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Avselection procedure typically consists of three
ingredients: (1) a sampling rule, (2) a stopping rule, and
(3) a decision rule, though these components are not usually
explicitly so labeled. The problem of optimal sampling
arises in different ways depending on the context of the
problem at hand. Broadly speaking, the problem of optimal
(or optimum) sampling arises because of the need for
balancing between the cost of samp]ihg and the cost of
making a wrong decision. Obviously, increasing the amount
of sampling increases the former cost while decreasing the
latter.

1. Indifference Zone Formulation

Suppose we have k independent populations T oMo eesMys
where the CDF of s is F(x; ei), where the parameter 0; has
an unknown value belonging to an interval @ on the real
line. Our goal is to select the population associated with
the largest 0 which is called the best population. In the
Indifference Zone Formulation of Bechhofer [2], it is .
required that the selection rule guarantees with a probabil-
ity at least equal to P*(1/k < P* < 1) that the best
population will be chosen whenever the true parametric
configuration 6 = (9],92,...,6k) lies in a subset of the
~ parametric space 2, characterizing the property that the
distance between the begf and the next best populations is

at least a. _The_subset 2, is called the Preference Zone.
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The constants P* and A are specified in advance by the
experimenter. The probability guarantee requirement is
referred to‘aé thé P*-requirement.

Now, let us consider k independent normal populations
w],nz,...,nk with unknown}means Hpslgse«osiys respectively,
: and common known variancefoz. Based on samp]esrof size n

- from each population, thé sing1e-stage procedure of
Bechhofer [2] for se]ecting‘thebpopu]ation with the largest
M selects the population that yields the largest sample
mean. Here the preference zone is defined by the relation
“[k] - W[k.1] 2 4> where B[] St Mk denote the ordered
M. The optimum sampling problem in this case is to
determine the minimum sample size n subject to the P*-
requirement. The optimum value of n is given by the

smallest integer n for which
N xs 1%2) p(x)dx > p*

where ¢ and ¢ denote the CDF and the density function of a
standard normal random variable.

Suppose that these normal distributions have unknown
and possibly unequal variances. In this case, no single-
stage procedure exits. Two-stage procedures have been
studied in this situation by Bechhofer, Dunnett, and
:Sobel [4], and Dudewiczféﬁd Dalal [9]. One may take a

sample of size Ny from each population at the first stage



and on the basis of the information obtained‘from these
samples, determine the sizes of additional samples to be
taken from these populations. The selection rule is based
on the total samples from all the populations. Even when
the variances are known, one may use a two-stage procedure
in which the first stage involves selection of a nonempty
subset of random size with possible values 1,2,..., and k.
If the first stage results in a subset of size larger than
1, then a second stage ensués with additional samples from
those populations that still remain under consideration.
Such procedures have been considered by Alam [1], Tamhane
and Bechhofer [20], [21] and by Gupta and Miescke [15] with
some modifications. A problem of optimum sampling in these
cases is to determine the optimal combination of the sample
sizes in the two stages. This can be done, for example
(Tamhane and Bechhofer [20]), by minimizing the maximum of
the expected total sample size for the experiment over all
parametric configurations subject to the P*-requirement.

2. Minimax, Gamma Minimax and Bayes Techniques

Consider again k normal populations Ty sTosens sty with
unknown means Hyslgses sl and common known variance 02.
If the selection procedure is to take sampies of size n from
these populations and choose the population that yields the

largest sample mean, one can consider a loss function



L = cqn + igl CZ(“[k]'“i)Ii’ where c; is the sampling cost -
per observation, cy is a positive constant, and Ii =1, if
LF is selected, and = 0 otherwise. Optimum n can be
obtained by minimizing the integrated risk assuming (known)
prior distributions for "1'5; see Dunnett [10]. One may
also determine the optimum n by minimizing the maximum
expected Toss over all parametric configurations. However,
the expected 1oss in our case is unbounded above and we can
find a minimax solution if we have prior information
regarding the bounds on the differences MIKT LT
i=1,...,k-1.

Suppose we take a sample of size ny from each of k
normal populations with unknown means HysHose« sl and
common known variance 02. For a fixed t, 1 <t < k-1, we
discard the populations that produced the t smallest sample
means and take an additional sample of size n, from each
of the remaining k-t populations. We select as the best
the population that entered the second stage and produced
the largest sample mean based on all nyin, observations.
Given that the total sample size T = kn]+(k—t)n2 is a
constant, the problem is to determine the optimum alloca-
tion of (n],nz) by minimizing the maximum expected loss,

where the loss is L = ¢;T + ¢, 1§](u[k]—“i)1i as defined



earlier. For details see Sommerville [19], and Fairweather
[11].

In these problems, we can also take the gamma-minimax
approach and minimize the maximum expected risk over a
specified class of prior distributions for the parameters

u;s see Gupta and Huang [14].

3. Comparison with a Control

An optimal sampling problem can be, as we have seen,
an optimal allocation problem. Such allocation problems
are also meaningful when we compare several treatments with
a control. Let T sToseeesTy be k independent normal popu-
lations representing the experimental treatments and let 9
be the control which is also a normal population. Let m
have unknown mean Hy and known variance 0?, i=0,1,...,k.
A multiple comparisons approach is to obtain one-and two-
sided simu]tanebus,confidence intervals for, say,

TSI, =1,2,...,k. If n; 1& the size of the sample from‘
mes 1=0,1,...,k, such that iZO n; = N, a fixed integer,
then the problem is to determine the optimal allocation of
the total sample size. The optimal allocation will depend,
besides other known quantities, on a specified 'yardstick'
associated with the width of the interval. For details of
‘these problems see Bechhofer [3], Bechhofer and Nocturne

[5], Bechhofer and Tamhane [6], and Bechhofer and
Turnbull [7].



Instead of taking the abové multiple comparisons
approach, one can use the formulation of partitioning‘the.
set of k experimental populations into two sets one
consisting of populations that are better than the control
and thé other consisting of the remaining (worse than the
control). For a given tota] sample size, the problem is to
determine the optimal allocation either by minimizing the
expected number of popu]dtions misclassified or by
maximizing the probability of a correct decision; for
details see Sobel and Tong [18].

4. Subset Selection Approach

As before, consider k independent populations
T1sTos-e+sm s Where m, is characterized by the CDF
F(x; ei), i=1,...,k. In the subset selection approach,
we are interested in selecting a nonempty subset of the k
populations so that the selected subset will contain the
population associated with the largest 0; with a guaranteed
minimum probability P*. The number of populations to be
selected depends on the outcome of the experiment and is
not fixed in advance as in the indifference zone approach.

Suppose we take a random sample of size n from each
population. Let Ti’ i=1,...,k, be suitably chosen
statistics from these samples. In the case of location
parameters, the procedure of Gupta [12], [13] selects =,

i
if and only if Ti 3-Tmax'D’ where Tmax = max(Tl,...,Tk)



and D > 0 is to be chosen such that the P*-requirement is
met. The constant D will depend on k, P*, and n. Unlike.
in the indifference zone approach, we can obtain a rule for
any given n satisfying the P*-condition.

In the case of k normal populations with unknown means
HysHosee sl and known.common variance 02, the rule of

Gupta [12] selects =, if and only if X; > X ~do/Vh,

1 max

where Xi is the mean of a sample of size n from LIF
i=1,2,...,k. The constant d is given by the equation
fmék'](x+d)¢(x)dx = px,
The expected subset size, denoted by E(S), is given by
ko= /n

E(S) = iZ] {m jgi¢{x+d+ —3-(u[i]-u[j])h¢(x)dx,
where 1] S M1 22 MK denote the ordered ni. We
can define the optimum sample size as the minimum sample
size for which the expected subset size or equivalently,
the expected proportion of the populations selected does not
exceed a specified bound when the true parametric configur-
ation is of a specified type. Relevant tables are
available in Gupta [13] for the equidistant configuration
given by MLi+177M ] =6, 1=1,2,...,k-1, and in Dee]y
and Gupta [8] for the slippage configuration given by

M1 5T ] T g



If we use the restricted subset selection approach in
which the size of the selected subset is random subject t&
a specified upper bound, then the P*-condition is met when-
ever the parametric configuration belongs to a preference
zone as in the case of Bechhofer's formulation. In this
case, the minimum sample size (assuming common sample size)
can be determined in a similar way (Gupta and Santner [17]).

In our discussion so far, the optimal sampling related
to optimal sample sizes or optimal allocation under a
given sampling scheme such as single-stage, two-stage, etc.
One can also seek the optimal sampling scheme by comparing
single-stage, multi-stage and sequential procedures.
Comparisons of different sampling schemes for several
selection goals have been made and are available in the
literature. In addition to the usual sampling schemes,
inverse sampling rules with different stopping rules and
comparisons involving vector-at-a-time sampling and Play-
the-Winner sampling scheme have been studied in the case of
clinical trials involving dichotomous data. References to
these and other problems discussed can easily be obtained
from Gupta and Panchapakesan [16].
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