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SUMMARY

The classical results on the instability of the solutions of
stochastic differential equations are extended in two directions:
the coefficients are allowed to depend on the paths of the solutions,
and arbitrary semimartingales (not simply continuous ones) are allowed
as differentials. This extends the results of Wong and Zakai, McShane,

Nakao and Yamato, etc.
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1. Introduction.

The instability of the solutions of stochastic differential equations
due to the Ito calculus has been of interest to researchers since Wong
and Zakai first discovered it in 1965 [18]. It inspired McShane to
develop his integral [ﬂO]and it has justified a continued interest in
the Stratonovich integral (where the rulesof classical calculus apply),
which has been especially popular with engineers. Recent work with the
stochastic calculus on manifolds, moreover (e.g. [14]), has shown the
Stratonovich calculus to have a natural importance for stochastic
differential equations;

The "classical® result, due to Nakao and Yamato [15] for continuous

semimartingale differentials, can be stated in simplified form as follows:

no_ n Ny N
(1.1) dXy = f(t, Xis Zt)dzt
(1.2) dXt = f(t, Xes Zt) 0 Zt
_ ' of of. ,C 5C
(1.3) dXy = f(t, Xt Zt)dzt + 1/2 {(f)(sz- + az} (t, Xis Zt)d[Z 5L ]t

where Z" are piecewiseic] approximations of Z; the small circle o denotes
the Stratonovich integral, with the standard notation meaning the Ito
integral. As 7" tends to Z, the X" of (1.1) tend to the solution X of
(1.2), which is equal to the X of (1.3) by the well known relations between

the I1t0 and Stratonovich integrals. Note that if Z itself is CJ (or even

simply of bounded variation), then 7% = 0 and this result is no Tonger

surprising.

We extend here Nakao and Yamato's result in two directions. Coefficients
are allowed to depend on the paths of the solutions, and arbitrary semi-
martingales are permitted as differentials. The Timiting equation remains

'that of the Stratonovich differential, giving it an enlarged usefulness.



Our theorems ((3.1), (4.2), and (5.3)) are stated, however, in the notation
and form of the semimartingale integral as presented in [14] or [ 2].

~Allowing general semimartingales (i.e., those with jumps) as differ-
entials is presented here for the first time. Differentials with jumps have
been considered previously: S. Marcus [11] considers them, but his hypotheses
require that there be only a finite number of jumps on bounded intervals;
Kushner [2] makes the same restrictions while considering a related problem,
with a different perspective. These restrictions avoid the interesting
(and only difficult) case where the semimartingale contains a "purely discon-
tinuous" local martingale component with paths of infinite variation on
compacts. Since the semimartingale differential M in general contains
two terms with paths of infinite variation ( a continous local martingale
N® and a "purely discontinuous" Tocal martingale Nd), it is desirable to
approximate both N© and Nd simultaneously by processes with paths of
finite variation, and also to determine the limiting equation. This is
the content of Theorem (5.3).

Coefficients that depend on the paths of the solutions have been use-

ful in applications and date back to It0 and Nisio's classic paper [7].

In our context, pioneerinq'work was done by Yong and Zakai [19], and more
recently Doss and'Priouret [3] have considered a particular coefficient that
depends on some way on the paths of the solution. The case for continuous semi-
martingalé differentials, with the tethnical restrictions imposed by Nakao and

Yamato [15] having-been removed, is presented in.Theorems (3.1) and (4.2).

Care is taken to prove the results for systems and for an arbitrary
number of semimartingale differentials, since historically some techniques
did not work for systems [18], and others did not work for arbitrary

numbers of differentials [17]. The recent book of Ikeda and Watanabe [6]



presents the classical result for systems with simple coefficients and
Brownian and Lebesgue differentials; it together with the article of

Marcus [11] provides a bibliography of past work in this area. Between

the first and second versions of this article, the results of F. Konecny
[8] have appeared. He removes the technical restrictions on the

continuous semimartingale differentials imposed by Nakao and Yamato,

and he also considers semimartingale differentials with jumps, but only

as in [11], where at most a finite number of jumps are permitted on compact

time intervals.

Acknowledgement: The author wishes to thank the referee for the great

care with which this paper was read. The referee found numerous misprints

and two mistakes.

2. Preliminaries.

Throughout this article there will be a fixed underlying probability
space (R-%,P), where ¥ is P-complete, and there will be a right continuous
filtration (?k)tzO’ with ?b containing all P-null sets (the "usual hypo-
theses"). Semimartingales will always be taken to be right continuous.
The notations and general assumed knowledge will be that of the book by
Dellacherie and Meyer [2]; however for the more technical and Tess well
known results that we need, specific references with page numbers will
be given.

(2.1) DEFINITION. A process V will be said to be an FV process if it is

adapted and if it a.s. has right continuous paths of finite variation on

compacts.

A process V will be called a raw FV process if the requirement that V

be adapted is dropped.



t
We Tet fo |dV | and/or |V[, denote the total variation of the paths of

Von [0,t]. The # P norm of an Fy process (or even a raw FV process) is
simply ||f0 ldvs| || P, but we will also uyse freely the notion of §L5f>

semimartingales, p ; 1 (cf. [2, p. 30]).

(2.2) DEFINITION. For p 2 1, we denote by & P (resp. raw & P) all

continuous paths with left limits, having a Timit at ~, and such that

HRIE o= HHM] <=y
R P LP
where H* = sup |Ht|'
t

ﬂp(respectively raw ﬂp) will denote finite valued adapted (resp. measurable)
processes of the above type.

The question of existence and uniqueness of solutions of stochastic
differential equations with semimartingale differentials is by now well
studied. Emery [4] has established the existence and uniqueness of a
solution of:

t

Xt = Ht + IO F (X)s- dZS

where H: € ﬁp, Z is a semimartingale, and F: € Lip (K), which is defined as

follows:

{2.3) DEFINITION. An operator F mapping & processes into itself is said

to be in Lip (K) for a constant K if the following two conditions hold:

for X, ¥ €&,

. T- T- . . T- -
(i) X'~ =Y~ dimplies F(X) = F(Y)T for any stopping time T;




(1) (FX - F)} e K(X = V) , 0 <t <=,
(where X: = sup |X5|)-
s<t

Emery's condition is not the most general one known, but it is a particularly

simple one and sufficient for our purposes. We now introduce a new type of

operator. Let & d denote all processes X = (X],...,Xd) where each X' is a

semimartingale. Let W‘d (resp. raw W;d) denote all processes V' = (V'] ..,ﬁvd)

-
o I ..
where each V' 1is a FV _process (resp. raw FV process).

[

]
(2.4) DEFINITION. An operator A mapping 8 d @ raw W‘d into raw ¥V -

processes will be said to be an F{ operator if the following three conditions

are satisfied:

(i) & restricted to & d;i§ iﬂ Lip (K), for some constant K.

(i1) If (X"), X are in § @ raw v 9, and Tim ||X" - X|| , = 0, then
R —

LI oo

Tim [aX"[, = [AX], a.5., O<t<w.

N->o
(i11) If X. € § 9, then ax. € 71,

(i.e., X adapted implies AX adapted).

Examples of FV operators include:

(2.5) The Ito-Nisio operator [7]: for a diffuse measure U finite on compacts

t
and a Lipschitz function g, define AX; = jo g(Xs)u(ds).

*

(2.6) The operator Xy = Ko

(2.7) The operator of Doss and Priouret [31:

AX, = X, - inf (XA0)y for X continuous.
t t <t S .



We are now ready to describe the coefficients we will use in our differ-

ential equations.

(2.8) Let f: R_x QX IRd x R x IR = IR be such that for

f(t, W ),S’ gs >\):

(1) f, its first order partials, and the first order partials of
2f and —j%i- (1\a d; 1gigr) are all bounded on [0,t], O<t<g.
ax* 3z"

(ii) There exists a constant K such that max

{lf(tsws)ﬁg,%’x) - f(S a‘DsXsw:U)l ’

£ .
I'a—a ts Wy X »Z >\) - '——(st,y WsU)l
axX 3X

of

l——T (tsw3 Kszsx) - —;(S,w,)' WSU)‘}
3z ”

BZ

e[ tos] + [Tyl |+ [Tzl + sl

A

(1<as<d;1sisr).

We will call the above condition (2.8).

(2.9) DEFINITION. F is called an acceptéb]e coeff1c1ent if there exists:

(1) an £ = (f )] sat1sfy1ng condition (2.8),

d; T<izx<r

A
Q
A

(i1) an Fv operator A as def1ned in (2.4);

d

gﬁji%e&%rwﬁf,26§;@mwv‘,
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then the foliowing holds:

(2-10) F(Z(az)\'S = f(S,w‘,X __.3Z _='A(X) )-

S="~S ~'S=

When Z is fixed during a discussion, we will sometimes write F(X) instead

of F(X,Z).

(2.11) DEFINITION. Let F; (1sigr) be acceptable coefficients as defined

in (2.9), and let ¢ be their associated functions (cf (2.10)). For

d . r R T
, €S '@raw V' let Gy; be given by:

Xe & d@=raw.?‘

1,J s
g afy of§
= ZB=1,d{fj(s,...);(—§ (s,...) + = (5,...)}
where (s,...) denotes (S’w’ﬁs-’Zs-’A(ﬁ)s-)

Then we call G?j the associated coefficients gf_(Fi).

When Z is fixed during a discussion we sometimes write G?J.(X)S for

~

o
67, (%.2)..

(2.13a) PROPOSITION. Let Z€ &', mMe &' and let F. be acceptable coefficients,

as defined in (2.9). LgE_G? j be the associated coefficients of F., and

s

let V€ ", Then the system of equations (1z0zd)

t
- (o} o
Xg =%+ ) é F1(¥’§)deS

(03
t i=1,r

t o O

L, e {65025

has a solution, and it is unique in R".

(2.73b) PROPOSITION. Let Z€raw 7", M€ raw 7", and let F be an acceptable
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coefficient, as defined in (2.9). Then the system of equations (1z02d)

t

i=1,r f

O
! FF(X,Z)g Mg

Xg = x*+ ]

has a solution, and it is unique in raw R2.

PROOFS: -Proposition (2:13a) is an immédiate consequence of Emery's: theared-
{seé thé de$cript10hspneceding;CZ;B))wﬁfAsvforfProﬁosition*(2f]3b);

change the filtration to the trivial one & = & all t20, and now Z, M

are both in W’r;; 3 r, and thus Propositfon (2.13b) is a corollary of

Proposition (2.13a). O

(2.14) DEFINITION. Given a sequence (™) of refining partitions of

[0,[ such that 1im mesh (Hn) = 0, and a continuous semimartingale Z
N-o

with Z, = 0, we define the nth polygonal approximation of Z to be
Z, -1
t .t
(n) _ vkl v
0 =1, "TT——T?T'(t'tv)
v v+l v
.ooN . v
when t <t < to and t , t ,are in II". We write A"Z for Z, - Ly and
Vil v
AVt for tv+]- tv. Also, we let Hg denote the restriction of the parti-

tion 1" to [0,t].



11

3. Continuous Case: Polygonal Approximations.

This section begins with a statement of our main theorem when the
semimartingale differentials have continuous paths and,ake approximated
polygonally (c.f. definition (2.1)).

Let " be a sequence of refining partitions of [0,») such that

0.

it

Tim mesh (™)

n> «

(3.1) THEOREM. Let ', < 1 < r be continuous semimartingales,

28 = 0; let F? (1 5o gd) Eg’acceptable coefficients as in (2.9); and

‘lEE Z(n)T denote the nth polygonal approximation of 2" (c.f. (2.14)).

Let x = (x"‘)km<d be a point in DQd, and let Kﬁn) denote the solution of
(1 <agd)
: t .
(n)a_ o ary(n) S(n)y 4 (n)i
(3.2) e D P L1 S A I radis

j
Further, lgE_G?'j be the associated coefficients (2.12) and let X; denote

’

the solution of (1 < a < d);
(3.3) « X = x4 § ft F(X,2)_dz.
) t i=1,r 0 i\ 25/ 504
' L o i,¢c -J,c
+1/2 Xi,j=1,r jo G, ’j(g,g)sd[z NNVASRN N

Then x(n) converges in probability to X uniformly on compacts.

While Theorem (3.1) is the chief object of interest in this section,
we will prove instead the following theorem, which involves more work
but is also an essential lemma for the case of arbitrary (i.e., right

continuous) semimartingale differentials considered in section 4.
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Theorem (3.1) is clearly a corollary of Theorem (3.4), since one need only

take VZ =0, 1<gigr.

(3.4) THEOREM. Let V', 1< <r, be F¥ processes (c.f. (2.1)). Let

the hypotheses of Theorem (3.1) hold with M(n)i = Z(n)1 +yly M =2 4+ Vi,

and !(n) denote the solution of (1 g a g d):

t

i=1,r fO

(3.46) Yi(:n)a — XOL + Z Fc:(!(n) ’Z(n)) dMgn)1

A
O
~—

Further, let Y, denote the solution of (1 5 «

Al o _ o
(3.80) Yy =x'+ ligq, o i

t . .
+1/2 zi,j=1,r J;)G?’j(!,Z)Sd[M1’C’MJ’C]s’

Then X(n) converges in probability to Y uniformly on compacts.

Before formally beginning the proof of Theorem (3.4), we state and
prove a sequence of lemmas used in the proof. Several "well known"
technical results are needed, and the reader is referred to the excellent
book of Dellacherie and Meyer [2]; we give the appropriate pages, when

possible. The proof of Theorem (3.4) follows Corollary (3.41).

(3.5) LEMMA. If Theorem (3.4) holds for continuous semimartingales

' (1zizsr) jg;1%4, and FV processes vl (1 <izsr)in 't , then it

......

processes v sizvr).
PROOF. A refinement of Stricker's Theorem ([2], no. 63 bis, pp. 271, 272)

lets us change to an equivalent probability measure, Q, if necessary, so
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that the Zi and V' of Theorem (3.4) become, respectively, :314 continuous
semimartingales and.H4' FV processes under Q (1< i< r). Since the sto-
chastic calculus is invariant under a change to an equivalent probability
([2,p. 338]), and since convergence in probability is also invariant under

such a change, the lemma is proved.
O

At this stage, we need to make a technically simplifying assumption

on the operator p, which we will Tater remove:

(3.6) HYPOTHESIS: There exists an increasing process K in raw &0 such

'thaf,'fof'ény ﬁrdceéé Hebébd&9=r$& W‘d;“gﬁéjhéé;|AH[tv§ Kt'

n

t

taken to be a partition point.

Let m, denote the partition 1" restricted to [O’to]’ where t0 is

(3.7) LEMMA. Under the hypotheses and notations of Theorem (3.4) and

under hypothesis (3.6), and where M(n)i = Z(")i + Vi, one has:

t :
(3.8) jo F‘;(g("),g("))s dmg")‘

=y Fe (y(”),g("))t T AN
tvéng ! v

1/2 z g% (X(n)’z(n))t AV Zi A\)Zj

+]

o dn j=1,r 71,3
t, €m; v
n
+ 17,
where 17 tends to 0 in probability uniformly on [0,t]. If, in addition, z

and V' are taken to b ig_;14, then 1" tends to 0 in raw R 2.

PROOF: For simplicity, we write F?(!(n))for F?(X(n),z(n)).
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ary(n) i_ aryin) v o, i
(3.9) _% Fi(X )stS = 'E't-eﬂn Fi(X )t AV
vt v
t
: '\)+] ( .
n) (n) i ,
+ Z / [P0 - R, 1 dv, where, in general,
t j
dV denotes dv .
fs v Is,t] U
Albso;
asy(n) ary(n) ‘
(3.10) RO - ROy | F
4iv(n n -(n n
RS SV DR AR [
<Kolls=t [*[1Z -Z o 1%+ (V. -V o [ 3
=2 v . T S.At it Lo Loagul
v vt t\)+'| :

wherélin the second inequality we used that X(n) is the solution of
equation (3,4a) and each F? is bounded on compacts. Since the last term in
(3.10) tends td 0 a.s. as mesh (") tends to 0, the dominated convergence
theorem tells us that the second term on the right in (3.9) tends to 0 a.s.,
and hence in probability, as n » =,

By the above we need only verify (3.8) for thé continuous semimartin-

gale approximations. For ease gf;notatidn,41eﬁ»g§;f1Xf§_6,rgﬂgﬁ§g§_a =t

and b = t +1- Then:

P



b . Vo1 b
aryin) (n)i _ a'Z ary(n) )
(3[R g LR s
b (n)
consider [ F?(X -)Sds and integrate by parts:
a
b o (n)\ o (n)
(3.12) .L FE(Y M) ds = P (b-a)
b sf?
(3.2)(1)  + [ (b-s) —g— (s,...) ds
a
b 3 F% Vo d
(3.12)(i1) + T .y o [ (b=s) —— (s,...) (Ji_s . 5(s,...) AF 145
B=1,d ‘é ay® ZJ—1,F J AVt
| b afs V]
(3.12) (i11) + Yo o [ (b-s) —i— (s,...) AL 4o
3=lr a 529 AVt

o
afi
oA

a
(3.12)(iv) + [ (b-s)
b

(s,...) da(y™

S

where of course (s,...) denotes the argument (s,w,xgn)T,Zgn)1,-A(Xn)S).

AR b
Consider first (3.12)(i): |} VTN +]-s) ——E—-(s,...)ds!
t e At t v 9
Vv Y%
Vo1 ] tv+]
£ Klw) sup |22 |} — [ (t +7-5)ds
v v At t v
Vv
Vo1 Sf?
< K(w) sup |Ao"Z" | t, where K(w) bounds s on [0,t]; the
5 !
above tends to 0 a.s.
. . A 71 Pt of (n)
Consider next (3.12)(iv): [Z’ n TS i | (tv+1-s) = {s,...)da(y"")
t &n ATt t
v vV
< K(w) sup [a¥Z' | fldrAlx(n)l, which also tends to 0 a.s.

S
Vv

sl
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as mesh (n") tends to 0, by hypothesis (3.6).

Consider next (3.12)(i1): integrating by parts again gives:

QL .
(518 Ty g ] (bes) s )
3. = b-s) ———( ) ). (s,...) } ds
| *B=1,d 7 axB J=T1,r J AVt
S RNPRIC S BTN QAT
g=1,d ax3 j=T,r J AVt
b 2 of? aVz1
b-s) i J
+ 114 J ) 1. ) 1]
g=1,d . e Jj=1,r J AVt
Az .
and multiplying by S (from (3.11)), (3.13) becomes ,letting
‘ A't
{S,xxx}: = ZJ 1.r J(s, ..) }and continuing with the notational convention

that v i§_f1xed-ggg_a = tv; b=t

voi v,J af
' ANZAZ 1
(3.14) — 7 zg=1,d B (2, {ZJ 1,r J )}
X!
2.0
+ 077" A“ZJ. f (b‘s)z [ * 0 {s,...) {s,xxx}
(s t)2 g=1,d 3 2 axB@S
gf? Bfg
..I— BXB (S,...) {Zj=],r'—é-s—__(s"")} ds
. . 2.0
NS y f)ié:éli ) ?_jﬁ___(s,...) {s,xxx}

af afB (n)
T S CRURY) MR RS ] ar{my

X
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Vo1 v, J a 2 3f
Wil \est (bes)” |y, Lo (s,...) {s,xxx}
(A\)t)z B_]9d 'L 2 k=T,r 3X63 axBask

1,v,J b (h_s)2 B%fq
LA Z\)A z Zs Ly (b Z) [[ ; (S5...) {5,xxx}
(sVt) L axTaa '
af% fB ]
i ; ‘ (n)
' ax® (200) {5, (s5..) 'y At

Since all the f? and its partials given above are assumed to be bounded

on compact time sets, all but the first term in (3.74) above is bounded by:

(3.05)  ALZELL o)) ¢ k)
(")

b
+ K3(w)(Avt)2(Zk=]’r[AVZk]+| ja |dv§l)

(o) (8") 2y 1a¥7))

2

b
IO LTINS

t
By hypothesis (3.6), | [dLA(Y("))SI is bounded uniformly in.n. One easily
0 !

verifies that (3.715), summed over v, tends to 0 as mesh (Hn) tends to 0,

provided  J n[‘A\’:‘z"'A"le stays bounded in probability. This is proved in
t, €1
eI

Lemma (3.18).
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Thus for (3.12)(i1):

) ; V71 : fb .af? : ) Yy ).Auzj N
(3.16 — ). e (Syeat) Ty FF (s,..0) s
Loy lesld ) T Li=1,r"; KA

vo i vJ af%
- AZAZ 1 B
L 2 Zs=1,d %P (t,....) Zj=1,rfj(tv,...)

+ ) {right side of (3.14)},
v

where ) {right side of (3.14)} < ) (3.15), which tends to 0 in pro-

v v
bability as mesh (I") >0. Finally, consider (3.12)(iii): integrating by

parts a second time yields

b j
(3.17) Yiiv o | (b=s) —— (s,...) AT
a

579 AVt

a
afi
J

(a,...)

AVt 9z
. 2 .0

b v, Jj o T,

+{,Z‘ i (2 > Az [ 3 ' (s,...) ds

AVt 9ZV S

3 f,
—i (s, ar(me
J. B

One can show by an argument exactly analogous to the preceding one (sum-
marized in (3.16)) that the terms contained in the brackets "{ }" on the

right side of (3.17) tend to O in probability when multiplied by
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i - .
- and summed over v, as mesh (1) tends to 0. Recalling from (2.12)
AVt
ofY 5Fo
1 1 5( )
that G5 .(s,...) = — (s,...) + ) ———(s,...) fi(s,...),
at G 4 ) 70 Le=1,d oxB 3

and noting that b-a = AVt in this context, combining (3.12)(1) through
(3.12)(iv) establishes Lemma (3.7)
0

During the course of proving Lemma (3.7) we needed the following

technical result, established here for completeness.

(3.18) LEMMA. Let 7' and 77 be any two semimartingales, and (") a sequence

of refining partitions, where Tim mesh(r") = 0. Then J 18°27avZ3 |

N->e n
t, €y

stays bounded in probability as mesh (1) tends to 0 (0<t<w),

PROOF. "Bounded 1in probability" means that for any € > 0 there exists a K

such that sup P( } n,sziAvZJ|>|<)< e. We have (] IAvZ1AVZjl)2 <
n t{)EH v

¥ (szi)Z Z(AVZj)Z; but each of Z(AVZi)2 is convergent in probability
v v v
(c.f. [2, p. 344]) and hence bounded in probability.

O

(3.79) LEMMA. Let 7', 1 s 1 5 r be continuous flt4 semimartingales,

ggg_lgz_v1, Tsisr, be FV processes which are a]so,h4 . Let the hypo-

theses and notations of Theorem (3.4), and also Tet hypothesis (3.6) hold.
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Then there exists a sequence of finite valued stopping times (Tk)

(n),T& L2
increasing a.s. to « such that (Y.7)'™ is Cauchy in R°.

PROOF. We first establish some notation. For n>m, the partition 1" is

a refinement of " by hypothesis. For‘R}EHn, we write

[t 1 = sup
vom t <t :t €en
b=y s
When n and m are fixed and there is no danger of confusion we will write

[tv] for [tv]m' Thus for n>m fixed, and for general semimartingales Z and

processes H,J:

I Hoa%Z- ] gz

t
t, er” vV toeq" M

o

=) {H, - Jr. 1} 2z,
t [tv]

v

For n > m, by Lemma (3.7) we have:

t o
(3.20) yinde - y{ma Listr (R Whea @M 4 )
t 2 y(m) (m)i i
- 1F ) e,
T DA - oM ezt
VeI v v
+ ]/ZVEZHH [Z'I ,j=1,Y‘ {G('?’J(Y—v(n))tv - G;)L,J(X(m))[t\)]}AVZ-'AVZJ]
A
(1" - 1M,

With the added hypothesis that Z' and Vi are in, »% , we have by Lemma-(3.7)
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that 1" and 1™ tend to 0 as n, m -+ » in .paw R?.

Now Tet T be any stopping time bounded by a fixed to (0 < t0 < ®),

Let
-y T = g g ey,
Consider:
(3.21) erf(v(mMe _ymeyg2;
£ SE(TyLy . (F ryindy o F?(y(“‘))[t RO
i n v v
T
Hn Y AY
T-
+ 5/2EC (T, .y . (G2 .(Y('”))t 262 vy avziavady*2
! TRV LSS I R S A 6 [t,

HT%-
+ 58 (1™ 34+ sE¢(1")2 5.

Introduce the notation:

t ,tv<‘t
v

t

IFN

= oyl
- r2qr(m) T 8

the tv running through the partition . Since 7' is a continuous semi-
martingale, let z' = M' + A" denote its unique decomposition into a con-
tinuous martingale M' and continuous FV process A'. Inequality (3.21)

then yields:
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(3.22) Epy(Me - y(mey*g2,

A

T -
SE {(J5o1.p Jb Fe (y(n))

*OE Wgar e F (M) - R ™) ey
T “ . . -
+ 5E {(Zi,j=],Y‘f0 [G?sj(x’(n))s _ G?’j(y-(m))s:ld [M1,MJ JS)Z}

-+

5E((z.i ,j=1,Y‘ {é?,j(y(n))s _ G(-;’:j (X(m)) } X

TN UNIN RN Mj-+AVAiA“Aj}*2)
+ ¢

1351 S

Consider the second to last term on the right side of (3.22); in general

we have, for example:

[ZHgn)A“MiAvAJI

A

sup |a"M']]} Hgn)A“AJ|
v

IIA

. * t .
i n
sup [a"M7] ]| )IILw [ laa])
..n
\{&Ht
which tends to 0 a.s. as mesh (") tends to O. Reasoning analogously for

aVATAM and aVATAVAY, the second to last term in (3.22) tends to O by

. ) . _ my *2 n,*2
the dominated convergence theorem; of course, S 5E {(I™) “3+5E{(I")

which also tends to 0 as n,m tend to «.

2
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By elementary properties of the stochastic integral (c.f. [2, 13]) and

the Cauchy-Schwarz inequality, (3.22) becomes

(3.23) £ ¢[(v{Me . Y(m)d);lz }

- ™) 2Pt g)

A

: T o (n)
CiE 115 % [Fs (Y1)

+

. A ) i} , ,
CECT I eIV ) Fe(y™) - ™) 512 and vl

a4
- &2 ™) g el 343

. T .
R Y GRS

where lim ¢ = 0. Note that by our hypotheses on the coefficients
n,m—)-oo )

(c.f. (2.8)),

(3.24)  |F¢ (y(”))S - F (y(m))é|*

A

Kile-t |+ 2l [yg - ez, -z 1
v u v u

A

2K{6m(w)'F||Y£:) - Xﬁz)ll}

where § = max {ltv-tul, Ilztv-gtull}~

Continuing with (3.24):

(3.25) 17 (y(n)y
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1A

2 G+ 1Y 0™ e e -y
H

v v Vv

R

n m),* i i i i
2hiay + 1YL 0 g0 2 fevg - D)

*
Ky oy + 1Y -y My,

MA

. 2 - .
where 1lim E(Am) = 0 by the continuity and right continuity of the
n,m->o ’ : )

paths of Z' and V'. An analogous result holds for the éi

3

Define an increasing process L as follows:

i i i
(3.26) Le =t Jaog (CIMLM DL + AT+ V) +

.
Zi’jz],r I[M ’MJ:”t'
The process L is right continuous and strictly increasing. Combining

(3.23) with (3.25) and summing over o then yields:

*

(3.27) eq|y(m - t(m)lng} <

T-
2 n m), *2
CE{LT_% {a +|l[( ). x( )||s_dLs}
n,m.

Define R = inf {s>0; L_>k}. | .
To avoid the problem of large jumps, we stop the processes at R -; for A

we could asrﬁe11 stop at Rk’ since the paths are continuous.
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Thus, for a fixed k, we veplace the processes Z' and V! as follows:

1
=17
tﬁRk

ot

-i -
AR,

”l
Y,
t/Rk-

sV

1
Ry

<2
o+ =

=y

]

{tzR, 3 7

where AV, = Ve = Vel (the jump at t); Note then that [t = Liﬁ g k a.s.

Let Ty = inf {s>0:ES>t}, the right continuous inverse of i. Then Tt is a

stopping time for each t (c.f., e.g., [1]), and (3.27) yields (for tck)

(3.29) Eq||y{M) - y(my) 22,

T ~
< okigf B[+ pytn) oy (M2 g
0

n,m?

2

and absorbing the Ck E(Aﬁ) into the ¢_ _, (3.29) becomes

n,m

T, - .
(3.30) 5 okee] By -y M2 el
0

n,m’
let T = [0, TtE = {(s,u): O§S<Tt(w)}.

Then using Lebesgue's lemma we have from (3.29)and (3.30):

(3.31) £y L y(my g2

~

<ke(f =1 (e )1y -y (M2 4
0

n,m
S~ s
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t
< KE jo ) Y(m)llzi; ds} + e o (t<k)
and letting a(n,m,s) = lll(n) - !(m)||:2 ,
S=-

(3.31) simplifies to:

t :
E{a{n,m,t)} < Kf E{a(n,m,s)}ds +e_ .
=M n,m

Taking Yy m(t) = E{a(n,m,t)} and using the Bellman-Gronwall Lemma (e.g.,
[5, p. 393]), one.obtains from (3.31):
t

v, (t) s k(t-s)
. Tn,m egm * Kfo e sn,mds'
< en’m(] + eKt).
: : (n)\ "k 2 .
Since Tim €nm - 0, we have that (! ) is Cauchy in L™, uniformly
n,meo H )
in s. O

Two technical lemmas used in the proof of Lemma (3.40) follow.

(3.33) LEMMA. Lg}_(Hn) be a uniformly bounded sequence of processes in raw

R?, and suppose for any t Tim (Hn-H):= 0, with convérgence in probability, and

n-oc

He%% (note that the 1imit process H is assumed adanted). If I is a seauence

of refining partitions of [0,t] with 1im mesh (") = 0, then
n->e«

t
lim WY (z -7, )=/ HdzZ
n “tde itk tv tv+1 tv 0 3 S

uniformly in t gﬁ_comgacts, in probability, for any semimartingale Z.

PROOF. By changing to an equivalent probability if necessary, assume
Z e,HZ, Then

Then
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NV *
(3.34), (ZHth Z- f Hsts)t

n vy ¥ v *
() Htv - Htv)A Z) + (ZHth Z - [HdZ.)

1A

The second term on the right side of (3.34) tends to 0 in probability as
is well known (c.f. [2, p. 339]).

Let Z = N + A be a decomposition of Z such that N is locally a square
“integrable martingale.

Then
(3.35)  (J(HD - M) 2%2)" < (B(HD -H, )a%)
+ (DY - H )a%m)"
v v
But

n vy ¥ v
(Z(Htv - Ht\))A A) h 2 e A |A| + f{ ‘_Hn_‘Hl>€} ZKldASI ’

(where K is a bound for [Hn|, nx1).

£ 6+ 2K f{]Hn-H|>e}|dA§L’

*

Since 1im P(|H"-H[%¢) = 0, we have lim (Z(Hg -Hy )AYA) " = 0 in
N ‘ n-e v v

probability.

It remains to show that

*
(3.36) Tim (J(H} - Hy )e¥)" = 0 in probability. Since N is Tlocally
Y v

square integrable, and since we only need convergence in probability, without
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loss of generality we may assume that N is stopped at an arbitrarily large
stopping time, so that it is square integrable. Set

= Syp |r2|.
vy v ‘

*
Then ™™ tends to 0 in probability and is bounded. Moreover:

(3.37) EL(J(H] - H, )a"N)"2]

EC(Er(a%N)) 2]

AVERY

E[(Pn*ZIAvNI)Z]

liA

A

E[(r"*)Z{Z(AVN)2 + ; | aVN| [aMN| 3T,
vFu

AY

and since {Z(AVN)2 + ¥ |a”N| [aPN|} dsuniformly integrable as the mesh of
v gt

the refining partitions tends to 0 (c.f., e.g., [13, p. 355, 356]), we

deduce from (3.37) the convergence in probability of (3.36).
Ol

(3.38) LEMMA. Lg;_(Hn) be uniformly bounded processes ig_vaw_ﬁp, Ha

*
process in (adapted) ﬁp, such that Tim (Hn-H)t = 0, some t0>0, with
N0 0

convergence in probability. Let ik be a sequence of refining partitions

of [O,to] with Tim mesh (Hn) = 0. Let Z and Y be continuous semimartingales.
N-seo
. n  v,.v t CyC
Then 1im vZ H, ATZATY = f Hd[Z,Y"]._,
_— L on ot S S
n*»tba% v 0

uniformly on [0,t ], with convergence in_probability.

PROOF. By changing to an equiva]ent measure if necessary, assume Z and
Y are in;H2 . LetZ=M+Aand Y =N+ B, where M and N are the continuous

martingale parts. It is simple to check that
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Iy aMa"B, THI ¥ As"B
A\ v

THY  a” AN
v

all tend to 0 a.s. as mesh (") tends to 0. Consider the remaining term:

- N Ve Uy _ n o _ Vg, V Vg, V
(3.39) ) Hth MAVN = Z(Htv Htv) A MAVN + }thVA Ma“N.
The second term on the right in (3.39) tends in probability to

t t
[ Hod §MNT = [ H.d 2Z°,YC 1 (cf [2,pp. 340, 344]).
0 0 S S

An argument analogous to the one used to establish (3.36) shows that

ECTIHE = Hy | [2"M] [a¥N]3
AY)

\% v
*
< E(TT [aM] AN,
A%
where ] [a"M| |a’N| is uniformly integrable as the mesh of the refining
\%

partitions goes to 0. Thus the first term on the right side of (3.39) also

tends to 0 in probability.
O

(3.40) LEMMA. LgE_Z1, l<isgr, Qg_continuous;344 semimartingales,

ggg_lgz_v1, T 51 2 rbe FV processes which are also. ¥4 . With the

hypotheses and notation of Theorem (3.4), and with hypothesis (3.6)

holding, there exists a sequence of finite-valued stopping times (Tk)

increasing a.s. to « such that (X(n)) K converges in R2 to Y k™,

TK.

PROOF. Lemma (3.19) assures us that (Y(n)) is Cauchy in the Banach
. 1.2
space &2 . We must show that the 1imit is, indeed, Y k . This, however,

~

s a trivial consequence of Lemmas (3.7), (3.33), and (3.38).
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(3.41) COROLLARY. Under the additional hypothesis (3.6), Theorem (3.4)

holds.

k

PROOF. Fix a t and an € > 0. Choose k so large that P(T = t) < e.

Then apply Lemma (3.40) and Lemma (3.5).

PROOF OF THEOREM (3.4). By Corollary (3.41) it remains only to remove
hypothesis (3.6). By Lemma (3.5) we may assume Zi, 1=i=r, are
continuous%4 semimartingales, and that Vi (1 =1i=r)are VF processes
that are a]so,%4. We now define a new operator g as follows, defined

for X in the domain of A:

() o, R0+ M pex)-Trr(x) oot (H)
B, = '
R(X) = inf{s > 0: IAX{S = 2}

(R will be a stopping time only if X is adapted; but this poses no
problems as B is well-defined in any case.)
Let F?(XO_,BXS_) be as is F?(XS_), where B replaces A. We must show

equations of the form

_ t
(3.42) X, = x+f0 F(Xg_»BX _)dM,

have solutions and that they are unique. Let Y be the unique solution of

Y, = x+j8 F(Yg_oAY

¢ )i,

S- S

which we know exists by Emery's theorem, since A and hence F are in

Lip (K). Define

T = inf{t > 0: [AY], = &}.
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Then the operator H defined by

H(Z)g = F(Z,(02)])

S

t
is again in Lip (K), and hence the equation Z, = x4-f0 H(Z)s-dMs also

T T

has a unique solution. Moreover, Z' = Y', and hence R(Z) = T = R(Y).

Thus Z is a solution of:

t
Zy = x+ [0 F(Zg_.(82) )an,.

To show uniqueness, suppose Z and W are two solutions of equation (3.42).

Let S = min (R(Z),R(W)). Then

(82) )M

S _ tAS
Zy = x+ [ F(zg s

x+ [ F(zg L, (8D)% )am,

S_
x+ [ Kz (82%)Jam,

since (BZS)S_ = (BZ)S_ on [[0,ST], where S = R(Z). Moreover, since

(AZ)S_ = (BZ)S_ on [0,S]] when S = R(Z), this becomes:

= WS o v
- x-+JO F(Zg_»(42) ).

Analogously, we have that:

S _ tAS
Wy = x+—f0 F(Wg_» (W) _)dM_.

Thus, both WsﬁandtZS'are solutions of:

ot S
Vy = x+ [ PV, (V) )i,

S S

and by uniqueness we have W° = 7°. S

)S = (A7), and

This implies (AW
hence R(W) = R(Z), since S is the minimum of R(W) and R(Z). Thus both

wSiand-ZS are solutions of:
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3 )

U= x+ [T R (A0)3_

ams,
S

which has a unique solution. Hence Z = W up to R(W) - R(Z).
Since we have established existence and uniqueness for general

equations of the form
X, = x+ S F(X__,(BX)_ )M
t 0 s-° s-'""'s

for M a semimartingale, we can apply this result for the approximating
differentials M(n)i. (Taking the filtration to beﬁ?t =¥, all t, each
M(n)i is a semimartingale since it has paths of bounded variation on
compacts).

To complete the proof, set

(3.42) Yy = X+ [T F(Y(AY) )dh,

t -

and let R = R(Y). Then

(AY)

R _ ., (tAR
Y= [ F(Y L (AY) ) dMg

x+ [N R L (BY) )M,

since (AY)S_ = (BY)S_ on [0,R]]. Let U be the (unique; up to R(U)) solution of:

(3.43) Uy = x+[g F(u_.(8Y) _)dm.

R R

Then Y~ = UR, and so (AY)" = (AU)R

, and thus R(Y) = R(u) = R.
Analogously, R(U(n)) = R(Y(n)) = Rn, where Y(n), U(n) are solutions

analogous to (3.42) and (3.43) respectively with M replaced by M(n).

Next implicitly stop 7' and V' (1 =1=4d), as in (3.40), at
Tk—, so that for each k the differentials are 1n;%4. Then as in

Lemma (3.19) we have that U(n) converges to U in %2, using that
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U(n) = Y(n) on EO,Rnﬂ. Therefore 1im R(U(n)) = Tim R(Y(n)) = R

N-co n->co

in probability by (2.4) (ii). Therefore
P % > o) = puiM oy > ) +P(R" < R)..

. . . k .
tends to 0 as n » «». Since £ was arbitrary, and since T  increase to

© a.s., this completes the proof.

§4. Continuous Case: :C] Approximations

In §3 we considered polygonal approximations Z(n)1 of continuous semi-

martingales Z'. In this section we consider processes w(”)‘ with paths that

are;C] and which converge to the paths of 7', The processes w(”)‘

must
be reasonably close to the polygonal approximations, and we make the following

hypotheses, similar to those of Nakao and Yamato [15].

(4.1) DEFINITION. LEE_21,...,Zr_ggcontjhuous semimartingales.

(M) ]

leiepr Will be said EE_EEUE‘C] approximation of (Z veosZh) if the

following four conditions hold for each n > 1, 1

A

igr:

(4.1)(1): w(")i have piecewise C] paths, a.s.;
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(4.1)(i1): there exists a sequence " of refining partitions with
Tim mesh (1") = 0 ‘such that:
n- o
(a) wﬁn)1 = Z%"for'a11 t € I
v v o
(b) wﬁ")‘ 15‘3% - measurable, all t < t ;
(c) For each t, 0 <t < », and m restricted to [0,t]

(4.2) THEDREM. Let Z', 1 < i < r be continuous semimartingales, Z' = 0;
— = 5 0

lgj_F? (1 5 a g d) denote acceptable coefficients (c.f.(2.9)); and Tet
w(n)i, 1 1

approximation gf_Z1 as described in

A

igsrsnzlbeac

Definition (4.1). Let V', 1 < i

17N

r be FV processes (c.f.(2.1)), and let

xi") denote the solution of (1 <o < d):

t . .
(4.3) Xén)a = x% ¢ Z-i:],r {) F? ()S(n)’ ‘ﬁ,(n))sd (Wén)-l + V;).

LgE_G? i be the associated coefficients (2.12), and let X denote the

solution of

t . .
o _ O o ) 1, 41
(4.4) Xt = X + 21=],r .% Fi(x’z)s d(Zs + VS)
t o i,c ,Jj,cC
+ 1/2 Z1,J=1,P .% Gi’j(x,;)s d[Z ,Z ]S.
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Then X(n) converges uniformly on compacts, in probability, to X.

The proof of Theorem (4.2) begins with a lemma. that Tets us use our
polygonal approximation result of §3. For simplicity, write -

B ) for 72 (x(M 2 (M), ete.

(4.5) LEMMA, Lg}_z(n) be as in Theorem (4.2), ggg_y(") be as in Theorem (3.4).

If
(n)a (n)a _ oryin) arg(n)y q,.v51,, Vi
Xt ) Yt _t é " Zi=1,r[Fi(5 )t B Fi(X )t RGNS

2 v v
v t
\ O (n) o (n) vo1,v5J

oL a2y Le s () -6 5 (V) 18720877

th H% 'i’j='|’r ? \V] ? v
+ In,

a s“d),ffhen-¥€n)?convErges uniformly on com-

where I tends to O jg!xéw_ﬁ‘z (1

A,

pacts, in probability, to X.

PROOF:  since P(|]X{M - x[|T > e) < p()1x(M - (s e s

n * . . *
P(IIY( ). X ||y > €), and since rﬂlﬁ; Py . X1y > €) = 0 by
Theorem (3.4) [note that X = Y in our notation], it suffices to show

vim p([x{M - Y(n)H: > €)= 0.

n-> o : .
if necessary, assume without loss of generality that ZT, V! are a]]_h4

By changing to an‘equivalent probability

(1 21 sr). Proceed as in the proof of Lemma (3.19) [(3.19) through
(3.27)] to establish for any stopping time T:

B¢ (x(Me Y(”)“);_Z}

T-
2 n *2
s ity [oog + 1 - e,
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where Tim E(Aﬁ) = 0 and Ly is'given in (3.26). The rest of the proof

n—>o
proceeds analogously to obtain that, for t <k, ||| _< =:
- L
*
A A SPPSIPLUN
- - T =

where ¢ tends to 0. Since 1, = , w& pave (x(") - Y.(n))-fk tends
. | A ! RK.
to 0 in probability for stopping times Rk (defined in (3.28)) tending

8.s. to ». This proves the theorem.

LEMMA (4.6). Under hypothesis (3.6), Theorem (4.2) is true.

PROOF. Recall that (3.6) assumes [AH|, < K¢» for H in the domain of a,

. . . . 0
with Kt increasing in vaw R°.

With !(n) as in Theorem (3.4),

(4.7 x{Ma _ y{na

t
t t 21'=1,r [{)F‘_’l‘ (y(“)) raw(Mi _ z(n)iy
t
s o - et el

Consider the second term on the right.side of (4.7). Integration by parts

yields
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t .
(4.8) _% F Q(("))S - F§ (x("))S dwgn)‘
= 2 n{F? (X(n))tv o (!(n))tv} szi
vEHt
P fv+] (w(n)1 _ )i ) d[F? (X(n))s Fa(x(n))s]
\AEHn tv t\)+'|
t
But
(4.9) d[F?(K(n))s } F?<Y(n))s]
o oln)y a7
= Tje by g™ ey ot oy
3FS 5f% -
+1 83; (st;)ﬁ(_.(n),...) -—,—-g.-;—(s,w’!(n)".“)}ds
of (n) XS
- _5%__(5,...) aa(x\") - (s,...)dA(X(n))S

and integrating again by parts, when appropriate changes (4.8) to

t. i
(4.19) '%{F? (z(n))s _ F% (X(n))s}dwgn)1

<y o o - F@(y(”)>tv} 27!
t

1
A%

o (n) (n)y. v, 1,v.]
), 172 Zi,j=1,r 165 (), -Gij(x )y 1AZAZ
It v v

+ 1" 9",

where 1" and 3" go to 0 in raw &, since (3.6) holds, provided z', v are in

't » 1 51 <r, by arguments analogous to those used in Lemma (3.7).
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(Note that without Toss of generality we may assume once again that Z1,V1

are 1n_344 by the arguments presented in Lemma (3.5).)

The third term in (4.7) is easily disposed of:

t .
D R R LD

_ a ry(n) G v,,1
- §2 UM (y(")>tv1 2y
tv+1 . . (n) ( )
DY N 'V;)d [FOXCT) - Py,
Hz t, v+1 ~

where the second term on the right side of (4.11) tends to 0 by arguments

analogous to those establishing that 1" and J" tend to 0.

Finally we are left with the first term on the right side of (4.7).

Integrating by parts yields:

t . .
(4']2) .% F? (Y(n))s d{Wén)1 _ Zgn)1}

= 3, Rt Wt -
Ht v
t:
J'\)+-I v(n_)'l ( ( ) ( ) ( )
+ . a
e O WD Mg g ),
Cot aw(n)1 AV7 o o(n)
S0+ L L D) - St -9 o i)
t v v
v 2 t +1 3fq 5F%
= Ky %n J—lATZU— Iv(b - s) [3—,;1— (sy...) ax1 (s,
t AT t,
a (n) szj ;
* Lger,e G () ZG;—] ds.

where c(s) is a value in [tv’tv+1]’
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(413) 5 KL, Q1ZA0 (12212 ey 1020
II
t

where Q1 is an FV process, and where the mean value theorem gives the

second equality. The right side of (4.13) is dominated by

K(supla® Qi+ T;aZ0 1) I 1182
v Iy

< c(w) (sup [l2al+ 351020 |D),

S
VeI,

which tends to 0 a.s. and 1n_L2.
The conditions of Lemma (4.5) are now satisfied, implying Theorem (4.2),

under hypothesis (3.6).
[

PROOF OF THEOREM (4.2). 1In view of Lemma (4.6), it remains only to
remove hypothesis (3.6). But this can be done exactly as in the polygonal
case, and we refer the reader to the conclusion of the proof of Theorem (3.4)

in §3 (which follows Corollary (3.41)).

§5. Right Continuous Case.
Consider now equations of the form (1 <o < d):

t .
_ .a a i
Kg = x7 + Zi=1,r -% Fi(x)s dMs

a
t
where M' are arbitrary right continuous semimartingales. Everysuch M

d

can be decomposed: M, = NE + Nt

t + At’ where N® is a continuous local
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martingale, A is an FV process, and Nd is a "purely discontinuous" local
martingale (c.f., e.g., [20]). Both NC and Nd can have, in general, paths
of infinite variation on compacts; thus it is of interest to approximate
their paths with processes with smooth paths and find the limits of the

approximating solutions. Unlike the case for continuous martingales,

however, one can approximate Nd by a sequence of local martingales with

paths of finite variation (e.g., example (5.2) below).

(5.1) DEFINITION. For a (purely discontinuous) local martingale N, a

sequence Nk will be called an approximating martingale sequence of N if

(i) NK is a local martingale with paths of finite variation on
compacts (kz 1);

(i1) Nk converges to N locally ig;%]; that is, there exist stopping

times T2 increasing to « a.s. such that

1)

Tim E{[NéNk,N-Nk]%l} =0, (2
K-»o0 T

v

%
—

(111) there exists D € %° §g§b_§b§§_[Nk,Nk] = D, each k =

COMMENTS. For a local martingale N, the Z' norm, IN| ;. is defined to be
V4
E{[N,N]z}. Every local martingale is locally 1n.%]. Moreaver one can

I
® L
check that ||N| ; = E{f_ |dN_|}, and also that |[N] , = sup [N 7 ;. for
ARG /AN
any sequence of stopping times T2 increasing to « a.s.

We write [M] for [M,M] when there is no ambiguity.
(5.2) EXAMPLE. One way to obtain such a sequence is to take

Ak= Y AN

k
N
t s=t

Lk gk
s Tk [an e 3 N T ApT Ry

~k . .
where At is the compensation of A, and where € is a sequence decreasing to 0.
Any semimartingale M can be written M = Z+N+V, where Z is a con-

tinuous semimartingale, N is a purely discontinuous local martingale,
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and V is an FV process. Such a decomposition is not unique, and in
particular the choice of the continuous semimartingale part Z is, in

general, arbitrary. Here is our main result of this section.

(5.3) THEOREM. LgE_M1, 1= 1= r, be right continuous semimartingales,

and Tet MU= 2 NtV be any decomposition p__f_M1 such that Z' is a

continuous semimartingale, N' is a purely discontinuous local martingale,

ggg_v is an FV process. Let W(n)1 be 3] approximations of z'

(c.f. Definition (4.1)), gﬂQ_lgE_N(n)1 be an approximating martingale

sequence gj_N1. Suppose Fi (1 = a = d) denote acceptable coefficients
(c.f. (2.9)), and let X(n’k) denote the solution of (1 = o= d):

(n,k)o _ o to,y(n,k) ,(n) (n)i, ((k)i, i
(5.4) Xi = X 4-1_% IOF1(§ W )sd(w +Ng 4-Vs).
Let G1 be the associated coefficients (2.12) and let X denote the

solution of (1 = a=d):

(5.5) K=+ T EFHXLT) m
i=T,r "0 18

vy fte2 (X,2) d[M1C 4JC] )
i,5=1,r 0 1,3

Then for any t and for any 8, € > 0, there exists a K and a function n(k)

such that k > K and n > n(k) implies

P(“x(ﬂ,k)_x”t S (S) < e

Most of the work involved in proving Theorem (5.3) is contained in the
proof of Theorem (3.4). Nevertheless, we will need the following Temma.

Again, for simplicity write F?(X(n’k))s for F?(¥(n,k),w(n))’ etc.
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1 _ Y1+N1,

(k)1

(5.6) LEMMA. Let M' be semimartingales (1 = i

HA

r), M

where each N1 is a purely discontinuous local martingale. Let N

be an approximating martingale sequence of N

Let F. (1= a=d)be

jn Lip (K) and bounded. Let K(k) and X be solutions respectively of

(1 =0=d):
¢ . .
x1(:k) =x%+ 3 fOF?(X(k))qd(Y;+Ngk)1)
i=1,r ” N
o _ O t_a i
Xg =x0+ )[Ry (X) gdmg.
i=1,r
Then Tim X(k) = X, in probability, uniformly on compacts.
koo ™ ~

PROOF. For simplicity of notation assume r = d =1 (the extension to
general finite r, d is easy). Let Tz be stopping times increasing to

© a.s. such that Tim E{[N-N(k)]%g} = 0. Without loss of generality we
T

k-0
assume Y, N(k), and M are all stopped at Tg, for a fixed 2. By changing
to an equivalent probability Q, if necessary, we may further assume that
N and Y are 1n,%2(Q) on compact time intervals and that the process D in
definition (5.1) is 1in L1(dQ). Further, one can choose Q so that the
density 92 is bounded (c.f. [2, p. 2711).
Under Q, the processes N, Nk need not be local martingales, but

they are special semimartingales. Let

(5.7) N = N+A

be their canonical decompositions under Q. Let J, = E{%%-L?t} and we
take the right continuous version of this bounded martingale. The
martingale J is nonnegative, and letting RP = inf{t: Jt < %}, we have

RP increases to » a.s. as p increases to =.
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Fix tO and € > 0 be given. Choose p sufficiently large that

k

P(RP < tO) < g. The processes A and Af of (5.7) are known to be given by:

t 1
t = 1o I d(N,J)

=
0l

=
n

Kot L a0, (cf [2, p. 2591);
s—

For p fixed let R = RP. On [[0,RT] we have |jl—

p, and therefore:

1A

1A

~ o R 1 k
EQ{|I-\-A M, EQ{fog [d(N =N, 0 ([

1A

R 1 k
EP{JJ'OK (N - NS0y (3

R
£ LR 9, 5 (N~ N0 1)

S=-

= EP{IS |d¢N - Nk,J)Sl}

lIA

1

R k
EPUO Hd(N - N 0 3

(where H is predictable and takes on only the values + 1)

R k
Ep{fh HdIN - N,010)

lIA

£, LR 1aDN-N,91, 1)

A

k%
CEP{[N— N ]R},

by Fefferman's inequality and using that J is bounded (cf [2, p. 295]).

Summarizing the above we have that:

PO k~%
(5.8) EQ{IA-A IR} = CEP{[N- N ]R},
and thus
(5.9) T1im EQ{|A-A IR} = 0.

koo



e
Since F is bounded, this then implies that if

(5.10) s, (R) = E F e dik - Bod
. 8, (R) = Q{izg( é s - AT,

then

(5.11) Tim Gk(R) = 0.

koo

Next, observe that for any stopping time T:

bk ok 5y 2

(5.11) EQ{sup( [ FXC d(NT - N)_)7}

tsT 0 ° 3
< A EN } (P 240k -, /- g
= QO Sd - -]S}
ko~ o~k s
< 4 CEUINT - N, N - N}
< 16C EQUIN* - N, N - NI,

since F is bounded and where the last inequality follows since i - § s
the local martingale in the canonical decomposition»of'Nk - N (¢.f. [2, p. 264]).

Thus if we set

| ok ek oy 22
(5.12) 'yk(T) = EQ{sup( i FXg d{(N" - N)s)ﬁ} R

t<T 0

we have from (5.11) and by [N-Nk, N-Nk] tending to 0 in probability and being
dominated by 2([N,N]+D) €L'(dQ), that
(5.13) Tlim yk(T) =0 , any stopping time T.
koo

Finally, we recall the following fundamental result of Metivier and Pellaumail
([12]): for Z a semimartingale, there exists an increasing process B that
"controls" Z in the following sense:

t 2
(5.14) E{sup( | H dZs) }

t<T O

T- 2
E(B. é HE dB; 3

A
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for any locally bounded predictable process H and any stopping time T. Let |

denote a process controlling the semimartingale M of the hypothesis. Then we

have, for any stopping time T < R:

(5.15) Efsup(X, - xt)z}
t<T

E{sup ( [ FXg dM [ FXg dM
0

) )2
t<T 0 S

}

lIA

2E{sup )2}
t<T

A

(FXg = FX.)dM,

d(ME - Ms))zk

-+

2E{sup FX

t

( JeexK
0
t

(xS
t<T O

ok
2E{sup ( é(FXs - FXs)dMs

t<T

123

{IA

+

CLs, (R) + v (R)]

where C is a constant, 1im C (Gk(R) +'ﬁk(R)] = 0, from (5.10),(5.11),(5.12),

koo

and (5.13). Let o = C[Gk(R) +'wk(R)]. Then (5.15) becomes:

(5.16) Efsup (X, - xt)z}
t<T

{IA

bk 2,
2E{sup ( [(FXg - FXJM)®} + o
0

£<T
2E{L }_(ka FX_)% dL_} +
S T- 5 s~ s S o
To k%2
< 2KE(L,_ é [(XC = X)21% dL) + o

using (5.14) and the Lipschitz property of F.

Define 7, = inf{s: L >t}, and let T = min (Tt, R). Then for t < tys

we have from (5.16):
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(5.17) Eqsup (X, - X&)

}
s<T S

k 2

- dLS} + U

A
N
7~
m
—~
(-'-
——

(0 -0

A
N
-~
‘—*-
m
—~
—

oy vk *2
70,1 (s) (X - X) o_ dL I+ o

2Kt Ef ?w.1 () K- 0T sy +
0 D:OaR/\thD: s s %k

HA

t
- k *2 :
2KtO E{é (x* - X) ds} + Oy s

A

RA TS-
where we have used Lebesque's Temma ([1. p. 91]. Letting

B(k,t) < E{sup IX_ - Xklz}
= s s
S<RATt

we have from (5.17) that
t
B(k,t) < 2Kt | é g(k,s) ds + oy s
and hence, by the Bellman-Gronwall Temma ([5, p. 3931),
t
clt-s
B(k,t) < o T 2Kt [ e ( )ak ds

0

which tends to 0 as k>~ since 1im % = 0. Thus (X - Xk) tends to 0 in

k-0

L2(dQ) on [ 0,R[ , and hence in probability (Q); since Q and P are equivalent,
we have convergence in probability (dP). Since P(R<to)<e, e arbitrary, we
thus have (X - Xk)* tefids to 0 in probability on [0,t ]. But t, was

arbitrary, and the proof is complete.
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PROOF. OF THEOREM. (5.3): Let X(n,k) be as given in (5.4), and let
X be as given in (5.5). Under the same hypotheses, let X(k) be the solu-

tion of (1 g o g d):

t . o

40+ Ty f A0, ] o o)
+1/2 ) I () apwie, wie.
ig=1,r 0 T 7S T

Given s, ¢ > 0, for each k Theorem (3.4) assures the existence of an mk

such that if n M, then

5.18)  p(I MRy sy <
t
Analogously, Lemma (5.6) ensures the existence of a K such that for k > K,‘

5.19) PO S x1E > ) < er2
Since p( xR x| > 0 s
IR TS IR (MO

(5.18) and (5.19) yield the result.
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