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1. Introduction

Let LETORETL be k given normal populations with unknown means
ej,...,ek € IR and a common known variance 02 > 0. For finding the popula-

tion with the largest mean, two-stage procedures with screening (elimination)
at the first stage are studied in a decision-theoretic framework. The
procedures are based on k samples of common size N drawn at Stage 1, and

on a random number of samples of common size N, drawn at Stage 2 from all

those populations which have been selected (not eliminated) at Stage 1.
If only one single population is selected at Stage 1, Stage 2 will not be
entered. In particular, the stopping rule is thus determined by the size
of the selected subset at Stage 1.

Let X = (X X ) and Y = (Y1"”’Yk) denote the vectors of sample means

-lsco k)
(which are sufficient statistics) at Stages 1 and 2, respectively, and

let Z = (n]X + nZX)/(n]+n denote the vector of the k overall means.

5)
Although not all of the Yi's and Zi's are actually always observed, it will

prove to be convenient to consider Y and Z in the derivations to come. Also
for notational convenience, let p = 02/n1 and q = 02/n2.

Due to the complexity of the problem, optimality results on elimination
type multi-stage procedures are rather scarce in the literature. For an
overview and references, see Gupta and Panchapakesan (1979) and Miescke
(1982). On the other hand, such procedures are highly desirable for
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Abstract

Let = S be normal populations with unknown means and a

120
common known variance. The goal is to find the population with the
largest mean. Two-stage procedures with screening at the first stage
are studied in a Bayesian approach. They are based on k samples of
common size Ny drawn at Stage 1, and on samples of common size n,

drawn at Stage 2 from all those populations which have not been screened
out at Stage 1. If only one population is selected at Stage 1, the
procedure stops at Stage 1.

Under the assumption of a specific loss function which includes
costs of sampling, a Bayes procedure is derived with respect to i.i.d.
normal priors. Its properties are discussed and several approximations
are considered. The expected value of the maximum of k independent

normals with known but distinct means and a common known variance plays

a crucial rule in the determination of the Bayes procedure.
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Let LEFRRERE be k given normal populations with unknown means
875+ 090 € IR and a common known variance 02 > 0. For finding the popula-
tion with the largest mean, two-stage procedures with screening (elimination)
at the first stage are studied in a decision-theoretic framework. The
procedures are based on k samples of common size N drawn at Stage 1, and
on a random number of samples of common size n, dkawn at Stage 2 from all
those populations which have been selected (not eliminated) at Stage 1.

If only one single population is selected at Stage 1, Stage 2 will not be
entered. In particular, the stopping rule is thus determined by the size
of the selected subset at Stage 1.

Let X = (X],...,Xk) and Y = (Yl”"’Yk) denote the vectors of sample
means (which are sufficient statistics) at Stages 1 and 2, respectively, and
let 7 = ("1X + nzy)/(n]+n2) denote the vector of the k overall means.
Although not all of the Yi's and Zi's are actually always observed, it will
prove to be convenient to consider Y and Z in the derivations to come. Also
for notational convenience, let p = oz/n] and g = oz/nz.

Due to the complexity of the problem, optimality results on elimination
type multi-stage procedures are rather scarce in the literature. For an
overview and references, see Gupta and Panchapakesan (1979) and Miescke

(1982). On the other hand, such procedures are highly desirable for

*This research was supported by the Office of Naval Research Contract
N00014-75-C-0455 at Purdue University. Reproduction in whole or in
part is permitted for any purpose of the United States Government.



experimenters because of their economical use of observations. An intuitively
appealing procedure proposed and studied by Tamhane and Bechhofer (1979),
which employs Gupta's maximum means subset selection procedure first and
then the natural terminal decision, deserves to be revisited from the
optimality point of view. Even though Gupta's rule has been shown by many
authors to perform well as a single-stage procedure, its performance has not
been studied in the multi-stage context with respect to optimality. This
then was one of our motivations to prepare the present paper to find an
answer to the interesting question: What type of subset selection rules

are used in optimal two-stage selection procedures? 1In a first step

towards an answer, we shall derive a Bayes solution for i.i.d. normal

priors under a specific loss function which takes into account costs of

sampling.

Assumption (P):

We restrict ourselves to procedures of the following type: At
Stage 1, after X has been observed, a non-empty subset s(X) of {1,...,k}
of random size is selected where, obviously, i is associated with Mss
i=1,...,k. If its size |s(X)|, say, is equal to one, then the procedure
stops and selects the corresponding population. Otherwise, for each
i€ s(X), Ys is observed and then a final selection is made from s(X) based
on X and Yi’ i € s(X). Furthermore it is assumed that the procedures are

permutation invariant.

The restriction of the final selections to populations n., with

i
i € s(X) is actually crucial for the feasibility of a solution to the
given problem. Under a fairly general loss structure which is permutation

invariant and which favors,at all stages, selections of populations with



large means, Gupta and Miescke (1982, 1983) have derived two optimality

results which can be stated in the present context as follows.

Fact 1: The natural final decision at Stage 2, which selects the population
associated with the largest Zi’ i€ s(X), is optimum in terms of the risk
function, uniformly in ¢ = (e],...,ek) € RX. Due to the restriction
mentioned above, this remains true even if the cohp]ete vector Y had been
observed. Thus, for convenience, we can assume in the sequel without loss
of generality that all observations Y are taken at Stage 2, provided the
procedure has not stopped already at Stage 1.

Actually, the above result holds for all exponential families whereas
the next result has been proved only for strongly unimodal (log concave)
exponential families. However, the underlying distributions of this paper

are clearly of the latter type and, therefore, both results can be

applied in the present setting.

Fact 2: The class 8 of two-stage procedures which at Stage 1 make subset
selections in terms of the largest Xi's and which employ the natural
final decision at Stage 2 constitutes an essentially complete class.

The only characteristic with respect to which members of § differ
from each other is |s(X)|, i.e. the decision of how many populations to
select at Stage 1 based on the observations X. Apparently, optimality
of a particulari subset size decision is now closely related to the choice
of a specific loss structure. But even then after such a choice has been
made, no procedure can be expected to be optimum with respect to the risk,
uniformly in 6 € H{k. Therefore in a first approach we shall study the
Bayes solution with respect to i.i.d. normal priors under the following

Toss structure.



Assumption (L): Let g: IRk +~ R be a fixed function. If the procedure

stops at Stage 1 and selects i € {1,...,k} then the Toss function is
given by

k

(1) Ly(es1) = ¢qng + g(e)-65, 8 € R7, 7€ {1,...,k].

If at Stage 1 the procedure selects s < {1,...,k} with |s| > 2 and then,
at Stage 2, makes a final decision in favor of i € {1,...,k} then the loss
function is given by

. k
(2) L2(9,S,1) = cqny t c2n2|s| + g(g)-ei, € R".

Under the Toss assumptions made above, N and c2n2|sl represent the
respective costs of sampling at the two stages whereas ei-g(g) can be
considered as a measure of the quality of the finally selected population.
A reasonable choice for g for example is g(e) = max{6;,...,6,}, 8 € RK,
Obviously, the Bayes procedure cannot depend on ¢y since X has to be observed
at Stage 1 anyway. Less obviously, it will turn out that it also does not
depend on the choice of the function g. In Section 2, we shall derive the

Bayes solution explicitly and finally, in Section 3, approximations to

this solution will be considered.

2. The Bayes Procedure

From now on let us assume that the unknown population means are
random variables 05+ +s0ps SAY, which are independenf]y and identically
distributed with a common known mean By € IR and a common known variance
r > 0. It can be anticipated that the Bayes rule does not depend on 9
since we are considering a location parameter model. As pointed out
before, all components of the Bayes rule are already known except the
decision of how many populations to be selected at Stage 1. Let ds’

sc {1,...,k}, [s| > 2, denote the natural final decision at Sfage 2,



i.e. ds(Z) =i if Zi =max Z, and i € s. Here and in the following, the
jes

case of ties can be ignored since it occurs only with probability zero.

Moreocever, let S denote the natural subset selection with fixed size

te {1,...,k} at Stage 1, i.e. the selection of populations associated

with the t Targest Xi's. Working backwards from Stage 2 to Stage 1, the

Bayes rule can now be determined by comparisons of posterior expected

Tosses.,

At Stage 2, given X = x and Y =y (or Z = z), respectively, for a

natural subset selection rule s,, t e {2,...,k}, the posterior expected

t’
loss is the following.

(3) E{L, (o, st(g),dst(x)(g))lz =2z, X=x}

= CqNy * Conyt + E{g(@)-ej0|z = z}

where jo is determined by zj = max{zj|j € st(g)}. Since at Stage 2,
0
Z is a sufficient statistic for ¢, the conditional distribution of o,
given Z and X, depends only on Z. This fact will also be utilized in
(5) below.
Therefore, at Stage 1, given X = x, the posterior expected loss for

a natural subset selection rule s_, t € {2,...,k} is given by

t’
(4) E{L,(0, St(z)’dst(f)(z))lx = x}
= cyny + cohyt + E{g(0) [X = x} - E{ej0|5 = x}

where j,, now being a random index, is determined by ZJ.0 = max{Zj|j € s (x)}.

At this point, the semigroup property of the normal distribution has to be

utilized to evaluate E{ej IX = x}.
0



(5) E{o; |X = x} = E{E{o, |Z}|X =
Jo' - J = =
= E{_max_{(pgsgrarx; HprY )/ (pg+qr+pr) }|X =
JGSt( X)

p(ptr)” ]60 + E( max {ax, + bN })
jes (x)

where a = r(p+r)'1, b = pr((p+r)(pq+pr+qr))'%, and where Ny,...,N, are
auxiliary i.i.d. standard normally distributed random variables which will
be used throughout the sequel.

On the other hand, the posterior expected loss for the natural subset

selection rule Sq is given by

(6) E{L (e, 15)1X = x}

= ¢c.n, + E{g(0)|X = x} - E{e, |X = x},
171 =40z i

where 10 is determined by X; = max{xi|i 1y...,k}. By a similar
: 0
argument as before, it can be seen that

(7) E{e, |X = x} = p(p+r)']e + a max '{xi}.

- 0 "1,k

At Stage 1, given X = X, the Bayes procedures decides in favor of
the subset 51(5), i=1,...,k, if the associated posterior expected 10ss
is the smallest of those given in (4) and (6), respectively. To simplify
its representation, let us assume from now on that Xp < Xp <ol Xy
This can be done without loss of generality since the problem under con-
sideration is permutation invariant. The Bayes procedure can now be

described as follows. For notational convenience, let

(8) et(§) E( max {a(x xk) + bN s t=1,...,k,
" Jok-t+1

and let t* € {2,...,k} be determined by



(9) st*(g) - cznzt* = max {st(g)-cznzt}.

t=2,...,k

Theorem 1. Lf_et*(g)-cznzt*_i 0, then the Bayes procedure stops at

Stage 1 and selects the population which is associated with X+ Otherwise,

the Bayes procedure selects the t* populations which are associated with

Xk—t*""] P ,Xk.

From an applied point of view, it can be seen readily that the Bayes
procedure can be used without too much computational effort. The functions
et(g), t=2,...,k, are simply expectations of extreme independent normals
with given means and a common known variance. They can be determined
either via simulations or, more precisely, numerica]]y since they are
one-dimensional integrals given below in (17). Several useful approximations
will be derived in the next section. These are considered not only to
simplify the application but also to gain further insight into the
structure of the Bayes procedure. In the remainder of this section, we
shall derive some basic results which will prove to be useful for thése
considerations. ;

First we point out that functions of the type et(g) have been
considered already previously by Dunnett (1960), Chernoff and Yahav (1977)
and Miescke (1979). Let

3
(10)  T(g) = [ o(n)dn = (&) + £o(&), £€ R,

-0

where ¢ and ¢ denote the standard normal density and cumulative distribution
function, respectively. Then it can be shown that

(1) eylx) = ZbT(-275 Na(x,=x,_1).

Therefore, if k = 2 or if k > 3 and the experimenter is not willing to

select more than two populations at Stage 1, then the optimum procedure



is of the form given below. Let T'1 denote the inverse function to T.
Then the procedure is as follows:
"Stop at Stage 1 and select Ty if

(12) X1 < X ¥ Z%ba']T_](Z%b']cznz).

Otherwise, select m _; and m , proceed to Stage 2, ahd make the final
decision in terms of the larger of the two populations' overall sample
means."

Thus in the case of k = 2, the screening rule of our Bayes procedure
at Stage 1 turns out to be of the form of Gupta's single stage subset
selection procedure, and therefore we can state that in this case the
two-stage procedure proposed by Tamhane and Bechhofer (1979) turns out
to be a proper Bayes rule with respect to the loss function (1) and (2)
for appropriately chosen r and Cye

Though in general Gupta's rule cannot be expected to be used by the
Bayes procedure, it will be shown in the next section that this is true
at least in the case of k = 3 if the means are equidistant, i.e. if

X3=Xo = Xo=Xq- At first, however, some basic results concerning the Bayes

procedure will be derived.

Theorem 2. At Stage 1, given X = x with X] < Xg <eve< Xps

(13) ek(f)-ek_](f) < sk_1(§)-sk_2(§) <uuo< 52(5)-81(5).

Proof: To simplify the notation, Tlet from now on be My = a(xj-xk),
j=1,...,k. Thus we have in particular Hp < My <eel<wy S 0. As in
the proof of Lemma 6 in Miescke (1979), it can be shown that for

t=2,...,K,



- -1 :
(14) at(g) = Wete1 bE(T(b (j>E?§+2{uj+ij}-uk_t+]))).

From (14), e,(x) = 0, and then from the identity T(g) = £4T(-£), £ € R,

it follows that

-1
(15) (x)- (x) = bE(T(b™ '( - max {u;+bN.1}))).
AT R Hk-t+1 §okot+2 b AR

Since T is an increasing function, the assertion (13) can now be seen to
be correct.

In view of the above result, the screening procedure at Stage 1
can be simplified as follows. First note that for t = 2,...,k,

t

(16) et(g)-cznzt = 52(5)-2c2n2 + rZ?’(er.(>_<)-e]r,_]()_()-c2n2).
Therefore, at the beginning one has to compute 82(5) - 2c2n2. Then
one has to evaluate and to add, successively, 53(5)-52(5)-c2n2, s4(§)v—
83(5)-c2n2,..; as long as these terms are positive. If finally the total
sum on the right-hand side of (16) with t = t*, turns out to be positive,
then one selects Mo txs]? " Mg and proceeds to Stage 2. Otherwise, one
stops and selects T It should be pointed out clearly that it may
happen that 52(5) < 2c2n2 but nevertheless the total sum mentioned before
is positive.

3. Approximations

As noted in the preceding section, the functions et(§), t=2,...,k,

" play a crucial role in the determination of the Bayes procedure. Therefore,
we shall study them now in more detail. We shall also develop several
bounds which may be used for approximations of the procedure. Throughout
the following, we assume that we are at Stage 1 where X = x has been

observed.
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Because of the permutation invariance of the procedure we can assume
without Toss of generality that X] <€ Xg <eee< Xpo As before, for con-
venience, let p, = a(xj-xk), J=T1,...,k. We start with the following

J
two well-known identities. For t = 1,...,k,

(17) e.(x) = E( max {u,+bN.})
t= jek-t#1 9
0 1 o . o1
=~ noo(b(e-ug))de + J[1- 1 e(b(g-u;)) 1de

-0 J>k-t+] 0 jok-t+ J

and for t = 2,...,k,
» -1 -1
(18) ee(X)-e,_q(x) = o e(b "(g-u;))[1-o(b” (&-u )) Ide.
e8eea ) = f jok-t+2 J k-t+]

These results have been derived previously by Chernoff and Yahav (1977).
It should be mentioned that (17) and (14) as well as (18) and (15) are
related to each other through integration by parts;

Let us now consider the special case of k = 3 populations where the
means Xy, X,, X3 are equidistant. Here a simple expression for 53(5)

can be given using the following result.

Lemma 1.

_ 11 1,1
(19)  E(maxiNy, a#Ny, 20N,}) = ZT(27%a) + 227(20)
= E(max{N;» a+l,}) + 27 'E(max{N;, 20+N,3), o € R.
Proof. By using (17), the left-hand side of (19) can be seen to be
0 I
(20) H(a) = a - [ e(x)}e(x-a)e(x+a)dx + [[1-6(x)a(x-a)e(x+a)Idx.
- 0

Differentiation with respect to o and some standard manipulations lead to

H'(a) = @(2—%@ + @(2%(1), a € R.
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Therefore, the first equétion in (19) follows now by integration with
respect to o and by using (10). The second equation is a consequence of
(11).

The expression for 83(5) in the case of equidistant means now is

1

1 1 _ - 1 .
(21)  eg(x) = 2bT(-273b"1a) + 273pT(-25b"1a)

where A = a(x3—x2) = a(x2-x]) > 0. On the other hand, by (11), we have

(22)  ey(x) = ZEbT(-2Ep" ).

Here we have ej(x)-e5(x) 5_2'182(5), an inequality which does not hold
true in general. Therefore, the difficulty described at the end of
the last section cannot occur. If 52(5) < 2CyN,, then also 83(5)—82(5) < Cony
holds and thus the stopping rule depends only on 82(5). The optimum subset
selection rule now turns out to be the following.

"Select Ty Furthermore, select Tis i=1,2, if and only if

T F -
2 n
(23) Xj > X3 ¥ 22a bT (b c2n2).

This rule is of the Gupta type. Note that, in view of T(0) = (27)°%,
if Cohy 3_2']n'%b then (23) cannot occur and Stage 2 will hot be performed
in this case. We shall see below that this actually holds in the general
case of k > 2 and'u] <My el = a.

Returning to the general case, a similar no-data check, before
entering Stage 1, can be done as follows. Let a; = E(max{N],Nz,...,Nt}),
t =1,...,k. Various properties and tables of the a,'s can be found in

t
David (1981). From (17) and (18) it follows that for t = 2,....k,

(24) 0 < et(g) < bat, and

0 < et(z) - et_](f) < b(at-at_]).
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Therefore, if for a certain t € 3,...,k}, a,-a; 4 :_b'1c2n2 then the

Bayes procedure selects at most t-1 populations. And since ag-a, = 2“]a2;

-1 4 -1 4
2l Z, Stage 2 will never be performed if c,n, ZEZ']w'%b.

Next, several properties of gt(§), t=2,...,k, will be described
below from which bounds and approximations of the Bayes rule can be

derived later on.

Lemma 2. For every t > 2, gt(g) is a strictly increasing function of b

and pys § = kt+l,eL kel

Proof: The partial derivative of et(g) with respect to b in view of (17)

is
2 K k -1 B

(25) b7 ] [ (g-w) T e(bT(5-ui))e(bT (E-uy))de

i=k-t+1 R j=k-t+1 J

J#i
e - ] (u #bN 1})
=b (e, (x)- u.P{u,+bN. = max {u.+bN.}}).
U ke VT T ket Y

Since by (24) et(g) >0 = max{ujlj > k-t+1}, the first assertion follows.

The second one is obvious.

Lemma 3. For every t > 2, et(§) considered as a function of (”k-t+1""’uk)

has the following Taylor expansion of first order at Heott] "o W T 0.

k
-1
(26) e.(x) =ba, +t Yo+ ofe 1.
t - t _i=k_t+'] 1 k-t+-|
Proof: For i € {k-t+l,...,k-1}, the partial derivative of e (x) with
respect to Wy in view of (17), can be seen to be equal to

9 _ —
W Et(Z() = P{u1+bN'i = max {u-'l'bN-}}

i J>k-t+1

(27)
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which at Hpgt] == up = 0 s equal to £, It is thus seen that (26)
holds.

Remark. The second order term of the Taylor expansion can be shown to
be (2b(t-]))_]tatvt, where v, denotes the ordinary sample variance of
Mot+]2"* oWge However, since we will not make any use of it in the

sequel, its derivation is omitted.

Lemma 4. For every t > 2, et(§) is a Schur-convex function of

(“k-t+1""’“k)’ and thus in particular,

k
(28) e (x) >t7! ] y.+ba

i=k=te 1 C

Proof: In (17), ka-t+]""’ka are exchangeable multivariate normal
random variables with expectations 0, variances.b2 and covariances 0.
The function

h(u1,...,u max uj, ue DQt,

) =
R OO A
is obviously Schur-convex. Therefore, by Marshall and Olkin (1979),

Ch. 11 E.9.,
e (%) = B poq DNy paqsee - sm Dl ))

is a Schur-convex function of (uk_t+],...,uk). Then the inequality
(28) follows immediately from the fact that (pk_t+],...,pk) majorizes
tv1(pk!t+]+...+pk)(],1,...,]).

The results of Lemma (3) and (4) have interesting consequences.
Suppose we replace in our Bayes procedure, i.e. in (8) and (9), for
t>2, st(g) by, say,

k

(29) 50 =t T+ ba,.
j=k-t+1 9
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In view of (26), this can be justified as a reasonable approximation as
tong as [u,_4.q] = alx =%, _44q) is small. In all other cases, because of
(28), it can be considered as an approximation to the Bayes procedure
which is conservative with respect to costs of sampling. Let us take a
brief look at this approximate procedure. Since the functions Et(g) do
not have the property of the functions st(g) given in (13), (16) and the
process described after (16) is not applicable. Therefore, let us consider
the original form of the Bayes procedures as described in Theorem 1,

with et(f) replaced by Et(§), t=2,...,k. It is of the following form.

"Select LI TR PRTR ) and proceed to Stage 2, if

(30) i E . > X, - a 'pa: + a leon,t
k=g 3k t 2z
- _'l k
where for t, at X, + bat - c2n2t, t=2,...,k, assumes its
j=k-t+1

largest value. Otherwise, stop and select nk."

Here, the interesting feature is that the averages of populations
associated with large means are compared with the maximum mean at Stage
1. Considered as a one-stage subset selection procedure, this rule can
be seen also to be an approximate Bayes solution for the one-stage
subset selection problem under the same distributional assumptions as

before but now with a loss function of the type

-1
(31) L(g,s) = max 6; - |s|7 7 ) 6: * y<qs
S s 3 IS

where Yqo+eesY are appropriately chosen constants which may represent,
for example, the costs of using the selected populations in the future.
In Chernoff and Yahav (1977), a Bayes single stage subset selection
procedure has been studied where one of the two components of the loss

function is equal to L(e,s) - Y|s|' It should be pointed out that a
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subset selection rule of the form given in (30) has not been considered
in the Titerature till now. It would be interesting to study its performance,

in a non-Bayesian approach, for suitably chosen constants o, replacing

t
a”! (e n,t-bay) in (30), t = 1,....k.

The approximation of our two-stage Bayes procedure at Stage 1 con-
sidered above can of course also be performed partiaily, i.e. for specific
t-values. In a similar way other 1ower-bounds, and upper bounds as well,
can be used to approximate the optimum procedure. For this purpose,
several bounds will be given below. Some of them have been derived already
in Miescke (1979), but for the sake of making the present paper self-

contained they will be included in the Tist presented below, partly

accompanied by shorter proofs.

Lemma 5. The following functions listed below are lower bounds of €t(5)’

t=2,....k
(32) ZbT(-272b la(x,-x,_q))
(33) ee 1(x) + bT(-b™ (e 1(x) + alxexy_gyq))
(34) bT(a, - b™lat(t-1)"1 (x -t~ § x:))
t K7 jekatan
-1 k
(35) ba, + a(t j=k§t+1 X5 - xk).

Proof: From et(g) 3_52(5), (32) follows immediately since by (11), for

t =2, (32) is equal to 52(5)’

Since T(g), £ € R, is a strictly convex function, Jensen's inequality
can be applied to (14). This, together with the identity T(g) = £+T(-g),
£ € R, leads to (33).
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To prove (34), consider the following identity which is of the same

type as (14).

(36) e (x) = bE(T(b']max{uj # bl [k-t+] < § < k-11).

Since T is an increasing function, T(max{u],...,ut_]}), uce€ H%t'1, is

Schur-convex. By the same argument as used in the proof of Lemma 4, a
lower bound on et(g) is thus given by

k-1

(37)  BE(T(max{N, [k-t+1 < § < k=13 + b7 (21" ).

jekge 3
Therefore, by applying Jensen's inequality, it can be seen that (34)
is a Tower bound of st(§). Note that (35) has been derived in Lemma (4).
In the theorem above, it is only mentioned for the sake of completeness.

It should be pointed out that (33) can be ijterated and then (32),
(34) or (35) can be applied to the result to get further Tower bounds for
e;(X), which then, of course are weaker than the previous ones.
t(>_<) are harder to find. Besides the obvious
upper bound bat, the following can be established which can be considered

Useful upper bounds for ¢

as a counterpart to (32).

Lemma 6. For t = 2,....k,

1 k"] _1 _-I
(38) et(g) < Z&b T(2°2b a(x.-xk)).
j=k-t+]1 J
Proof: Consider the ineguality
ki]
max u, <u, + max{0,u.-u, }.
Jok=t+1 9 T K gogta ik

Applying it to (8), and using (11), the result follows immediately.
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