IMPROVING INADMISSIBLE ESTIMATORS
UNDER QUADRATIC LOSS

by

Leon Jay Gleser
Purdue University

Technical Report #83-19

Department of Statistics
Purdue University

June 1983

This research was supported by the National Science Foundation under
Grant No. MCS 81-21948.



IMPROVING INADMISSIBLE ESTIMATORS UNDER QUADRATIC LOSS

by

Leon Jay Gleser
Purdue University

1. INTRODUCTION
Let Z: mx1 be a random vector observation with distribution in
a class {Pe: ® in @} indexedby a vector parameter 6: rxl. It is
desired to estimate a vector-valued function p = u(e): px1 of e,

p < r, under a quadratic loss function

L(e,8(2)) = (s(X)-u)'Q(e)(s(Z)-u), (1.7)

where Q(e) is a pxp positive definite matrix (Q(e) > 0) for all s.
Let ‘
R(e,8) = E [L(0,6(2))] (1.2)
denote the risk function of § = §(Z).
Suppose that GO(Z) is an estimator of p having everywhere finite
risk

R(e,do) <o, all o ine@, (1.3)

and that it is believed (or known) that 8, is inadmissible. Since

the loss (1.1) is strictly convex in §(Z), it follows that an estimator
§* dominates 8 in risk if and only if (]-a)ao + od8* dominates 60 for

all @, 0 <a < 1. This fact suggests that if &* dominates 89> then among
all estimators 8. of the form (1-c)60 + ¢c6%, -0 < ¢ < =, the maximal
subclass of estimators which dominate 8y has the form

{(1-c)60 + cs*: 0 <c <A}, where A > 1. Even if &* does not dominate
8> it may be possible that 8. = (1-c)60 + c6* dominates 8, in risk for

some ¢ > 0. Theorem 1 below gives necessary and sufficient conditions



for this to occur, and in this case also describes the maximal class

of estimators of the form GC which dominate 60.

Theorem 1. Let

h(z) = GO(Z) - §%(Z) (1.4)
and define

B(e) = E [h'(Z)Q(e)(85(Z)-n)1, Ae) = E [h'(2)Q(e)n(Z)].  (1.5)

In order that for some c > 0

§.(2) = (1-c)84(Z) + c*(Z) = 84(Z) - ch(Z) (1.6)

0

dominates 60(2) in risk, it is both necessary and sufficient that

5 s.cB(8) _ |
A—21enfﬁ—2—e-)->0. (1.7)

If (1.7) holds, ggg_(A(e))']B(e) is not constant for all e, then 8.

dominates 8, in risk if and only if 0 < ¢ < aA. If (A(e))_1B(e) =K>0

all o, then 6, and s, have identical risk, and 8¢ dominates 8q in risk

if and only if 0 < c < A = 2K.
It should be noted that some of the members of the class

{6,: 0 <c <} are themselves dominated in risk.

Theorem 2. If the condition (1.7) of Theorem 1 holds, then every

estimator § =6, - ch, 0 < ¢ < J—A is dominated in risk by §,,. If,
— C 0 2° — — AT —

further, (A(e))']B(e) = K > 0, all o, then 81, dominates all estimators
<
1 . .
§c» € # 54, In risk.
Theorems 1 and 2 are proven in Section 2. In Section 3, these
theorems are applied to the familiar problem where

Z =X MIN(u,z), n: px1 unknown, = > O known.



2. PROOFS (OF THEOREMS 1 AND 2

2.1 Proof of Theorem 1.

In what follows, it can be assumed that
A(e) = ELh'(2)Q(e)n(Z)] < =, all o, (2.1)

as shown by the following lemma.

Lemma 1. If A(ey) = = for any 6, in @, then there does not exist

§. =89 - ch, ¢ # 0, for which s dominates &, in risk. Further, in

this case, & = 2 inf (A(6))™[B(6)] = 0.
8

Proof. Let 1k(Z) be the indicator function of
{Z: h'(Z)Q(eO)h(Z) < k}.

Define ng = u(eo);

Alog) = By [T (D" (2)0(eg)h(2)],

1]

B, (6q) = E. [1,(Z)h'(Z)Q(e4)(84(Z)-1g) 1, (2.2)
k*"0 o, k 0’70 0

Rylegesc) = Eg D1 (D)Llsg-0 (D)1
By the Cauchy-Schwartz inequality,
' 1
B (85) < [A (89)R (0558)

so that from (1.1), (1.2), (1.4) through (1.6), and (2.3),

2

Rk(eo,ac) = c Ak(eo) - 2ch(eO) + Rk(eo,so)

5o ) - R(s00))
(cAk(eO) - Rk(eo,ao)) , all c.

v

Since R(eO,GO) < » by (1.3) and A(eo) = », by the given, taking
k - o in (2.3) yields



R(eo,dc) = lim Rk(eo,dc) = o > R(eO,GO), all ¢ # 0.

koo

Consequently, no GC, c # 0, can dominate 60 in risk. Finally,

0 <A< = 1im < 1im[ 0,
=7 = A e ABE) e A (Bg)

proving that A = 0. n
Lemma 1 verifies Theorm 1 for the case where A(eo) = », sOome eo.
Thus, assume that (2.1) holds. Note that
: 1
[B(8) | < [A(e)R(e,8,) ] (2.4)

by the Cauchy-Schwartz inequality. Thus, it follows from (1.3) and
(2.1) that |B(8)] < «. Hence, for fixed 8, fixed c > 0,

R(6,8,) = c2A(8) - 2cB(o) + R(8250) » (2.5)

and consequently

R(e,sc)_i R(e,do) if and only if c(cA(8) - 2B(s)) <O

(2.6)
if and only if ¢ j_g%(%%.
Further,
. . 2B(6)
R(e,ac) < R(e,ao) if and only if ¢ < Ok (2.7)
Therefore, for ¢ > 0,
0 <c 5_3%%8%, all e,
§c dominates 8, in risk if and only if (2.8)
ZB(eO)

0 <c <—A—(e—0y, some 60.

If A =2 inf A_](e)B(e) > 0, then it is easily seen from (2.8) that
)
8 dominates 8 in risk for all ¢, 0 < ¢ < A. Unless 2(A(e))'1B(e) = A >0,

all 8, ¢ = A also satisfies the right side of (2.8), proving that 8,



dominates 8- If 2(A(e))']B(e) = A >0, all o, then it follows from
(2.5) that R(e,sA) = R(e,ao), all 8, so that 8 5 and 8, are risk equivalent.
On the other hand, if 8 o dominates 50 in risk for some c* > 0, then
since A(e) > 0, all s, it follows from (2.8) that o = 2 1nf(A(e))'1B(e) > c*>0.
Consequently, condition (1.7) of Theorem 1 is satisfied. eTh1's compietes

the proof of Theorem 1. .|

| 2.2 Proof of Theorem 2. Because of Lemma 1 and (2.4), it can be assumed

that A(e) and B(o) are finite for all 6. From (2.5),

R(8,55,) = R(8:5) = A(e) (barc-2 Blod) (za-c). (2.9)

Since A(s) > 0, all o, it follows from (2.9) that if0 <c <34,

R(S,SLA) ] R(e,GC) < A(e)(%a +c-n)(Za-c) <O

for all ¢, proving that 5lA dominates Gc' Now suppose that
2
2(A(6)) 'B(0) = 4, all 6. Let 1a = K. Then, from (2.9),
R(8,8,) - R(8.5.) = A(8) (K¥c-2K) (K-c) = -A(6) (K-c)” < 0,

all ¢ # K, all 8. This completes the proof of Theorem 2. M

2.3 Remarks.
A. In an entirely analagous fashion to the proof of Theorem 1,

it can be shown that'csC dominates 8o for some ¢ < 0 if and only if

B(e)
(1.7') - A = 2 sup < 0.
" A(9)
If (1.7') holds, and (A(e))']B(e) is not everywhere constant, then 8.

dominates s, if and only if -A < c <0, but s 5, dominates ¢ in risk for
2

all -4 < c < 0. If (A(e)) 'B(68) = K, K > 0, all 6, then s_, dominates

6c for all ¢ # -K.



B. It follows from Theorem 1 that for &* to dominate 8o in risk,
it is necessary that:

B(o) = E_{(8,(Z)-6%(2))"Qley)(84(Z)-w)} > O, all e. (2.10)

8-+ 0
It is rgcommended that this requirement be used to weed out bad
candidates §*. In many cases, simply taking Timits of B(8) as 6 goes to
various extreme values in ® will show that (2.10) cannot hold.
It is often the case that GO(Z) is an unbiased estimator of u. In
this case B(e) is a weighted sum of the covariances

COV((SO_i (Z)-@?(Z) ’60 (Z))s

J
where GO(Z) = (601(2),...,60p(2))', s*(Z) = (6?(2),...,6;(2))'. The
requirement (2.10) states that this weighted sum of covariances must
be nonnegative for all e.

C. Suppose that (2.10) holds. In this case, for 6* to dominate

8 in riék, it is necessary that

B(9)

a =2 inf 380 g, | (2.11)
T Ao

The condition (2.11) is also sufficient unless (A(e))']B(e) is
constant for all 6 (in which case, strict inequality in (2.11) is
necessary and sufficient). Since (2.11) is not always easy to verify,
it is helpful to note that (2.4) implies that

b < 2 infl0p
< 21in

- A(e)
and consequently,

Ae) < 4R(8,5,), all e, (2.12)

is a necessary condition for &* to dominate 8 in risk. As in Remark B,

Timits as & goes to extremes in (2.12) can frequently provide enough



evidence to eliminate &* from consideration. Note that (2.12) places
a bound on the expected length of h(Z) = GO(Z) - §*(Z). If 85 is an
equalizer rule (R(e,so) = L, all 8), and Q(8) = Q > 0, all 8, (2.12)

implies that

E[h' (Z)h(2)] < 4L(x . ()7,

min
and is implied by

E[h (D)h(2)] < 4L(x ()7,

kma X

where x_. (A) and AmaX(A) denote the smallest and largest eigenvalues,

min
respectively, of a matrix A.

D. If one can show that §* dominates 89 in risk, then Theorem 1
states that {(1-a)60 + a8*, 0 <o < 1} is a class of rules, each of
which dominates 60 in risk. However, Theorem 2 shows that every member
of the subclass {(1-u)60 + a8*, 0 < a <3} is itself dominated in risk.
Indeed, if A > 2 in (ii) of Theorem 1, the entire class (1-a)60 + ad*,

0 <a <1, of rules is dominated in risk by (1-%A)60 + LAS*,

3. NORMAL DISTRIBUTION: KNOWN COVARIANCE MATRIX
Consider
X & MUIN(u,z), u:  px1 unknown, £ > O known.

Let GO(X) = X, the UMVUE and MLE of u. For the quadratic loss function

L(8,8(X)) = (trQz)™ (s(X)-u)'Q(8(X)-1), (3.1)

where Q > 0 is a known matrix, SO(X) is minimax. An extensive literature

[see Berger (1982)] considers classes of estimators of the form



8

GC(X) = GO(X) - ch(X) (3.2)

which dominate &, in risk when p > 3. On the other hand, &, is known
to be admissible when p = 1,2. This last fact, plus Theorem 1 and

Remark B of Section 2, yields the following interesting result.

Lemma 2. When p = 1,2, no measurable px1 function 2(X) can exist,

2(X) = (27(X)5..52,(X)) ", for which

p
| 1Z]C°Vu(xi’21(x))
inf > 0.

2
! 121 E (25(X))

Proof. Let h(X) = Q-]Q(X) in Theorem 1, and use Remark B of Section 2,

1 '] 1 ']
plus the fact that 2'Q "2 < 2'2 Amax(Q ). M

From now on, assume that p > 3. For any vector-valued function
h(X): px1 which is absolutely continuous with respect to p-dimensional
Lebesgue measure, let
oh. (X

3 (X)

BX_i

vh(X) = ((

PXp (3.3)

be the gradient of h(X) at X. Using Stein's integration-by-parts

method,

£, [0 (0Q0-1)] €, [er(Qzvh(x))]
Blu) = B0) =~y 7 T @y

whenever Eu[h'(X)h(X)] < o,

Theorem 3. In order that for some c > 0, an estimator of the form

6C(X) = X-ch(X) dominates 60(X) = X in risk under the loss function

(3.1), it is both necessary and sufficient that




E [tr(Qzvh(X))]

= 2 inf > 0. (3.5)
I Eu|ﬁ'inthXj|
If (3.5) holds, & _(X) dominates 8o(X) in risk if 0 < c < 4, and only if

Proof. Note that
Anin(QE, (0 ()h(X))

= tr(Qz)A(w) = E [h' (X)Qh(X)] (3.6)
(QE (h'(X)h(X)).

Amax

If Eu [h'(X)h(X)] = = for any e then by (3.6), A(uo) = o, In this
0

case, Lemma 1 verifies Theorem 3. If Eu[h'(X)h(X)] < w, all u, then

Theorem 3 follows as a direct consequence of (3.4) and Theorem 1. N

Corollary 1. Let 6*(X) be absolutely continuous with respect to

p-dimensional Lebesgue measure. For &*(X) to dominate GO(X) = X in

risk with respect to the loss function (3.1) it is necessary that

2E [tr{QZV(X 6*(X))}]
e s 00 Qs (R ] = 1 21 v

(3.8)

The condition (3.8) is also sufficient for §*(X) to dominate GO(X) in

risk, except that when h(X) = X-6*(X) satisfies the partial differential

equation
2 tr[Qzvh(X)] = h'(X)Qh(X), (3.9)

§*(X) and s,(X) have identical risk functions.

Proof. The necessity of (3.8) follows directly from Theorem 3. Unless
the inequality in (3.8) is an equality for all u, Theorem 1 shows that
(3.8) is also sufficient. However, if (3.8) is an equality for all u,

then
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Eu[2tr(szh(x))] = Eu[h'(X)Qh(X)], all u, (3.10)

in which case Theorem 1 states that &*(X) and GO(X) are risk equivalent.
Since the family {MVN(u,Z), -» < u < o} of distributions of X is
complete, (3.70) can hold if and only if (3.9) holds almost everywhere.

This completes the proof. ]

It is worth noting that the class of nonzero solutions of (3.9)

is nonempty, since

h(x) = (—22) 15Ty (3.11)
Xz g7

satisfies (3.9). The class of all nonzero solutions to (3.9) is

worth obtaining, since it is easily shown that every convex combination

of nonzero solutions hi(X) of (3.9) defines an estimator §*(X) = X-h*(X)

which dominates GO(X) = X in risk.
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