may be varied from case to case. But there are
still some common features that may be required of these designs. For
example, it is quite desirable to have the design remain unchanged if
we use different scales or locations of the measurements in x.
Unfortunately, many commonly used criteria do not satisfy this require-
ment, for example, A- and E- optimality. It can be shown that the
D-optimal design and the IO optimal design have this property
(Kiefer 1959, Studden 1971). They showed that the above criteria
are invariant under the linear transformations of the regression

functions (1,x,...,xm) and hence under scale and translation of x.



This will imply, for example, that in searching for the D-optimal
and Ig—optima1 designs we may use orthogonal polynomials as regression
functions instead of 1,x,...,xm. Most of our discussions will concen-
trate on those designs that will remain the same under the change of
measurements of x.

The above and the other appealing properties of the D-optimal
design makes it popular among experimenters. It was pointed out
by Guest (1958), Cook and Nachtsheim (1982) that the D-optimal design
performs much worse than the uniform design and the IO—optima] design
in the central part of the regression interval. So it is advisable to use
criteria other than the D-optimality if the central part of the
interval is considered more important. It seems that the Ic-optima1
design should deserve more attention.

In the last few years, many algorithmshave been proposed to
obtain optimal designs. (See Wynn (1970), Federov (1972) and
Wu (1978) among others). It is still desirable to have analytic
solutions rather than a numerical approximation. Studden (1980) (19871)
used canonical moments, a sequence of numbers that characterize the
design ¢ on a compact set, to aid in finding the weighted Ds—optima]
design. The results are elegant and provide a unified approach to some
of the optimal design problems for the polynomial situation. It can bé
shown that the determinant of the information matrix M(g) can be
expressed as products of the canonical moments. The canonical moments
are useful because each of them ranges freely over the unit interval.
We can use simple calculus to obtain the D-optimal design. The resulting

design is now expressed in terms of the canonical moments. It can



be shown that the canonical moments are invariant under linear trans-
formations of the y = ax+b on the regression interval, where a > 0. This
property matches with the same property of the D-optimal design. Usually
the design is given by their support points and the weights attached to
it. So it is necessary to discuss the relations between support,
weights and canonical moments. Actually, a more general question

can be asked: given a sequence (infinite or finite) of canonical
moments, what can we say about the corresponding measures. Indeed,
given one of the following, the others will be uniquely determined:

a probability measure ¢ on [a,b], a system of orthogonal polynomials

on [a,b], a sequence of moments, a sequence of canonical moments, the
Stieltjes transform of £ and the corresponding continued fractionexpan-
sion. The Timiting behavior of the canonical moments plays an important
role in determining the properties of the corresponding measure. It

can be seen that the canonical moments are very useful in

the optimal design problems. For example, in comparing two regression
equations that may have the same intercept, the experimenter wants to
estimate the difference of the two regression equations given that they
have the same intercept. If the D-optimality criterion is applied,

we can find the D-optimal design easily with the help of the canonical
moments.

In setting up the model (1.1.1), the experimenter may not know
whether the model is true or not. So it is natural to require the
design to give a check to the model (1.1.1). Unfortunately, the
classical optimal designs do not give us satisfactory answers. Several

methods have been proposed, see, for example, Box and Draper (1959),



Atwood (1971), Broth (1975), Marcus and Sacks (1976). Stigler (1971)
proposed that the design should meet 3 conditions:

a. The design should allow for a check of whether or not the
assumed model provides an adequate fit to the true regression function.

b. If it is concluded that the model is adequate, it should be
possible to make reasonably efficient inferences concerning that
model.

c¢. The optimal design should not depend on unknown parameters.

Stigler proposed a new criterion that satisfies the conditions
mentioned above. Unfortunately he could not give a general solution.
Lauter (1974) gave a new criterion that satifies the conditions set
by Stigler and claimed the calculation is easier than that of Stigler's
approach. Studden (1982) used the method of canonical moments to give
a general solution using Stigler's criterion. It should be remarked
that the criterion introduced by Stigler is essentially a constrained
optimization problem. What Lauter did is to change it back to an
optimization problem without constraints.

As pointed out by Kiefer (1976), a criterion function is only an
approximation to some vague notion of 'goodness'. To combine different
criteria will give a better approximation to the real situation but
also will bring in the problem of constrained optimization. In general,
the analytic solutions for problems of this type are difficult to
find. So it seems reasonable to study how an optimal design &*, with
respect to a criterion function @,‘performs under other criteria.

Sometimes it might happen that there is another design that is only



slightly less efficient in terms of @, but which is noticeably
superior to £* in terms of other criteria of interest. After the
comparison of efficiencies of different criteria, maybe we can choose

a "better" design. The result of our comparison seems to indicate that
the uniform design is not so good as some might expect.

The trigonometric polynomial regression on the circle has been
addressed. There is a sequence of parameters related to the measures
on the circle that is analogous to the canonical moments. They are
related to canonical moments in a certain way if the measure on the
circle s symmetric about the x-axis. The corresponding optimal

design problems on the circle are also considered.

1.2 Outline of the Thesis

Chapter II will discuss some basic properties of the canonical
moments. The relations between ordinary moments, canonical moments,
Hankel determinants, continued fractions, orthogonal polynomials and
measures are discussed. Some examples are given to illustrate how to
obtain canonical moments from the Hankel determinants, continued
fraction expansion ororthogonal polynomials. The counter part of
the above on the circle is also discussed. The relations between the
distributions and the limiting behavior of the canonical moments are
investigated.

In Chapter III, we have a section on some admissibility results.
The weighted D-optimal design is found when the weight function
w(x) = [x(1-x)1%|x - %JY o« >0, vy >0 and mis odd. An example is

given to illustrate the use of weighted D-optimal design. A new proof



of the D-optimal design is given for the trigonometric regression on the
circle. The method of canonical moments is used to obtain D-optimal
rotatable designs. Some limiting designs are discussed.

Chapter IV gives a new proof of the Ds—optimal design for the DS—
optimal design. The explicit form for the support of the weighted DS—
optimal designs when the w(x) = x, 1-x and x(1-x) are obtained. Some
admissibility results are given. The Ds—optimal design for the s high-
est even (odd) coefficients is found. Weighted Ds-optima1 designs for
the weight function w(x) = (T—XZ)]XIZ and [x]2 are given. D -optimal
designs for trigonometric regression and rotatable design are considered.
Ds—optima] designs whens = 1 for some special weight functions are
found.

The Io—optima] design and the optimal extrapolation design are

considered in Chapter V. The Io-optima1 design for some ¢ is given.

The optimal weighted extrapolation designs are given for some weight
functions. The continued fraction expansion of the Stieltjes transform

of the optimal extrapolation design (w(x) = 1) is obtained.

In Chapter VI the comparison of models is discussed and the
related D-optimal designs are given explicitly.

In Chapter VII the robust-type D-optimal design and some
Timiting designs are discussed. The performance of different

designs under different criteria are compared.



CHAPTER 1II
THEORY OF CANONICAL MOMENTS

In this chapter we will introduce the theory of canonical
moments, which is closely related to the theories of continued
fractions and orthogonal polynomials. We will give a brief intro-
duction to the last two subjects in sections 3 and 4. A detailed
account of the theory of continued fractions can be found in
Perron (1913) and Wall (1948). For the theory of orthogonal
polynomials, see Szegd (1975), Geronimus (1948), (1950), (1961a),
(1961b), Freud (1971), Chihara (1978), and Nevai (1979). Compared
to the above two subjects, there has not been much explicit work
published on the theory of canonical moments, except for the papers of
Skibinsky (1967), (1968), (1969). The purpose of this chapter is to
give a rather detailed account of canonical moments. Some of the
results are implicitly given in the theory of continued fractions
or orthogonal polynomials and some of the results are new. They are
presented here in a form usable in design theory. A few of the
results are not actually applied in later chapters but are included
for completeness and possible use in the future. It is possible to
read the later chapters first, referring to this chapter whenever

needed.
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2.1 Canonical Moments

In this section we will give the definition of canonical moments
and some of its basic properties. We will start with the ordinary

moments of measures on [0,1].

Definition 2.1.1: The moment space W%+1 with respect to

F1(x) = (1,%...,x") is defined as
1
Mgy = {u = [ f(x)de(x)]| ¢ is a finite measure}.
0
Denote the set of all nonnegative polynomials (on [0,1]) of
degree n by P+t Note that Ppeq CaN be identified as a subset of

R We have the following important characterization theorem of

n+l*
W%+] in terms of Pn+1'

Theorem 2.1.1:

. T
(i) ne M1 iff au >0 for all a ¢ Ppel®
(i1) we Intm,, (interior of 7 ) iff alu > 0 for all a ¢ P \03.

Proof: See Karlin and Studden (1966a).

The following theorem will give the form of elements in P+t

Theorem 2.1.2: (Markov and Lukacs) Any polynomial Pn(x) in

Pp41 Nas the form
(A N E + x(1-x)(B,_;(x)?  for n = 2k,
Pa(x) =
x(C(x))% + (1-x) (D, (x))° for n = 2k+.



11

where Ak(x), Bk_](x), Ck(x) and Dk(x) are polynomials of the degrees

indicated.

Proof: See Krein and Nudel'man (1977).

Let UO U.( ...Un U]-UZ ...Un'Un+]
Mon = “} “g ---“r}n Moy = PoTH3 e i1 P2
“;} %1 "t Hop “r.f“nﬂ e Hon-1""2n

U] UZ ..Hn+] lJO"lJ-l ...Un“l—ln_l_'l
Mo 517 Ho u? ..u?+2 ﬁén+1= u!—u? "’“q+1_“n+2
U;+1“;+2"'“én+1 M1 H2n THon+

where M is the ith moment of £. Note that “T = (uo,u],...,un) for

u € Int W%+]. Denote the determinants of the above

matrices by QZn’ Q2n+1’ DZn and D2n+1 respectively.

The subscripts indicate the highest moment involved in the

matrices or determinants. Now, Theorem 2.1.1 and Theorem 2.1.2 give

the following useful theorem.

Theorem 2.1.3:

(i) p € W%+] iff Mﬂ and Mn are positive semi-definite.

(ii) u € Int mn+] iff QO’ DO’ Qq, D]""Qn’ Dn are positive.
Proof: See Karlin and Studden (1966a).
It is known that given uO € Int W%, there exists infinitely

many representations for uo. Let v(uO) denote the convex set of all
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. 0 . +
measures representing pu~. It is known that wy = max and

v
u; = min u_are finite. Since n = (uo, p:) and y = (uo,u;) are on
V(uo) N
the boundary of M 1, ¥, (resp. un) is the solution of D =0 (resp.

En = 0) by Theorem 2.1.3, where W is taken as a variable. Thus, we

have proved the following result.

Theorem 2.1.4: Given 10 = (ngo u]""’“n—l) € Intm,

+ -\ . . = ~
un(resp. “n) is the solution of D =0 (resp. Qn = 0).

We now give the definition of the canonical moments.

Definition 2.1.2. The canonical moment Ph is given by

_n n
Pp = 7% ~
pn T ¥
..+ - . . L.+ -
if Mo = M, 0 n=1,2,.... p, is undefined if By = Hp T 0.

So p, can be interpreted as the ratio of the distance of My
from the lower boundary to the distance between the upper and lower
boundaries of the corresponding convex set v(uo). It is clear that
u €7Wn+] is a boundary point iff P; = 0 or 1 for some i € {1,2,...,n}.
+ - 3
iv] T Myel T 0 and Pip1> Pippo--- are undefined. On

the other hand, u € Int W%+] iff 0 < pi < 1 for i = 1,2,...,n.

In this case n

It is easy to see that pT = ¥y and ui = 0 for a given uo(# 0) ,hence
2

’ u
Py = ;g; For given Ho and Hy» We see tZat u; = and “E - ;é_ by the
Cauchy-Schwarz inequalit i B fon 2 11 gi
auchy-Schwarz inequality, p, = ;;(ﬂaji;ju n Section 2, we will givea

general expression for;% in terms of Hankel determinants. It will be
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seen that all the points in the form Au, where A > 0 and u Ean+],
have the same P> Ppscees Py If we assume gy < 1, i.e. 1f we restrict
ourselves to probability measures, then we can define a 1-1 mapping
between PysPose--sP, and HpHos« ek for all n. The explicit
expression of M in terms of Pys Pose--sPp will be given in section 5.
Let y = (b-a)x + a, where b > a, be a linear transformation from
[0,1] to [a,b]. If £ is a probability measure on [0,1], there is an
induced probability measure ¢' on [a,b]. We can define the canonical
moments of ¢' according to Definition 2.1.2. Skibinsky (1969) proved

that the canonical moments of £'are the same as those of k.

Theorem 2.1.5: The canonical moments are invariant under the linear

transformation y = (b-a)x+a, where b > a.

Proof: The proof was given by Skibinsky and it is included here
for the sake of completeness. The n-th moment of &' is given by
| 1

[ [(b-a)t+a]"de(t)
0

]
Q=T
s

)
ja R
['as}
—
+
~—

1]

n-1 . .
(b-a)" + ] (§)(b-a) w;a",
i20

where n is the n-th moment of g. It is easily checked that

' [l n -
= oup = (b=a) (up-up)
v [ N n +_ -

w'y =y = (b-a) (e up )

Hence the result follows.

Corollary 2.1.5: If b < a in Theorem 2.1.5, the even canonical

moments of &£, say pén, will remain unchanged while the odd canonical
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moments pén+] are given by

=1

pén+1 = Pon+1-

Proof: The proof is similar to that of Theorem 2.1.5 except

that now ué;+] corresponds to “£n+1 and “é;+] corresponds to p;n+].

In particular, if a = 1 and b = 0 and ¢ is symmetric about %3

_ . _ 1 .
then Pont] = Gopsq> 1-€ p2n+] =5 On the other hand, if all odd
canonical moments are equal to one half, then the transformation
will now give the same measure which shows that ¢ is symmetric.

Thus we have proved

Theorem 2.1.6: £ is symmetric about the midpoint of its

support iff Pons1 = %-for all n whenever pn is defined.

The next theorem shows how the canonical moments change under a

special nonlinear transformation of x.

Theorem 2.1.7: Let & be a measure on [0,1] and £' be a symmetric

measure on [-1,1] such that ¢'[-x,x] = g[O,xzj. Let u, b Py

and pé denote their corresponding moments and canonical moments, then

we have

! = l ! =
p2n+] 2 and p2n pn'

Proof: By direct verification, we see pén =y and uén+] = 0.

n

and ”én = u_. Thus we have Pén =P, The

It follows that ué: = u+ n 0

n
fact that pén+] = %—fo]lows from Theorem 2.1.6.
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The results obtained here have been proven by Wall (1948) among

the others. Corollary 2.2.2, whose proof is new, is a crucial

step in establishing Theorem 2.2.1.

2.2 The Hankel Determinants and Canonical Moments

In this section, we will show how the Hankel determinants and
canonical moments can be expressed in terms of each other. We first

- -+ - . .
try to express My T Mg and My T Mg in terms of canonical moments.

D
. L
Lemma 2.2.1: T R n > (2.2.1)
=n-2
D
VT IO B (2.2.2)
n no; -
n-2
Here we assume D_y = D_y =Dy =1

Proof: By Theorem 2.1.4, p; is the solution of Qn = (0 where My,

is taken as a variable. Assume n = 2k, we have

Mgt Mk Mg - Wy o cee M 0

Pk © LT AEE S
Mg e Mok S I LTS B T
Moo oo Mok-1 Mok Mok

=0+ (upyp =y )Bpp 0o

and the above result follows immediately. The case n = 2k+1 can be

proved similarly. The proof for (2.2.2) is the same.
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1
Definition 2.2.1: Let Amun denote f xn(l-x)mdg where m,n are
0

nonnegative integers. Define

m m

Aun A“n+k—]
Hk(Amun) N . .

m PN (]

A M p k-1 B M pok-2

for k> 1. If k = 0, we Tet H (8™ ) = 1 for all m and n.

Let
Am
A un . e un+k
H'gmsn)(x) = Am. Am s 'if Hk(AmIJ ) 7£ Os
k-1 0 8 a2k n
1 Xk

for k = 1,2,... Define Hém’n)(x) = 1 for all nonnegative integers

m,n-

Remark 2.2.1: If m = 0, Hk(AOun) = Hk(pn) is the so-called Hankel

determinant and Héo’n)(x) is the so-called Hankel polynomial. With

regard to the notation in section 2.1, we have

Hie1(ig) = Do Hypq (i) = Dppiqs
Hee1(Bg) = Doppys Higq (Bug) = Dopyre

The following lemma is given in Henrici (1973).

Lemma 2.2.2: For all nonnegative integers n and m, all k > 1,

(™ R ()

sn+1 -
m )H(m n+ )(x) -y (m,

X xHy g (8% M Hy

k nt+l
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¥ Hk+1(Am“n+1)Hém’n)(X),
(2.2.3)
Hk+] (Amlin+‘| )HéT_f‘) (x) = Hk+2(Amun)H‘(<m,n+'l ) (x)
+ H, (A" )H(m,n+])(
k] VA R g x). (2.2.4)

Proof: The case m = 0 would be reduced to that of Henrici (1973).
For m > 0, the proof is the same and it is omitted.

We have the following interesting and useful corollary.

Corollary 2.2.2: DD, = D1Ppey * D o181 where n > 0.
Proof: Assume n = 2k, put x = 1 in (2.2.3) and let m = 0, we
obtain
uO...uk u-l ...ukH u] ...pk UO"'“kH
MocooHak] [Pkt Mek Mottt k-1 Mk Mk
1 ] 1 1
LS TR 'SS B L'e B o
+ | : : :
el 0 Mokt g k-1 0 2k-1
1 1

By using column operations, we see the result immediately. The
case when n is odd can be proved similarly, and the proof is, therefore,

omitted.

Lemma 2.2.3: U, - U
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Proof: By Lemma 2.2.1, we see that

+ -_n =n
Hp = Hp T 2 5
Dn_z "n"2
- Pn-2Pn * Dbyp
Dn-2 Pn-Z
- Pn-1 Py
5 —.
-n-2 D,
We use Corollary 2.2.2 in the last step.
-n Dn—2
Theorem 2.2.1: For p > 1, we have Ph =5 — = — and
-n-1 D
_ n-1
= 1op = Pn-2 Dy
n Pn Ph-1 D
n-1

Proof: Use Lemma 2.2.1 and Lemma 2.2.3.

So we can express the canonical moments in terms of Hankel

determinants. Now we want to do the converse.

+ _n-1
Lemma 2.2.4: I .

2 P;a; for n > 2.

Proof: By Lemma 2.2.3, we have

u+ - = Pn-1 Pnos
n n Qn—Z D
n-2
- Pn-2 Dn-2
pn—1qn—1 pn_3 'D
n-3
+ -

= Pn-19n-1 (“n—l - ”n—1)‘

Hence the result follows immediately.
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+ -
Remark 2.2.3: The quantity Wy T Mp is called the range of e The
expression above is useful in many extremal problems.

Let us introduce the following notations:

= qn_1pn forn > 2,

¢y = pp and oz,

vy = G; and Y, = Ppo1d, foron > 2.

Lemma 2.2.5:
D D
e e LS
-n-2 =n-1
D D
Yy = :IEELT;L_ﬁ, n> 2.
Dn-2 Dn—]

Proof: Use Theorem 2.2.1.

n
Lemma 2.2.6: yu. - p. = I g.s n>1
e n . 1 —_
i=1
* ~ o= 2 n> 2
Un Un i=1 Y.]a z

Proof: Use Lemma 2.2.4 and the definition of Py

n .
. _ n-i+1
Theorem 2.2.2: D, 1_1:1-1(@2]._];21-) )
n .
_ n-i+l -
Pon+1 ~ 1.EO(‘?21'521'+1) > oo 71
n .
= _ n-i+1
Don = L Ugiovai)
i=1
n .
= _ n-i+1 -
Dgner = I (r2ivain ) vo = 1
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Proof: We prove the first one only. By Lemma 2.2.5, we have

fon ., D2n-1
Don-2 72" Don-3
i} D2n-2
“2n*2n-1 D,
n
= T (%5 189:)-
_iz-l 21“‘1 2]

Thus the result follows. The proof of the others are similar.
The following example illustrates how to obtain canonical moments from

the Hankel determinants.

Example 2.2.1. Let g be the measure which put mass %-on each of
. . . 1 n-2 .
the n equally spaced points in [0,1] i.e. O, o ERRRE Sy o 1. It is

known that (Muir 1933)

: 4
Oy = (D P P28 ) gy

where k < n-1. We want to show by induction that p, = 53 o1 for

k=1,...,n-1. It is obvious that Poisy] = %—for i=0,1, n-1 since

£ is symmetric. By Theorem 2.2.2

D,. . N J :
=23~ 15232 2 .2 T———L%i%__f— _
5> = G (0T (30 Ty T T L Reirtei

-2j-2

Let j = 1, we see
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Hence p, = %‘ﬂilu Now let us assume p,, , = —E}% n;f;l‘

Consider the ratio

[_-)_Z_k___/ S22 ()2 (n%-k?) 2 c e o
Doyp Dop_g N-1 A(2k-1)(2k+T) 2k-152k
k n+k

We see that Pox = k3T noT”

2.3  Continued Fractions and Stieltjes Transform

In this section we will introduce the theory of continued fractions
as a tool for investigating the properties of canonical moments. For
the complete theory see Perron (1913) and Wall (1948).

Let us denote

4
a
b, + 2
1 ag
b2 +
b3 +
a a, a3
by B;'+ EE-+ Bg-+ and its nth truncation (convergent)
a -
a a a a A
by + b2 T by El-+ B§_+ + Eﬂ' or Eﬂu It is known that
2 . 1 2 n n
a
‘o Bﬂ
n
A= DAy T ahho and
Bn B ann 17 aan—Z’



From the above expression, we can see that

b2 -1
An =a; |aj b3 -1
-1
a b
n
and
b] -1
Bn = la, b2 -1
- =1
4 bn
ag ... 3,
For the sake of convenience, we write A = a K( )
n 1™b, b, ... b
2 3 n
a a
2 n
and B = K( )
n b] bn

The following theorem says that the ratio

tors) of two consecutive convergents can be expressed in terms of

canonical moments.

Theorem 2.3.1:

An = b + %n -1 +. f§3
An—] n bn-1 * bn—2 * b2
B a a a
n n n-1 2
‘ =b + R
Ba-1 N byt bpop * by
Proof: See Perron (1913).
Let
_ 3,11 34 0e a, 4y
Aas K T b, )
’ A atl] AtV

22

of the numerators (denomina-
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B = K( ,
Vad by 47 Dygp A+V
and A, o = A Byg T By A T T By T 0 Ag = by By = T
B]’A = bx+1' We have

Theorem 2.3.2:

a, a, ... a a; ... a a ... a
- - + +y-
071 "7 Tvia-l 01 " “a-1 A Tt Atv-1
a, ... a a ... a
1 A-2 A+2 Atv-1
+ a_K( ) K( ).
by by Byt hg Ditv-1

Proof: For the proof, we can either follow the proof of Perron

(1913) or use Sylvester's identity

12 ...n T ... x=1, 242 ... ny _ 1T ... 21T 21 ... n
Aly g o0 ) ARG -1, a2 o) T A A=T A+1 n)
1 A A2 n
A(1 A A2 ... n)
1 A-1 a+] n 1 A A2 n
- A(T A A2 n) A(1 coA= T n)
7 - A
where A(} g Tt 2) denotes the determinant |: : and
a7 -0
a. - I
Ty i 11k1 11kp
A<k kp> denotes the minor :
1 - Ky :
a . a.
k k
P pp
AZn
The continued fraction with its nth convergent equals to o for
2n
n=1,2,..... is given by
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a b2 a2a3b4 a4a5b2b6 a6a7b4b8

1
bib,*a, = (b b *as)b #byay - (bybgtag)bgtbyag - (bgbytazlbgtdgag =

It is called the even contraction. Correspondingly the odd contraction
is given by
3y a]azb3 a3a4b]b5 a5a6b3b7

b, - (b1b2+a2)b3+b1a3 - (b3b4+a4)b5+b3a5 - (b5136+;;16)|37+t35b7 -

Now we define

Definition 2.3.1: The Stieltjes transform of a measure g is given

by

“d
G(z) = [ ifi).
For the measure on [0,1], we have

Theorem 2.3.3: The Stieltjes transform of a measure g on [0,1] has

a continued fraction expansion

1 U z z
jdelx) o0 L 2 (2.3.1)
0 Z-X VA zZ z

The above expression terminates with the first Ly = 0.

Proof: See Wall (1948).

Remark 2.3.1 (see Jones and Thron (1980)): The expansion on the riéht

of (2.3.1) is unique for a given g. It is called the corresponding

continued fraction. If we take the even contraction, we obtain

R *3%4

T4 zopty T Tyt
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which is called the associated continued fraction. Notice that the

lTeft hand side can be written

MrooH

1
e 2+
Z Z2 Z3

where My denotes the kth moment of £. The following example will show

how to obtain Py from the continued fraction.

Example 2.3.1: We want to find the canonical moments of the

Jacobi distribution. It is known that the moments of the Jacobi

distribution xu(1-x)6(a > -1, 8 > -1) are given by

1)

_ T (otp+2) n+o g, (etl)y

T (o+T)T (B+1) f £ (1-t)7dt = Za+5+25n’

where (a)n = a(a+1) ... (a+n-1). Compare with the hypergeometric

function

ab (a),(b),
Fia, by e 2) =1+ =z + '_1”7'“""'§T .

we find the corresponding power series for the Jacobi distribution is
o] (a1, 1, a+p+2 z). It is easy to check that

2F1(a,b,c; z) = 2F](a,bﬂ ,C+1; z) %%%¥%Y (a+1,b+1,c+2; z).

Rearranging terms in the preceding expression, we have

2F](a,b+1,c+]; z) :
oF(asb,c; z) _a(c-b) Fi(a+T,b+T,c+252)
c(ct1) = ,F(a,btT,cHTs z)

(2.3.2)

. F,(a+1,b+1,c+2; 2) 2F](b+1,a+],c+2; z)
Noticing that ZF](a,b+1,c+1; ) = ZF](b+1,a,c+2; 7y by using

(2.3.2) again, we have
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2F](b+1,a+1,c+2, z) ) ]

FIOFLa 2] T ) (onp) |, 2N (PR AHTLCHS 2
(c+1) (c+2) F.(b+1,a+1,c+2; z)

2'1
2F](a,b+1,c+1,z)
Applying the same trick successively, we can expand F{a.b.c. 2) in

21
continued fraction,
. a(c-b)z (b+1)(ct+l-a)z (b+n)(c-atn)z
2F1(a’b+]’C+1’ 2) _ 1 cleHl) (c+1)(ct2) (c+2n-1)(c+2n)
] el 1 _

JF(abesz) T T -

(a+n)(c-b+n)z
{c+2n)$c+2nfll_,..,Let a=qgtl, b =0, c = atptl and replace z by %u

We have
otl 1 g+1 1 1
oFq (01,1, 08423 %) -1 a2z i E
g+n n 1 atptntl  otntl 1
o+B+on atg+entl z ottt 2ntl otg+2nt2 z

: ] 1 .
It is easy to check that %-2F1(a+1, 1, otgt2, %) is the Stieltjes

transform of the Jacobi measure, i.e.

at] g+1 1 g+n n
1 1y o1 atpt2 oBt2 otB+3 atB+2n otpg+Zn+l
E-2F1(a+}, 1, atp+2; Z) =TT > e -
at+g+n+l atn+]
atg+2n+l atp+2n+2
- 'l _-.o
It is easy to see
_ _atl _ 1
Py = Gz 2 Py Z GieEr
For n = 2k,

- k(g+k)
Cok ~ [a*g+2K) (atp+t2k+1)"
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Btk K> we see

Assuming that Gop-1 = HEFOK

K
Pok = a¥g+2keT -

For n = 2k+]

- o+BR+k+] atk+]
Pok+1 = G¥B+2K+T atpt2k+2”

at+p+k+1

SFaEokeTe We see immediately

Since 9y, =

_ _oatk+]
Pok+1 = Grp+2k+2”

This result was obtained by Skibinsky (1969) by another method.
Particularly, if a = 8 = 0, we have the uniform measure on [0,1]

and the corresponding canonical moments are given by Poko1 = %—and

Poy = ?%17“ For the arc-sine distribution, o = g = - %3 hence Py =‘%
for all k.
2.4. Canonical Moments and Orthogonal Polynomials
Recall that we defined a sequence of polynomials Hém’n)(x),
k =0,1,2,..., if H(s" ) # 0, in section 2. It is obvious that
Hém’n)(x), k =0,1,2,... are orthogonal with respect to xn(1-x)md , 1.e.
1 (m,n) jon m
é Hk >Tx) x'x (1-x)"de = 0, § = 0,1,...,k-1
Rearranging the terms in (2.2.3) and (2.2.4) we have
(m,n) (m,n+1) m m (m,n)
O S O T S
m m m m m TASeT
Hien () B ) B (80 D (00) H (07)
(m,n+1) (m,n) m m (m,n+1)
Hk+] (X) } Hk+] (X) ) Hk+2(A Un)Hk(A Un+]) Hk+] (X)
m m m m m
Hiwq (@ung) B (a0un) g (000 g B (a5 ) Hy g (a0 1)
(2.4.2)



28

H, (8™ H, 2 (A o)
Let q(m,n) _ _k n’ k+l n+1 X K> 0

k+1 m m -
Hk(A “n+])Hk+1(A “n)
m m
(myn) _ Hk+2(A “n)Hk(A “n+1) (m,n) _
e = - . > 0, e =0
k+1 H (Am )H (Am ) — 0
k+1Y° Hpe1 /a2 By
(m,n)
H (x)
P (0 = K k2 1 and p{™ M () = 1, p MM () < o,
Hy (8% )

We can easily obtain

Theorem 2.4.1: For k > 0,

Pt () = (e {mM) g mamyplman) )

- qém’n)eém’n)péTin)(x) ‘ (2.4.3)

péTin)(X) - (x_qéTin'])_eéTin-]))pém,n)(x)_eém,n-])

H '1 s
q{man=Vpman) (s | (2.4.4)
Proof: Brezinski (1980) has proved for the case m = 0. The proof

for m # 0 is similar and so is omitted.
By comparing the coefficients in (2.4.3) and (2.4.4), we have

ei((m,n) (myn) _ q(m,n-1) 4+ elm,n-1) (2.4.5)

Corollary 2.4.1: K+

(myn) _(m,n) _ eém,n-T)qéT{“']) (2.4.6)

where k > 1.

Remark 2.4.1: (2.4.5) and (2.4.6) give the g-d algorithm in

numerical analysis if m = 0.
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P(x) = pp 27 (x),
0, (x) = oM (),
R (x) = pL0 (),
5, (x) = pL0:0) (),

i.e. Pk(x), Qk(x), Rk(x) and Sk(x) are orthogonal with respect to

dg, x(1-x)dg, xdeg, and (1-x)de respectively. We have

Theorem 2.4.2: Let P_](x) = Q_](x) = R_](x) = S_](x) = 0,
PO(x) = Qo(x) = Ro(x) = So(x) = 1. Then

(1) Prar(X) = (gt )P () =25y 1251Py 1 (x) s k21, py(x)
X=Cq>

(1) Qg (0 = X010 o130 Q (XD oy 11V o Q41 (X) > K > 0,

() Ry (0= Ot 20 R (-2 g1 aqRe g (X5 Kz 0.

G0) S = Oovge o) S g4y g ()5 k21,

S](X) = X=Y,.

Proof: By Lemma 2.2.5, we see, for k > 0,

(0,0) _ (1,0) _

Ul 7 Fokr1r 1 T Yopene
(0,0) _ (1,0) _

el T T Cokr2e G4l YoK+3"

So (i) and (iv) follow by substitution in (2.4.3). (i1) and (iii)
follow by using (2.4.3), (2.4.5), and (2.4.6). The expressions for
P](x) and S](x) can be found by a direct expansion of the

determinant.
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The following theorem, which has been proved by Chihara (1978),
gives the recurrence relationship for the monic orthogonal polynomial
(i.e. the orthogonal polynomials with leading coefficient equal to one)

from that of the general orthogonal polynomial.

Theorem 2.4.3: If the orthogonal polynomial system {Qk(x)}

satisfies

Aka+](X) = (BkX-Ck)Qk(X)-Dka_1(X), k = 0,1,2,... (2.4.7)

11§}

where we define Q_](x) 0, QO(x) = constant # 0, then the monic

polynomials

A, A . A
= 0" k-1
Q, (x) = Q, (x)
k BO B] Bk—] k
satisfy
c A D
= _ kys k-1"k =
Qk+](x) - (X - g;)Qk(X) - Bk_]Bk Qk_](x)-

Proof: See Chihara (1978).

Suppose we transform the interval of orthogonality by y = ax+b,
then the "new" monic orthogonal polynomial 5k(ax+b) is related to the
“01d" orthogonal polynomial Qk(x) by the following formula:

-n
a "By ... By .

Q,(x) = p, (ax+b).
k Ao Ay - A Pk

We have the following theorem



Theorem 2.4,4: If Qk(x) satisfies the recursion formula (2.4.7)

then ﬁk(ax+b) satisfies

Proof: By induction.

Corollary 2.4.4: If we transform its interval of orthogonality

[0,1] to the interval [-1,1], then the monic orthogonal polynomial in

Theorem 2.4.1 becomes

Pran () = OcF1=205 =205, 1 P (X) =42y q2aiPy 1 ()
Now with ﬁ](x) = x+1—2g],§k+](x) is the orthogonal w.r.t. d¢' where
¢' is the derived measure on [-1,1] induced by the linear transforma-

tion on taking [0,1] to [-1,1].

Proof: Put a =2 and b = -1 in Theorem 2.4.4 and the result

follows immediately.

Remark 2.4.4: It can be proved similarly that the following
results hold

Qe () = O T2 510727911 3) A ) =B p g Vg ()5 K 2 0

Reen () = Ock1=20p 12051 R 0 -8y o R () k2 0

~ A

= O T-2141 20105 ) Fr g g Sy (X0 K2

(72
=
-+
—
x
~—
|

S](x) = x+1-2y2
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where ﬁk(x), &k(x) and gk(x) is orthogonal with respect to (1-x2)dg'

(1+x)dg' and (1-x)dg' respectively.

Remark 2.4.5: Freud (1971) used the following form of recursion

formula

where k = 0, 1, 2,..., P_,(x) = 0, y_; = 0.
By Theorem 2.4.3, the monic orthogonal polynomial
Py (x) = (x=a ), (x) - (K2 ()
k+1 k7 k 0 k-1
Comparing with what we get from Corollary 2.4.4, we see that
ay = -1+2g2k+2c2k+], k > 1, ag = —]+2;]

Yk= ] s k>].

k -
2 /%1527 5ok

Remark 2.4.6: Karlin and McGregor (1959) investigated the

properties of the random walk Xn’ n=20,1,2,..., by studying its
corresponding orthogonal polynomial system which satisfies
Qplx) =1
XQo(x) = FoQo(X) + F-)OQ](X)
XQk(X) = C-Jka_1 (x) + ;‘ka(X) + 5ka+] (x), k > 1,
x € [-1,1]

where
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4 = PriX = k-1]X = kI,
Fo= PrIX = KIX = kD,
P = PriX .4 = k+1an= k1,

Qk(x) is  orthogonal with respect to some measure y{x).
It is equivalent to
Qlx) = 1,
50Q] (X) = (X_FO)QO(X) ’
PnQps1(X) = (x-r)Q (x) - g0 _;(x).

By Theorem 2.4.3, the monic orthogonal polynomials én(x) satisfy

the recurrence formula,

1

QO(X)

H

0y(x) = (x-F)0n(x).

- -~ - A

Qpeq () = (x-F)Q, ()=, 43,0, _1(%).

By Corollary 2.4.4, that will imply

rn = -]+2;2n + 2C2n+1’

Pn-19n = “2n-1%2n-
In particular, if we choose ;n = 0 and 50 = 1, then we see Pon-1 = %
and p, = ﬁn, where p, is the canonical moment of the measure p(x).
It can be checked directly that the denominators of the n-th
convergent of the associated continued fraction are exactly the
orthogonal polynomials Pk(x). So given the recursion formula we can
write down the continued fraction expansion of the corresponding

measure. We have immediately:
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1

de(x) . _1 152 “3%4
Theorem 2.4.5. If [ =
0 ZX  XTL] = X"TpCy T XLyt eees

then

1 -
() | x(1=x) 4, = €17 Y3Y4
0 Z-X

Z‘YZ‘Y3 - Z'Y4'Y5 = .

1 8 Col
(1) [ 555 de = Z_C]_C i z—i ?C i
0 172 34 77
(]11) } (.I"X) dg - Y] Y2Y3
0 Z-X Z-YZ - Z~Y3—y4 - e

If we transform the interval from [0,1] to [a,b], by Theorem

2.4.4, we see

2
b de' (x) 1 C]Ez(b"a)

Theorem 2.4.6. | Sy T —
N Z-a ;](b a) - z-a (52+g3)(b a) -

where £' is the probability measure on [a,b] induced by ¢ and

} de(x) . 1 £yty
0 Z°x 2Ty - ZTy=L37 -
Let £ be a probability measure on [0,1] with canonical moments
P1s Pps--- and £ be the probability measure on [-1,1] with canonical
moments %3 P1> %3Ap2’... The orthogonal polynomial ﬁn(x) corresponding

to £ is easily seen to be

The following will show that 5n(x) is closely related to the orthogonal

polynomial related to & on [0,1].



35

a1 @, 83 ...d, 4 a1 85 ... A5
Lemma 2.4.7:  K(, 4 5 x 107 K3 1 1K)

Proof: By induction.

“0q «ve =0 g ~C
Theorem 2.4.7: K( 1 2n—1) = K( 1 2n-1) =P ( 2),
2 2 n
XX .. X X X1 .0 X% 1
Y “T1 eu. =C
KCTT Y sk )T M = xR (),
XX oo X X T x= ... x° 1

where Pn(x) and Rn(x) are defined in Theorem 2.4.2.

Proof: It is clear that the above statements hold for the case

n = 1. Suppose it is true for n < k. For n = k+1, we have

“Tq ve. -C “lq vew =L “Lq ve. ~C
1 2k+Ty _ 1 2k 1 2k+1
K(x X veu X x) =X K(x X ven X x) - C2k+lK(x X veu X x)
2,, 51 TRk Yoy e TRk
= x“K( ) - ¢ K( )
1 x2 v x2 ] 2k+1 x2 1 ... x2 1

TE e TEokoT TE2K T Gk

) K(l x2 1 x2 1 x2)
L
Based on the above results, we see
O O B N O R
G
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S IR '€2k+1) Ty e '€2k)

-C x K(
2 | x2 Zk+2 1 x2 ce x2 1

1}
x
~

—~~

B BRI TIeS| 'C2k+2)
2 2 .
e 1 x 1

x K(
1 x

The proof is completed.

The following examples show how to find the canonical moments from

the recursion formula of the orthogonal polynomials.

Example 2.4.1: Let dg(x) = (1—x2)°‘]x|Y on [-1,1]. The correspond-

ing orthogonal polynomials satisfy (see Chihara (1978))

~ ~

P (x) = x p_1(x) = AP 5(X)

where

v = (2mty=1) (2m+20+y+1)
2m  (4m+2a+y-3) (4m+2a+y-1)

and

- dm(mta,)
2m+1 (4m+20+y-1) (dm+20+y+1) "

A

=p. = Yt
From Corollary 2.4.4, we see AZ Py Doty 13 and
A = 4(1+a) . _2at2 2
3 (20+y+3) (20+y+5) 20+y+3 20+y+h
= q2p4
which implies Py = §E§;1§u By induction, we can show that
t] i odd,

P2i = ZarzieT

.i

Poi = Zogvy+2ieT> | even.



37

A1l the odd canonical moments are equal to %—since de(x) is symmetric.

Example 2.4.2: It has been proved by Skibinsky (1969) that the

canonical moments of the Binomial distribution B(N,p)are given by

Poj_q = P and Poi = %—, i=1,2,...,N.
The following is a new proof via the comparison of the coefficients
of the orthogonal polynomials. It is known that the orthogonal
polynomials corresponding to the binomial distributionare the so-called
Krawtchouk polynomials (Szego (1975)) which can be written as
pn(n!)—1Mn(x; -N, -1/q), n=0,1,...,N,
where
M (x5 8,c) = (B) oFq(-ny -xs 85 1 - %),
(8)

0 g(g+1)...(B+n-1).

So Pn(x) is proportional to ZF](—n,—x,—N, %), which is equal to

(“n)z('x)z 1 (-n)

' 11, n-20"¥n2 1 1
N p Z—N;Z p2 21 (-N)n_2 n-2 (n-2)!

. (“n)n_](’x)n_] 1 1 . (“n)n(‘x)n l_.l_

(—N)n_] pn—1 (n-T)! (-N)n pn n!

For example, P](x) = x-Np. So, by Theorem 2.4.4, we see Py = P- In
general, suppose p_ (x) = (x—an)pn(x)—Bnpn_](x). Then we see

-1

n+1

coef(coefficient) of X" in pn+](x) = coef of X"~ in pn(x)-a ,

in pn(x)]—an@oef of X" in

n

-1 n-2

coef of x"' in pn+](x) =[coef of x

p,(x)-8,1.
It can be shown that the coef of xn—] in pn(x) is - Diﬂ%ll._ p(N-nt1)n,

and the coef of 72 i p,(x) is
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2

n(n=-1)(n-2)(3n-1) , peyopeqy DO=D(0=2) 0 4y (N pe2) (N-n 1) p2

n
24 2 2

So we see that

a, = ng + (N-n)p

= n . N-n

- N[q N + N p]s
B, = (N-n+1)pgn

_ 2prN-n+1 n

Hence, we can conclude

Pos_q =P and Pos N for i = 1,...,N.
We also get the simple recusion formula of the Krawtchouk

polynomial

P (x) = (x-NIq &+ B0 pT)p (0 -NER pa b, (%)

(X-N+np)p, (x)-(N-n+1)npg p__(x).

The form given here is much simpler than that of Lesky (1962)
and Karlin and McGregor (1961).
The following theorem shows that the L2 norm of an orthogonal

polynomial can be expressed in terms of the canonical moments.

{

Theorem 2.4.8:

1
(4) [ PE()AE(X) = 295y +o- Ty
. 1 2
(i1) é X(T—X)Qk(X)dE(X) T Y3Yg e Yop4?
. T2
(ii1) é x R (x)de(x) = 2y oot Zopyg
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1
(i) | (1-)SE(X)E(X) = ¥y -ov Yppyr-

Proof: Note that

b2 Lok
é P (x)de(x) = é x"py (x)de(x)

M1 (ug)
——(__T—Hk UO E-I vae (:Zk.

So (i) is proved. The proof of the others are similar.

Remark 2.4.6: Let ﬁn((b—a)x+a), x € [0,1], be the orthogonal
polynomial on [a,b] obtained from Pn(x) which is the given orthogonal

polynomial on [0,1]. By Remark 2.4.2, we see that

~

Pn((b-a)x+a) = (b~a)nPn(x) x € [0,1].

So
1

[ (P ((b-a)x+a))*de(x) = (b-a)°"

Calo «ns Tooe
0 1=2 2n

1

In particular, if -a = b = 1, then [(ﬁn(Zx—l))ng(x) = 22n L] +er Lope
0

The following theorem is the confluent form of the Christoffel-

Dorboux Identity.

Theorem 2.4.9:

2 t t
- g Pl pn+1(X)pn(X)-pn(X)pn+](X).

k=1 51+ %2k &1 =+ %on

" Proof: See Szego (1975) or Chihara (1978).
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The value of the orthogonal polynomial at certain points can be

expressed in terms of canonical moments as the following theorem

shows .

Theorem 2.4.10:  K( ") =gy ... q
11. T 1
-z - C
K( 1 2n) =0
01. 1T 0
c ton+ +
K( ! 2n ]) = ("])n ]Q]EB---§2n+]

Proof: The first three can be obtained from direct calculation

and the last one can be obtained by using the recursion relation

1
Ps1(X¥) = (x= ) (X) = zon 180, noq(X)-
By Theorem 2.3.1 we can determine the canonical moments from the

ratio of orthogonal polynomials.

Theorem 2.4.11: Given

We have
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-z -z
1
R (z) K ) Gy G
() 2] 1z con Son-1 °1
() -z -z ST -z - -z
n K( 1 2n-1)
z 1 z 1
-z -z
1 2n-1
P (2) K( ") 4 Z
(i1) <" o z 1 1 z 1 2n-1 ~2n-2
Ro_1(z - - z - T -
n-1 K( 1 2n"2)
z 1 1 z
Pn-1(2) 1 _ bok-3%2k-2

(111) (z) Z- - zZ- - -
Pn Eok-2"52k-1 Cok-4 = %2k-3 Tr°c

2.5. Canonical Moments and Qrdinary Moments

In this section we show how to express the ordinary moments in
terms of canonical moments. The results we obtained here were also
found by Perron (1913) and Wall (1948). The proof given here is new
and more elementary than that given by Perron (1913) and Wall (1948).
The results we obtain here are more general than that of Skibinsky
(1967).

It is known that any matrix can be diagonalized by two triangu-
lar matrices by using Gauss's elimination algorithm. We will apply
such a diagonalization method to the Hankel matrix. The following

theorem is taken from Gantmacher (1959).

Theorem 2.5.1: Every matrix A =(a1j)? 3=1 of rank r in which
B 12 ...k _ 3
Dk = A(] 5 k) # 0, for k = 1,2,..... r can be represented in the

following form
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DZ ] n
£ 0 g
A=foL= | 21 . 5, . 2n
- D :
Fof .. ] r 0 0 1
nl 'n2 Dr_1
0
where .‘O
12 ... k-1 g 12 .. k-1k
. MG ! . M2 ik
gk T7 ..k > Rg T7.... k
Ay g i) Ay 2 i)

(g = ktl....n, k =1,2,...,r)

and f and %, are arbitrary for g = k+1,...,n; k = r+l,...,n.

gk kg
In our case, the Hankel matrix is symmetric and nonsingular, we

see immediately that F = LT. We have the following corollary.

Corollary 2.5.1: The Hankel matrix can be put into the following

form
pO . un 1 0
MZn - M(] 2 ... n+1) _ . : - kO] 1.
1.2 ... ntl ’ ) . .
Hn Hon T
kon K1p ]
1 1 k .k
1 k1,n
51" -%2n 0 1
= k'p K
where
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Ce s

T2 ...

k. .=
i-1,3-1 .
"G o

!
. .
Gt CaafCa, e
~—

»

C

| v

-

|V

pu—)

Proof: Directly from Theorem 2.5.1 and Theorem 2.2.2.

T _ T _
Let x' = (XO’X1""’Xn) and y = (yo,y],...,yn), we see

T - T T
X MZny = x K'DKy. So we have

Theorem 2.5.2: .. qZOup+q o = (kggXg *-- % KopX ) (kgo¥g +-- -+
kOnyn)
toqaplkyxy bt kypxp ) (kg gy 4ot kqpy)

*taqtpigiglkopxy +eot kopx ) (Kyoypte .t
k2nyn)

+ ...+ g1 "'Cannyn'

Particularly, we have

Corollary 2.5.2: Without loss of generality, we assume p < q.

Then Moiq = kOpkOq + Clgzk]pk]q + ;]g2g3c4k2pk2q +o..+ C]"‘CZpkppkpq

We will give a procedure to compute k . beTow.

Let p (x) = pék) + pgk)x +o.t pék)xk, pék) , be the kth orthogonal
polynomial. Let
Py(0) 0
(o o
pé%) p{n) o)

We have the following Temma
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T

-1y,

Proof: It is obvious that

put i

That

T

LM, L =D

—=2n
By comparing with Corollary 2.5.1, we see L
As a consequence, we have KTL =1 1.e.

1= pylx),

x = kgqPg(x) + kyqpq(x),

x° = KgaPg(X) + kyopq{X) + kooby(x).

If an orthogonal polynomial system {pn(x)} is given by

Pp(x)
po(x) =1, p'l(x) = X-011

(x=c )P, _1(x) = 8Py o(x), n>2

t in a matrix form, (Brezinski 1980)
p - T
1 01T péo) péo)
o 1
SN | FLF LI B R
0 Bnt1 ot
L pé") pg“) pﬁo)- _pé") p%”) pﬁ")_
0 1
1 0
J 1.
0
is
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1 97 1 0 01 0 B 0 7
ko | 0 [y ey 1 ] . ko 1
kop Kyp 1] R 0 Koz Kq2 1
N n . .
. O B +1 %N+ 0 .
n n
kOn k]n an 7L _kOn In ]J
[%o1
Koz K12
: (2.5.1)
Kon K1n 1
0 0 ...0]

By Theorem 2.4.2, we have Gp = Tys 9 T Ton s + Cono1 and
By = Ton_3Copn.2- Substitute these values in (2.5.1), we can express

kij in terms of Ly k =1,2,... For example

ko1 = &

Knp = 22 + 210, = £o(0y + 2,)
02 1 1-2 1Y71 2
Kjg = 2p t oot i3

By Corollary 2.5.2, we can write down the expression of the ordi-

nary moments in terms of the canonical moments, for example,

mp = kgy = 5
UZ = k02 = E](C] + Cz)'
Consider the matrix

T M

1,1 2004
(= M0y 5l )
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We can apply Theorem 2.5.1 and obtain

Theorem 2.5.3: 2 Hp+q+-| p q ](koo O .t kOan)(k(.)O‘yO oo

p 1
* kOnyn)

+ oqzonglkygxy ot kyxp ) (kqqyy +ee ot kypyy)
+ 1qiptalatg(kooxy oot ko x ) KoYy +
t ko)

o Vo oon XY

Corollary 2.5.3: Without loss of generality, we assume p < q.

up+q+1 - 1k0pk0q * E1C2§3k1pk1q * SR 5k2pk2q Fooot z]"‘c2p+1kppkéq

As in the previous case, k%j is given by

)

-1 1
=13

)

B
LJ.—A..J.—I

KT 2
12
In finding the expression of 1 in terms of canonical moments,

Skibinsky (1967) defined

1 .om=-1 m-itl
M( . )
Lo miml g g,
M, 0 ™)
1 . m=-i+1
Si n-i
’ 1 e med mei]
MO T et el )
] e = for n = 2m+1.
Ml( [P m-]' )
So we see immediately T ... m-it]
Si,n“i - km—1+1 mt+1
for n = 2mtl, or
ki, =S, o ...
1J j=i, 1+j+1
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If we Tet g = 0 in Corollary 2.5.3, we see

Hp+1 C1k6pk0q B C1Sp,p+1
which is the result obtained by Skibinsky (1967). By using the same

method in deriving (2.5.1), we find:

1 S et 1 b

kop 1 Cpt3 tztyy 1

koo Kyp 1L %5 tgtig
T

= ki Ky
SERSERLY I
So we have
kor = 59,2 7 61%2
D ) 2
koo = 55,3 = (59%2,)" + torg
Kig = 51,4 = tyteptegte,.

2.6. Measures on the Circle

In this section we will introduce some parameters of the measures
on the circle and show how they relate to the canonical moments under
some conditions. More details of the following can be found in
Geronimus (1948).

Let ¢ be a measure with support on n+1 points on the circle.

Define the (trigonometric) moments by

i3 .
e K%5(0), k = 0, 1, 42,...,+n. (2.6.1)

l\)l—:
OO

x

m
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The Toeplitz determinant is given by

¢ C
- k . lcyc¢ c _
Ak lc‘i‘jio = -] .O k"] F k - O,],.--,n. (2.6.2)
€k Cok+l o
The polynomials
9 < - Cpy 1
) _ 1 jeq ¢ .. C z _ _
@k(z) =7 ) T "0 _k—2 ] k=0,1,...n, A4 1,
k-1 . :
C parC ¢ K (2.6.3)
“k+1%k+2 " "0 0.
k
S I

are orthogonal with respect to o. More precisely, we have

2m . . 0, 0 <2 < k-1
1 -ig s U X 2
5= [ o (e'0)e” *odu(e) = : (2.6.4)
0 A
h, = —2 =K
kA3
Define the parameters {ak} by
¢, Cy Cht]
k
lc.: siql c c .. C
(-nka, = 0L 0 Ko k=0,
lci-jio k fc.y cg v S
c c ... C
~k+1 C-k+2 1 (2.6.5)

Notice that A, > O since o has its support resting on n+l points.

k

Theorem 2.6.1: The orthogonal polynomials ﬁpk(z)}g are connected

by the relationship
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@k+](z) =z yk(z) - 5k@§(z), where @E(z) = zkék(%d (2.6.6)
and the three-term recurrence formula

. T _ 2

3y P 40(2) = (az + 41 94 (2)-23, 1 (013, [T, (2) (2.6.7)

polz) =1, o9q(2) = Z-a4.

Proof: See Geronimus (1948).

Remark 2.6.1: mﬁ(z) satisfies the recurrence formula

¢E+](z) = @E(z) - akzwk(z). From the above theorem, we can deduce

_ B

Nes1 = 3

“e e (1-]agl%). (2.6.8)
1

n = x
O

Using (2.6.4), we obtain

A, A /2
K+17k-1" _ 2 _ AAD=A, A
—— = 1—[ak[ 5 ]ak[ = k “k+17k-1 '

(2.6.9)
By By

We observe that }ak[ < 1. Indeed, we have

Theorem 2.6.2: The necessary and sufficient conditions for the

complex numbers C o k = 0,1,... to have a representation
2w .

Cy = %;~f e_]kedo(e) where o is a measure with its support rested on
0

nt1 points in [0,2r] is Ja | <1, k = 0,1....n-1 and [|a | = 1.

Proof: See Geronimus (1948).

Example 2.6.1: For the probability measure concentrated at one
-i8
point o = 8> it is clear that cp =1 and cp = e 0. By (2.6.5), we
-i8
. _ - 0 _
obtain aj = e; = e yice fag| = 1.
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Example 2.6.2: Consider the probabi1ity'measure

ole = v + 2iry | 2. r=0,1,...,m-1. This is the probability measure
putting equal mass on m points which are equidistant on the circle.
Ck is given by

m-1 -ik(v+ gﬁﬁ)

1 m
7 e
M =0
1 —1kvmi ( o . r
= cos k £ - jsin k =)
m 20 m m
0 ifk 0 (mod m)
e if k=0 (mod m).
- - = - _ kv
By (2.6.5), we see ay = ay =...= a5 0 and a1 =¢ Hence
we have lam_]] = 1. In particular, if v =0, we have a_ 4 = 1.

Example 2.6.3: Let do(s) = %;~de, it can be shown that

¢y = 1 and ¢y = 0 for k > 1 (see Mardia (1972)). Correspondingly

we have

a4 T &

2

Example 2.6.4: Let do(e) = %;————%{fl—-——~— de. This is also
T+p"-2p cos €

called the wrapped Cauchy distribution (see Mardia (1972)). is’

given by p‘kl. The parameters are 3y = P> ay=ay = ag =e.. T 0.
Let £ be a probability measure on the interval [-1,11.
Define

£(1) - g(cos 8), 0 <o <,

o(e) =
g(cose) - £(0), -m <6 <0.
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Geometrically, o is

|

So o(8) is a measure on the circle and g~
obtained from £ by splitting equally the mass at Xg on the x-axis to
the two points on the semi-circles that have same x-coordinate as Xg*
Now all ¢, are real and ¢ = C_g> S0 it makes sense to talk about

maximizing (minimizing) Clet given Co» C]""’Ck‘ Thus we can define

the canonical moments for the measures on the circle as

+, -y . ) . .

where ck(ck) is the maximum (minimum) of c, given cp,CyseeesCy e It
— H — + -

can be seen from (2.6.5) that ay = T gives ¢y q = Cpyq and a, = -1

gives Cre1 = c;+1. Corresponding to Lemma 2.2.7, we have, using

the same trick,

- By
St ™ Cpr1 T B g
k-1
. . - A
Similarly, we can show ¢, 4C 1 = (1—ak) Z;t;a Consequently, we
it 1+a
+ - . _k - k
have Ctl = Skl © KE:?-Z and Pre1 = 7

The Py defined above is equal to the one we defined in Section 1

for the measure & on [-1,1] since
2r .

f e_1kedc (8)
0

| —
Ry

Cx

1
[ T, (x)de(x)

i
3=

1
1
- %- {(zk"xk r. . )de(x)
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We can see that two pn's are the same by using the same line of

reasoning in the proof of Theorem 2.1.5.

As a final remark in this section, we notice that if we rotate
the measure do on the circle by an angel 6, lakl will remain

unchanged.

2.7 Canonical Moments and the Support of g

Given a terminated sequence of canonical moments Pys---oPpo
where Py = 1 or 0, the corresponding £ is uniquely determined. It
is desirable to find the support and the weight attached to each
point in the support. Since the weight can be found easily if the
support is known, we will concentrate on the finding of the support

of ¢ in this section.

Recall that ¢ has a continued fraction expansion

de(t) 1 51 %2

X-t X- 1= X-...

Oy —

If Pn = 1, say, then the right hand side terminates and has the form

bag(t) .1 °1 %22 o
é x-t X- 1= X- ...- T
where Ly = qn—1Pn = G,.1 and Ty = 1 or x according to n is odd or even.

So the zeros of the denominator of the whole expression, namely

are the support points of ¢. Similarly, if Py = 0, the roots of

—C-l cee —Z;n_-]
x 1 ... Tpo1
we have the following theorem:

K( ) = 0 are the support points of the measure £. So
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Theorem 2.7.1: If Py~ 1, the support of £ is the set of zeros

“Ly vv. =L
of K(X } ? ). If Py = 0, the support of £ is the set of zeros
. n
“Lo vu. =C
of K(X } n-1 ).
PO Tn_']

Sometimes, it is helpful to change the form of the polynomial in
such a way that the roots remain unchanged. We have the following

Temma.

a1 8n ... @ a. ... a
172 my _ 1 m
T ) " m K(1 X ).

Lemma 2.7.1: K(x 1
—_— e T cee T

Proof: When m = 1, the statement obviously holds. Suppose the

statement holds for m < k. Then by expanding in the last row,

a; a, ... @, @ Ay ... @ a; ... @
O O T B T P DO
CE Y Tk Tk+'] “ s e Tk “ e k'-]
By induction hypothesis, it becomes
a; ... a a a
1 k 1 k-1
T 7, K( ) + a T K( )
k+1°k M1 x ... Tye] k+1T k=171 x T
a; ... a
1 k+1
= 1,1K( ).
k+] -l X oo Tk+2
The last line is obtained by noticing that
T T if k-j =0 (mod 2).
a; ap ... @ a ... a
Lemma 2.7.2: K(X % 2 my=x( ™ l).
—_— v e Tm Tm Tm—']

Proof: The result holds since we just transpose the corresponding

matrix.
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m Ym o TY2 )

Lemma 2.7.3:  K( <1 .

m
Proof: It can be easily checked that the statement holds for
m =1 and 2. Suppose the statement holds for m < k, then by expanding

in the last row

"Z;-I c e —€k+] "‘C-l e o —Ck
K( ) = 1, K( )

X Tyt k+17'x 1 Ty

- oo =C
1 k-1
- ck+]K(x 1 ... gk_])'
By induction hypothesis, it becomes
P Yk e Y2 a1 T k-1 e Y
wkler T ) T s GT ey

By writing P = Yie1 ¥ PrPre and Pro1 = Yk+pk—1pk’ we have

Tk+1[K(x—Yk+}_Yk . _Yfk)'pkpk+1K(x_Yk-} :.:'_Yfk)]
<l -Yfk_])'pk—lpkK(x-Yk—$ o Yfk_])]
= Tk+1K(x—Yk+} Tk _Yfk) - Ck+1K(x-Yi1< N _Yfk_])
- pkpk+1[fk+1K(x—Yk_} ::: -Yfk) il YkK(x-Yk—$ ::: _Yfk_])]'
= Tk+1K(x_Yk+} N -Yfk) - Ck+1Tk+1K(1-Y§ N —Yfk)
- pkpk+1[Tk+]K(x—Yk—} N -sz) - Tk+]YkK<]— 2 -Yfk)]
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-7 -y vl -y Y, ee. ~Y
_ k+1 Y+ 2 K 2
= T RGO Tk) - PePatky rk)]
“Prpr cee =Y
TR
- o @ k+]

Theorem 2.7.1: (Studden) The support of measures corresponding

to (p],...,pm,O) and (pm,...,p],o) are the same.

Proof: By Lemma 2.7.3, we see that

&1 --- 7L —pm-ym..

T ... 1 e
X Tm X Tm

. =Y
K( 2

).

The result follows immediately.

Theorem 2.7.2: (Studden) The support of measures corresponding

to (p],...,pm,1) and (qm,...,q],1) are the same.

Proof: By Lemma 2.7.3, we see that

B TR -10 Yy oY

K( ) = K( )

x1 x 1... Tt ]

x 1 ... T T

By simple row operation, we can write the right hand side as

Y PR "YZ
(x=1)K(, T ).
X1 ... Tt ]
On the other hand,
"G Y ccc "Yo <Py )= K -10 Yy oeee Y )
x 1 .. T Tt x 1 x - Tt
Yo eer TYp
= (x-T)K( )
x 1 ... Tt
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-y A 7
Since K(x m 1 2

the result follows.

The following theorem gives the support of measures with termina-

ted canonical moments.

Theorem 2.7.3: (i) The measure corresponding to (PT""’PZk-]’O)

is supported on the zeros of Pk(x) =0
(i1) (P]""’PZk-]’ 1) is supported by the zeros of x(x—])Qk_](x) = 0

(ii1) (Pl""’PZk’ 0) is supported by the zeros of x Rk(x) =0

(iv) (P1""’P2k’ 1) is supported by the zeros of (x—])Sk(x) = Q.
Proof: (i) The support of the measure corresponding to
I R
. . 1 2k-1y _ -
(P1”"’P2k—1’ 0) is given by the zeros of K(X 1 x ]) =0, i.e.
Pk(x) = 0.

(ii) The support of the measure corresponding to (Pl”"’PZK-l’ 1) is

given by the zeros of K(X-g} ::: ;62§) = 0. By using Lemma 2.7.1 and
Lemma 2.7.3, we see that
G B T
- DRG] T
- e k2T

= (x-1)x Q _1(x).

(iii) The support of the measure corresponding to (P1""’P2k’ 0) is

B ERRE “32k)

given by the zeros of K(X 1 X By using Lemma 2.7.1,



57

TEy e T Bk
])

X K(1 X ... X

X Rk(x).

(iv) The support of the measure corresponding to (P]""’PZk’ 1) is

TE e "ok

given by the zeros of K(X 1 ) = 0. By Lemma 2.7.3

X 1
Ly e.. =L -10 -y, «.. v
1 2k+1, _ 2k 2
K 1.0 % )= 0DKG 0 5 )
Yo Yo eue =Y
B 2 3 2k
N (X~1)K(X i v ])
= (x—1)Sk(x).

Definition 2.7.1: The index I(£) of a measure is the number of

support points of £ with the convention that the two endpoints counted

one half and the interior counted one.

Theorem 2.7.4: Suppose 0 < Py < 1, i =1,...,n-1, Py = 1 or 0.

The index of £ is given by %u

Proof: Direct verification.

Definition 2.7.2: Let UO be an interior point 0f7wn+]. A
representation ¢ for uO of index I(g) = D%l-is called principal and

any representation of index I(g) 5_”;2 is called canonical. A canoni-

cal or principal representation is further designated by the term
upper if it involves the endpoint 1 and the term lower if it does

not involve endpoint 1.

0 ; .
Remark 2.7.1: For any u € Int,Wn+], we can define (p1, p2,...,pn)

such that 0 < Pj < 1 for 1T < 1 < n. So upper principal representation
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is the one that corresponds to (“0’ Pys Pos-e-apps 1) and the lower

principal representation is the one that corresponds to

(ns Pys Pose--sp.» 0). Similarly, the upper canonical representation
0> "1° "2 n

are those correspond to (uO, Pys Pos-eesPps Ppite 1), here 0 < pn+]'iL

The Tower canonical representation are those correpond to

( 00 PpoeeoPoPee 0), here 0 <Ppep < 1

2.8 Canonical Moments and Measures

Recall that the Stieltjes transform of a measure on [-1,1] has a
continued fraction expansion in terms of the canonical moments. It
is desirable to find the explicit form of ¢ for a given infinite
sequence of canonical moments. It is found that the task is difficult
if not impossible except in some special cases. Our next aim is to
determine the behavior of ¢ given certain Timiting properties of the
sequence of canonical moments. It is known that the canonical moments
are closely related to the coefficients of the three-term recursion
formula that defines the orthogonal polynomial system. So we use
the results from the theory of orthogonal polynomial extensively in
this section. Usually the support of the optimal design can be given
in terms of the roots of some orthogonal polynomial. So it is inter-
esting to determine the limiting distribution of those roots. We will
give a necessary and sufficient condition for the limiting distribution
to be arc-sine.

Given the Stieltjes transform G(z), we can 'recover' the measure

by the following
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Theorem 2.8.1: (Stieltjes - Perron inversion formula)

X+i
%[£(x+) +e(x )] - ]7 [e(y) + e(y)] = - T]T Tim In [ "a(2)dz.

n—>0+ y*+in

Proof: See Perron (1913) or Wall (1948).

Corollary 2.8.1: If deg(x) = f(x)dx and G(z) is analytic, in some

segment [x-g, x+e] c[-1,1], then f(x) = - %—Im G(x).

Proof: Let x, € (x-e,x]. By Cauchy's theorem

. Xatin
1 X 1 X+in 1 0 1 X
;'f G(z)dz + — [ G(z)dz + ;—f G(z)dz + = | G(z)dz = 0.
XO T X X+in m x0+1'n
Hence
1 X 1 x+in Xg*in
-=1Im [ G(z)dz==1Im [ G(z)dz + = Im / G(z)dz
X m X Xx+in
0
] X
+—1Im [ G(z)dz
X+in

Now Tet n ~ O+, the first and the third integral will tend to 0, for

X+in
[%-f G(z)dz| iV%-Mn where M = max|G(x)| in the rectangle under
X
consideration. Similar conclusion holds for the third integral. So

we have
1 Xx+in 1 X
-—lim Im [ ~G(z)dz = - —1Im [ G(u)du.

Taking the derivative, we obtain

f(x) = -~% Im G(x).
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' Example 2.8.1: Let ¢ be a measure on [-1,1] such that the

corresponding Stieltjes transformis given by

NS —
N || —

G(z) =‘%

It is easy to show that G(z) = 2(z - /22—1). Here we take the
branch so that G(z) ~ 0 as z » « along the real axis. It is clear

that G(z) is analytic on [-1, 1]. Thus

£(x) = - L Im2x-vx?-1) = % A-x2.

Example 2.8.2: Let ¢ be a measure and its Stieltjes transform

is given by

—
N —

6(2) = _ %

From Example 2.8.1, it can be shown that

1
yAn

By Corollary 2.8.1, we see

G(z) =

S

Fx) = - —— .
4 2
-X
For a measure o(6) defined on the circle, we have a transform that

corresponds to the Stieltjes transform. The material below can be

found in Geronimus (1961a).

2n ie
Let F(z) = 1 / € _*z do(6). F(z) has a continued fraction
ZnCO 0 e18_z

expansion



61

2 2 2
) 23,2 a](1-[a0| )z aoaz(l—[a1[ )z a]a3(1—[a2| )z
1-aOz - agtasz - ay*asz - atazz - ...

F(z) =1

The measure o(6) can be recovered from F(z) by

0 .
Theorem 2.8.2: G(G+O)ZO(6—O) = const + ¢, Tim [Re{F(re'?)1de.
-0
r-+1

Proof: See Geronimus (1961a).
Geronimus also proved the following useful corollaries.

Corollary 2.8.2: P(8) = o'(6) = lim <o Re F(re1e).

r-+1

n,

Corollary 2.8.3: o'(8) = ¢, 1im ————.
8y,2
O ho fpx(e'®) |

Recall that a probability measure on [-1, 1] say ¢, is related
to a measure o(8) on the circle by

-g(cose), O0<o <m X =¢036, -1 <x <1
a(e) =
g(cosa), m < 6 < 2m.

Recall also that the canonical moments can be expressed in terms of
the parameters that define the orthogonal polynomials on the circle,

namely,
i a_1 ¥ 1
P =2

Example 2.8.3: Let & be the measure on [-1, 1] with given Py

0 < Py < 1, and Pp = P3 =...= %u That is equivalent to the measure

on the circle with ag = 2p]-1, ay; = a, =...® 0. So
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o¥(z) = T-apz = ¢5(z) = 9%(2) = .

By Corollary 2.8.3

—
]—Zaocose+a0

This is the so-called Wrapped Cauchy Distribution. Converting it
back to the [-1, 1] interval, we have

2
o__. (2.8.1)

1
/2 1-2a x+a2
1-x 0" "0

Kiefer and Studden (1976) have shown that the limiting optimal

1-a

de(x) = w(x)dx =-%

extrapolation design has the following density

o

X
1_1 -2 (2.8.2)

{:;?'IXO'X :

Compare with (2.8.1), we see that

L xO - x0 -1 if xO > 1.
0
Xg + /xg -1 if Xg < -1.

Using the results of Section 4, we can write down the orthogonal poly-
nomials with respect to dg(x) as

Tn(x) - aOTn_](x), for n > 1
where Tn(x) is the n-th Tchebycheff polynomial.

Example 2.8.4: Given the canonical moments P], P2, T g pave e

= = = N = . = = - - - 2
Or ags @y, A, = ag =...% 0, we have 95(2) @g(z) o= 1 ao(] a])z a,2"

So Corollary 2.8.3 gives
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o (1-a%) (1-a%)
P(8) = o'(6) = ;-1+a2(1—a2)+a2-2a (1-a,)cose+2a.a, (1-a;)cose-2a cose
AL DA B A 0%1* ™ 1

The density on [-1, 1] is given by

- (1-25) (1-a5)

™ 2 2"

(2.8.3)
T 2,2 2
Q_XZ (1+a1) +a0(1~a]) -2xa0(1—a1)v—4a]x

The orthogonal polynomials are of the form

Tn(x)-a0(1—a])Tn_](x)—a1Tn_2(x), n> 2.

In particular, if ag = 0 (P, = %) (2.8.3) will be reduced to

2
1 1-a,

2 2°
4_X2 (1+a1) -4a]x

Studden (1978) obtained the limiting design for estimating the

1
K

[ng]th coefficient of the polynomial, 0 < q < 1, when n >~ ». The

density of the limiting design is given by

g
r(g2+(1-92)x) -

By comparison, we see

-9l -9
a, ] and Py T
Example 2.8.5: Given the canonical moments 1 p 1 p 11
P s 2° 272 42227
we have @ﬁ(z) = @g(z) =,..= (1—a122)—a322(22—a]). So Corollary 2.8.3
gives
(1-a2)(1-a%)
_ _ 1 3
P<6) - (6) - ?T— 2 2 ? .
1+a](1-a3) +a3—2a](1—a3)c0526+2a]a3(]-a3)00526-2a3cos4e

Then density on [-1,1] is given by
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2 2
111 (1-a7)(1-a3)
16 w 1-a
V1-x —a3x4+[a3—a1(——§§)2] 2 +(

The orthogonal polynomials are given by

1+a

5) (—-—3—’>

Tn(x)—a](1-a3)Tn_2(x)—a3Tn_4(x), n> 4,

. Gi 111
Example 2.8.6: Given Pys Pos PaseeoPps 50 55 7 20
- 16y _
we know that oF (e ) = m+](e Yy = .... So
L (1-a8) ... (1-ap )
P(o) = o'(0) = T2
|¢$(e )|

The orthogonal polynomials are given by

n
) ajTi(x), n>m
i=n-m
where a; is the corresponding coefficients in Imn(e1e)]2.
Recall that in Section 4, for given a continued fraction

1
expansion of [ Q%é%l, we can write down the continued fraction

1
expansion for é S !
tion of variable, we obtain similar resu]ts for the interval [-1, 1].

1
X(l-X)dE(X), i xg?ix) and f ~l—529§i—lu By transforma-

More explicitly, given

} da(xl . ] *t1%2 *e3% (2.8.4)
1 Z+1—2c] - Z+1—2;2—2§3 - z+1—2c4—2c3 - e
we have

b (-xP)de) % 3y %

_{ Z-X Z+}-—2Y2—2y3 - Z+]—2y4 -2y5 - 741~ 2Y6 —2y7 S
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D aedex) .G frot3 fogts

_{ Z-X Z+1—2;]-2;2 - Z+1-2z;3-2;4 - Z+1—2;5—2g6 - ...
P -dex) - 9 byova by gvs

_{ Z-X z+1—2Y2 - z+1-2y3-2y4 - z+1—2y5—2y6 - ...

Example 2.8.7: Apply the preceding reasoning to Example 2.8.2,

we have

N —

T-x
b T

%.—{ =Xy 1

1.
2

Denote their orthogonal polynomials by Un(x), wn(x) and Vn(x)

respectively. It is obviously from the above that they satisfy the
same recursion formula but with different initial conditions i.e.
1 1
UT(x) = X, H1(x) = X - ?-and V](x) =Xt 5
The following theorem gives the weighted Tchebycheff polynomials

for some weight functions.

Theorem 2.8.3: Given a positive polynomial P(t) of degree g

on [-1, 1], then

m m-1
[tT+b,t" " +...+ b |
1 m mi["g‘]

(1) min max
{bk} ~T<x<1 /P(t)

L b is the m-th orthogonal polynomial

is attained if tm + b]t
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with respect to 1

P(t)1-t°
m-1
[tMb t™ L+ b
(i1) min  max 1 o V1-t%, m 3,[%3,
{bk}-1ixi1 V/P(t)

is attained if t" + b tm'] +...+ b_is the m-th orthogonal polynomial
1 m

with respect to
1 1 2

Pt 1-t~.
P
(i11) min max v1-t, m 3_[%&,
{bk} -1<x<] yP(t)

is attained if t" + b]’cm'1 +.o.0t bm is the m-th orthogonal polynomial

11 Tt
7 P(t) 1+t°

Mt b
(iv) min max JTHE, m 3.[%],

{bk} -1<x<l VP(t)

with respect to

is attained if t™ + b]tm'] +.o..+ bm is the m-th orthogonal polynomial

with respect to

11
T P(t) 1-t°

Proof: See Krein and Nudelman (1977).

The following will show how the 1imiting properties of the
sequence of canonical moments determine the properties of the

measure.

Theorem 2.8.4: If | [a ] < «, then o(s) is absolutely continu-
k=0
ous and P(s) = ¢'(e) is continuous and positive.
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Proof: See Geronimus (1961a).

Observing that a = 2pk+] - 1 and the relationship between
the measure £ on the interval [-1, 1] and the measure o on the

circle, we have

Corollary 2.8.4: If ) |pk - %{ < w, then £ is absolutely
k=1
continuous and w(x) = £'(x) is continuous and positive on (-1, 1).

Nevai (1979) defined the quantity

d.k=‘°‘kl+ly 5] — - 7]

k-1 1
2

In our notation,

1 1
7l * 21Voo stoke2 T 7l

d = 11-2ep 200 |+ 21Vep92p

(o]

Theorem 2.8.5: If ] d <=, dg(x) = w(x)dx is continuous and
k=1

positive on (-1, 1).

Proof: See Nevai (1979).

[es] .I fee)
Theorem 2.8.6: ) |P, - 5| <o= ) d <.
K1k 2 k=1 K

(o)

Proof: We want to show )
k=1

P, - LN implies
k 2

o _] ) ‘
ng]lqn—1pn - gl < =, where gy = 1. Notice that
- 1 1
Uo1Pn = 7= Py -7 - (PpgPy - g) and
1 1 1 1 1 1 1
PootPy =3l < PoaPn m g - 2Py - 2) - 7Py - 2+ 3lP - 3l
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Now the convergence of ZIPn_] - %JIPn - %ﬁ would imply the convergence
of the first term on the right hand side of the Tast expression. So

Llag_1p, - %4 < ». Using the same method, we see }[q ;P q P .q - %64<<n.

This would imply zl/qn_1annPn+] - %J < = since

1
qn-]annPnH 16

o P aP -+
q q,P 7

n—]Pn n n+l

-

N —

Also notice that

_ 1 1
1- 2C‘Zn - 2C2n+1 - Z(ﬁ'— ton T 7 - C2n+1)'

So the convergence of Z|1-2;2n - 2€2n+1| follows immediately.

Theorem 2.8.7: The followings are equivalent:

(1) zla |’ <=
2n |
(ii) [ logo'(e)ds > - =
0

(i) i (1-1ag1%) = 1 ] ?ﬂ (8)
e “n-1  now 0 n=0 0 " e 0

An

Proof: See Geronimus (1948).
On the interval [-1, 1], we have

Corollary 2.8.7a: The followingsare equivalent.

(i1) ] lgﬂ_ﬂﬁﬁl.dx > -
{7 =
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M ()] |
(i) Tim 22™T on 7 = 2 explr 4—9———10 W(X) gy3.
Moo n-1 - ﬁ_XZ

Here w(x) denotes the derivative of the measure &.

Proof: See Geronimus (1948).

1

Corollary 2.8.7b: (i) ) laklz < o= lim(a )n+]
k=0 n

N>

2w
= exp{%;~é log ¢'(6)de}

1
— 1
n+1 IM (g) ln'*'] - Zﬂexp{_;lr_. !" ]_Q_g_W(X_) dx}_

. p 1,2 .
(i1) I |P- 5] < o= Tim 2
K21 k 2 n 5

->00
n 1-x

Proof: (i) follows from Theorem 2.8.7 (iii) and (ii) follows

from Corollary 2.8.7a (iii).

Theorem 2.8.8: Llet ) 1P~ %12 < » and w(x) denote the
k=1

derivative of ¢. If ngy-e L][~1, 17, then

Tim 1
N Nt ] K

(x)

{1 ~13
O
N

0

S S
ww(x)ﬂ—x2

for almost every x € t < (-1, 1).
Proof: See Nevai (1979).

1,2
Theorem 2.8.9: I d < == 2P 5l7 <.

Proof: See Nevai (1979).
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Theorem 2.8.10: The followings are equivalent:

(i) Tim a, = 0
N

(ii)  Tim S {z) " ? uniformly for z > 1.

Proof: See Geronimus (1961b).

Corollary 2.8.10: The following are equivalent:

. . 1
(1) Alf Ph =72

P ..(x)
(i1) Tim —2%17—— = x + Ae-1 for |x + /xz—l > 1.
n-wcpnx

Proof: See Gerominus (1961b).

Theorem 2.8.11: The following are equivalent:

I

. . 1
(i) 1im Pn 5

N-co

(i) Tlim ¢ = %

N0 n
e . 1 . 1
(111) Vim oy + 2p00q = 3 VMoo 0o, = 75
N0 N0
(iv) Tim dk = 0.
N

Proof: It is obvious that (iii) & (iv) and (i) = (i1) » (iii).

We want to prove (iii) = (i). Let g be a measure with the properties
. 1 . 1
that lim(z, +z ) = 5 and lim ¢ Ln. = 3. Then by Theorem 2.4.11,
Moo 2n "2n+l 2 N 2n-1°2n 16
the 1imit of the ratio of its orthogonal polynomials is
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1 1

P .(x) =
i n+] = ﬂ: _é = 2...
L0 ) I T S

By Corollary 2.8.10, this implies Pn +-%.

We will discuss the asymptotic distribution of the zeros of
the orthogonal polynomials on a ciosed bounded interval.

Let Pn(x) = (x—x1n)(x~x2n)...(x—xnn), where x; < Xy << X s
be orthogonal with respect to dg on [a,b]. Let us denote by

N (da t) the number of integers k for which

n
mn ~ Xkn 3-t[xnn'x1n]
holds. If Tim n"'N (de,t) = & - LsinT(2t-1), t € [0,1],
Moo n w

we say ¢ is regular.

Theorem 2.8.12: ¢ is regular iff

Tim 'yPnixi -] (x + /xz-l).

N-yo0

|

1
Proof: Since lim %—Kn Pn(x) = { Ln(x-t)dy(t), where y(t) is
N0
the limiting distribution of the roots of the orthogonal polynomials.

Notice that
1 ]
& [ wmoenan = U L)

ai—-

which is the Stieltjes transform of the measure dy(t). So

Tim WPani = %—(x + /x2—1) iff

Moo

(x + /x2-1)

o
ro| —

1
dy(t) _ d
_{ x-t X tn

_ 1

xz—l
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From Example 2.8.2, this is the Stieltjes transform of the
arc-sine distribution. Hence the theorem is proved.

In below we will give a restricted form of Walsh's Theorem since
we do not want to bring in so many definitions. It should be noted

that the original form is more general.

Theorem 2.8.13 (Walsh): Let [a,b] be a closed bounded interval

on the real line. If all the zeros of a given system of polynomials

{Pn(z)}have no limit points outside [a,b] and if max |P_(x)| =M,
xe[a,b] " n
then 1im V(P (2)) = b-a lo(z) | where p(z) = 2 ,_bta
e n e b-a b-a
Ji2_, _btay2_; for all z in the complex plane outside of [a,b],iff
* (b—a z b-a) -1 .
Tim W= 222
Moo

Remark 2.8.1: If b = -a = 1 then

olz) = 2 + /251,

Let £ be regular with canonical moments P},Pz,... and is defined
on [0,1]. Define £ to be the measure with canonical moments

1 Top 1
A R AR A M
the orthogonal polynomials Pn(x) of £ on [-1, 1] can be expressed as

2 p and is defined on [-1, 1]. It is known that

Pop(X) = Pn(xz)

It _ 2

P2n+](x) = an(x )

where Pn(x) and Rn(x) is the orthogonal polynomial with respect to dg
and xdg respectively. It is well known that the zeros of Pn(x) and

Rn(x) are interlaced, so xdg is also regular and hence £ is also
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reqgular. The converse is true also. We are now ready to prove

Theorem 2.8.14: ¢ is regular iff lim 'Ug]...; = %u
oo

Proof: Geronimus (1961b) has proved that

1

Vim SV(@ T,). (Be, i) = % is sufficient for Tim VA = d.
N> N
Hence 1im WC]"'cn = %—imp1ies that ¢ is regular. On the other hand

oo
if ¢ is regular, then so is £ according to the above discussion. Now

1in V[P, (2)| —;- (z + /2°-1) for all z ¢ [-1, 1].
N>

- 2n r=
But Pn(O) = Lye-elp #0, so ./[PZn(z)Iis analytic at the point

0. Hence
) 2n sz
1in/[P(0)

1
2

Yim Ve - %.

o0



