IMPROVING INADMISSIBLE ESTIMATORS UNDER QUADRATIC LOSS

by

Leon Jay Gleser Purdue University

Technical Report #83-19

Department of Statistics Purdue University

June 1983

This research was supported by the National Science Foundation under Grant No. MCS 81-21948.

by

Leon Jay Gleser Purdue University

INTRODUCTION

Let Z: mxl be a random vector observation with distribution in a class $\{P_{\theta}: \theta \text{ in } \Theta\}$ indexed by a vector parameter θ : rxl. It is desired to estimate a vector-valued function $\mu = \mu(\theta)$: pxl of θ , $p \leq r$, under a quadratic loss function

$$L(\theta, \delta(Z)) = (\delta(X) - \mu) Q(\theta) (\delta(Z) - \mu), \qquad (1.1)$$

where $Q(\theta)$ is a pxp positive definite matrix $(Q(\theta) > 0)$ for all θ . Let

$$R(\theta, \delta) = E_{\theta}[L(\theta, \delta(Z))]$$
 (1.2)

denote the risk function of $\delta = \delta(Z)$.

Suppose that $\delta_0(Z)$ is an estimator of μ having everywhere finite risk

$$R(\theta, \delta_0) < \infty$$
, all θ in Θ , (1.3)

and that it is believed (or known) that δ_0 is inadmissible. Since the loss (1.1) is strictly convex in $\delta(Z)$, it follows that an estimator δ^* dominates δ_0 in risk if and only if $(1-\alpha)\delta_0 + \alpha\delta^*$ dominates δ_0 for all α , $0 < \alpha \le 1$. This fact suggests that if δ^* dominates δ_0 , then among all estimators δ_c of the form $(1-c)\delta_0 + c\delta^*$, $-\infty < c < \infty$, the maximal subclass of estimators which dominate δ_0 has the form $\{(1-c)\delta_0 + c\delta^*: 0 < c \le \Delta\}$, where $\Delta \ge 1$. Even if δ^* does not dominate δ_0 , it may be possible that $\delta_c = (1-c)\delta_0 + c\delta^*$ dominates δ_0 in risk for some c > 0. Theorem 1 below gives necessary and sufficient conditions

for this to occur, and in this case also describes the maximal class of estimators of the form δ_c which dominate δ_0 .

Theorem 1. Let

$$h(Z) = \delta_{\Omega}(Z) - \delta^{*}(Z) \tag{1.4}$$

and define

$$B(\theta) = E_{\theta}[h'(Z)Q(\theta)(\delta_{0}(Z)-\mu)], A(\theta) = E_{\theta}[h'(Z)Q(\theta)h(Z)]. \quad (1.5)$$

In order that for some c > 0

$$\delta_{c}(\underline{Z}) = (1-c)\delta_{0}(Z) + c\delta^{*}(Z) = \delta_{0}(Z) - ch(Z)$$
 (1.6)

dominates $\delta_0(Z)$ in risk, it is both necessary and sufficient that

$$\Delta = 2 \inf_{\Theta} \frac{B(\Theta)}{A(\Theta)} > 0.$$
 (1.7)

If (1.7) holds, and $(A(\theta))^{-1}B(\theta)$ is not constant for all θ , then δ_C dominates δ_0 in risk if and only if $0 < c < \Delta$. If $(A(\theta))^{-1}B(\theta) = K > 0$ all θ , then δ_0 and δ_{2K} have identical risk, and δ_C dominates δ_0 in risk if and only if $0 < c < \Delta = 2K$.

It should be noted that some of the members of the class $\{\delta_c\colon \ 0 < c \le \Delta \} \text{ are themselves dominated in risk.}$

Theorem 2. If the condition (1.7) of Theorem 1 holds, then every estimator $\delta_{c} = \delta_{0}$ - ch, $0 < c < \frac{1}{2}\Delta$ is dominated in risk by $\delta_{\frac{1}{2}\Delta}$. If, further, $(A(\theta))^{-1}B(\theta) = K > 0$, all θ , then $\delta_{\frac{1}{2}\Delta}$ dominates all estimators δ_{c} , $c \neq \frac{1}{2}\Delta$, in risk.

Theorems 1 and 2 are proven in Section 2. In Section 3, these theorems are applied to the familiar problem where

 $Z = X \sim MVN(\mu, \Sigma)$, μ : px1 unknown, $\Sigma > 0$ known.

2. PROOFS OF THEOREMS 1 AND 2

2.1 Proof of Theorem 1.

In what follows, it can be assumed that

$$A(\theta) = E_{\theta}[h'(Z)Q(\theta)h(Z)] < \infty, \text{ all } \theta, \tag{2.1}$$

as shown by the following lemma.

Lemma 1. If $A(\theta_0) = \infty$ for any θ_0 in Θ , then there does not exist $\delta_c = \delta_0 - ch$, $c \neq 0$, for which δ_c dominates δ_0 in risk. Further, in this case, $\Delta = 2$ inf $(A(\theta))^{-1}|B(\theta)| = 0$.

<u>Proof.</u> Let $1_k(Z)$ be the indicator function of

{Z:
$$h'(Z)Q(\theta_0)h(Z) \leq k$$
}.

Define $\mu_0 = \mu(\theta_0)$,

$$A_{k}(\theta_{0}) = E_{\theta_{0}}[1_{k}(Z)h'(Z)Q(\theta_{0})h(Z)],$$

$$B_{k}(\theta_{0}) = E_{\theta_{0}}[1_{k}(Z)h'(Z)Q(\theta_{0})(\delta_{0}(Z)-\mu_{0})],$$

$$R_{k}(\theta_{0},\delta_{c}) = E_{\theta_{0}}[1_{k}(Z)L(\theta_{0},\delta_{c}(Z))].$$
(2.2)

By the Cauchy-Schwartz inequality,

$$B_k(\theta_0) \leq [A_k(\theta_0)R_k(\theta_0,\delta_0)]^{\frac{1}{2}},$$

so that from (1.1), (1.2), (1.4) through (1.6), and (2.3),

$$R_{k}(\theta_{0}, \delta_{c}) = c^{2}A_{k}(\theta_{0}) - 2cB_{k}(\theta_{0}) + R_{k}(\theta_{0}, \delta_{0})$$

$$\geq (cA_{k}^{\frac{1}{2}}(\theta_{0}) - R_{k}^{\frac{1}{2}}(\theta_{0}, \delta_{0}))^{2}, \text{ all } c.$$
(2.3)

Since $R(\theta_0, \delta_0) < \infty$ by (1.3) and $A(\theta_0) = \infty$, by the given, taking $k \to \infty$ in (2.3) yields

$$R(\theta_0, \delta_c) = \lim_{k \to \infty} R_k(\theta_0, \delta_c) = \infty > R(\theta_0, \delta_0), \text{ all } c \neq 0.$$

Consequently, no $\delta_{\rm C}$, c \neq 0, can dominate $\delta_{\rm O}$ in risk. Finally,

$$0 \leq \Delta \leq \frac{2|B(\theta_0)|}{A(\theta_0)} = \lim_{k \to \infty} \frac{2|B_k(\theta_0)|}{A_k(\theta_0)} \leq \lim_{k \to \infty} \left[\frac{R_k(\theta_0, \delta_0)}{A_k(\theta_0)}\right]^{\frac{1}{2}} = 0,$$

proving that $\triangle = 0$.

Lemma 1 verifies Theorm 1 for the case where $A(\theta_0) = \infty$, some θ_0 . Thus, assume that (2.1) holds. Note that

$$|B(\theta)| \leq [A(\theta)R(\theta,\delta_0)]^{\frac{1}{2}}$$
 (2.4)

by the Cauchy-Schwartz inequality. Thus, it follows from (1.3) and (2.1) that $|B(\theta)| < \infty$. Hence, for fixed θ , fixed c > 0,

$$R(\theta, \delta_c) = c^2 A(\theta) - 2cB(\theta) + R(\theta, \delta_0), \qquad (2.5)$$

and consequently

$$R(\theta, \delta_c) \leq R(\theta, \delta_0) \text{ if and only if } c(cA(\theta) - 2B(\theta)) \leq 0$$
 (2.6) if and only if $c \leq \frac{2B(\theta)}{A(\theta)}$.

Further,

$$R(\theta, \delta_c) < R(\theta, \delta_0)$$
 if and only if $c < \frac{2B(\theta)}{A(\theta)}$. (2.7)

Therefore, for c > 0,

$$\delta_{c} \text{ dominates } \delta_{0} \text{ in risk if and only if} \begin{cases} 0 < c \leq \frac{2B(\theta)}{A(\theta)}, \text{ all } \theta, \\ & (2.8) \\ 0 < c < \frac{2B(\theta_{0})}{A(\theta_{0})}, \text{ some } \theta_{0}. \end{cases}$$

If Δ = 2 inf $A^{-1}(\theta)B(\theta)$ > 0, then it is easily seen from (2.8) that δ_{c} dominates δ_{0}^{θ} in risk for all c, 0 < c < Δ . Unless $2(A(\theta))^{-1}B(\theta) = \Delta$ > 0, all θ , c = Δ also satisfies the right side of (2.8), proving that δ_{Δ}

dominates δ_0 . If $2(A(\theta))^{-1}B(\theta) = \Delta > 0$, all θ , then it follows from (2.5) that $R(\theta, \delta_{\Delta}) = R(\theta, \delta_{0})$, all θ , so that δ_{Δ} and δ_{0} are risk equivalent.

On the other hand, if δ_{c^*} dominates δ_0 in risk for some $c^* > 0$, then since $A(\theta) \ge 0$, all θ , it follows from (2.8) that $\Delta = 2\inf(A(\theta))^{-1}B(\theta) \ge c^* > 0$. Consequently, condition (1.7) of Theorem 1 is satisfied. This completes the proof of Theorem 1.

2.2 <u>Proof of Theorem 2</u>. Because of Lemma 1 and (2.4), it can be assumed that $A(\theta)$ and $B(\theta)$ are finite for all θ . From (2.5),

$$R(\theta, \delta_{\frac{1}{2}\Delta}) - R(\theta, \delta_{c}) = A(\theta)(\frac{1}{2}\Delta + c - 2\frac{B(\theta)}{A(\theta)})(\frac{1}{2}\Delta - c).$$
 (2.9)

Since A(θ) > 0, all θ , it follows from (2.9) that if 0 < c < $\frac{1}{2}$ Δ ,

$$\mathsf{R}(\theta,\delta_{\frac{1}{2}\Delta}) - \mathsf{R}(\theta,\delta_{\mathsf{C}}) \leq \mathsf{A}(\theta)(\frac{1}{2}\Delta + \mathsf{c} - \Delta)(\frac{1}{2}\Delta - \mathsf{c}) < 0$$

for all $\theta,$ proving that $\delta_{\frac{1}{2}\Delta}$ dominates $\delta_{\,\textbf{C}}.$ Now suppose that

$$2(A(\theta))^{-1}B(\theta) = \Delta$$
, all θ . Let $\frac{1}{2}\Delta = K$. Then, from (2.9),

$$R(\theta,\delta_K) - R(\theta,\delta_C) = A(\theta)(K+c-2K)(K-c) = -A(\theta)(K-c)^2 < 0$$

all c \neq K, all θ . This completes the proof of Theorem 2. \Box

2.3 Remarks.

 \underline{A} . In an entirely analogous fashion to the proof of Theorem 1, it can be shown that δ_c dominates δ_0 for some c < 0 if and only if

$$(1.7') - \Delta = 2 \sup_{u} \frac{B(\theta)}{A(\theta)} < 0.$$

If (1.7') holds, and $(A(\theta))^{-1}B(\theta)$ is not everywhere constant, then $\delta_{\mathbf{C}}$ dominates $\delta_{\mathbf{0}}$ if and only if $-\Delta \leq \mathbf{c} < 0$, but $\delta_{-\frac{1}{2}\Delta}$ dominates $\delta_{\mathbf{C}}$ in risk for all $-\frac{1}{2}\Delta < \mathbf{c} < 0$. If $(A(\theta))^{-1}B(\theta) = -K$, K > 0, all θ , then δ_{-K} dominates $\delta_{\mathbf{C}}$ for all $\mathbf{c} \neq -K$.

 \underline{B} . It follows from Theorem 1 that for δ^* to dominate δ_0 in risk, it is necessary that:

$$B(\theta) = E_{\theta} \{ (\delta_0(Z) - \delta^*(Z))^{\frac{1}{2}} Q(\theta_0) (\delta_0(Z) - \mu) \} \ge 0, \quad \text{all } \theta. \quad (2.10)$$

It is recommended that this requirement be used to weed out bad candidates δ^* . In many cases, simply taking limits of B(θ) as θ goes to various extreme values in Θ will show that (2.10) cannot hold.

It is often the case that $\delta_0(Z)$ is an unbiased estimator of μ . In this case B(θ) is a weighted sum of the covariances

$$\operatorname{cov}(\delta_{0i}(Z) - \delta_i^*(Z), \delta_{0j}(Z)),$$

where $\delta_0(Z) = (\delta_{01}(Z), \dots, \delta_{0p}(Z))'$, $\delta^*(Z) = (\delta_1^*(Z), \dots, \delta_p^*(Z))'$. The requirement (2.10) states that this weighted sum of covariances must be nonnegative for all θ .

 $\underline{\text{C}}.$ Suppose that (2.10) holds. In this case, for $\delta\star$ to dominate δ_0 in risk, it is necessary that

$$\Delta = 2 \inf_{\Theta} \frac{B(\Theta)}{A(\Theta)} \ge 1. \tag{2.11}$$

The condition (2.11) is also sufficient unless $(A(\theta))^{-1}B(\theta)$ is constant for all θ (in which case, strict inequality in (2.11) is necessary and sufficient). Since (2.11) is not always easy to verify, it is helpful to note that (2.4) implies that

$$\Delta \leq 2 \inf_{\theta} \left[\frac{R(\theta, \delta_0)}{A(\theta)} \right]^{\frac{1}{2}}$$

and consequently,

$$A(\theta) \leq 4R(\theta, \delta_0), \text{ all } \theta,$$
 (2.12)

is a necessary condition for δ^* to dominate δ_0 in risk. As in Remark B, limits as θ goes to extremes in (2.12) can frequently provide enough

evidence to eliminate δ^* from consideration. Note that (2.12) places a bound on the expected length of h(Z) = $\delta_0(Z)$ - $\delta^*(Z)$. If δ_0 is an equalizer rule (R(θ , δ_0) = L, all θ), and Q(θ) = Q > 0, all θ , (2.12) implies that

$$E_{\theta}[h'(Z)h(Z)] \leq 4L(\lambda_{\min}(Q))^{-1},$$

and is implied by

$$E_{\theta}[h'(Z)h(Z)] \leq 4L(\lambda_{max}(Q))^{-1},$$

where $\lambda_{\min}(A)$ and $\lambda_{\max}(A)$ denote the smallest and largest eigenvalues, respectively, of a matrix A.

- $\underline{D}.$ If one can show that δ^* dominates δ_0 in risk, then Theorem 1 states that $\{(1-\alpha)\delta_0 + \alpha\delta^*, 0 < \alpha \leq 1\}$ is a class of rules, each of which dominates δ_0 in risk. However, Theorem 2 shows that every member of the subclass $\{(1-\alpha)\delta_0 + \alpha\delta^*, 0 < \alpha < \frac{1}{2}\}$ is itself dominated in risk. Indeed, if $\Delta > 2$ in (ii) of Theorem 1, the entire class $(1-\alpha)\delta_0 + \alpha\delta^*, 0 \leq \alpha \leq 1$, of rules is dominated in risk by $(1-\frac{1}{2}\Delta)\delta_0 + \frac{1}{2}\Delta\delta^*.$
 - 3. NORMAL DISTRIBUTION: KNOWN COVARIANCE MATRIX
 Consider

X \sim MVN(μ , Σ), μ : px1 unknown, Σ > 0 known.

Let $\delta_0(X)$ = X, the UMVUE and MLE of μ . For the quadratic loss function

$$L(\theta, \delta(X)) = (\operatorname{tr}Q\Sigma)^{-1}(\delta(X) - \mu) \cdot Q(\delta(X) - \mu), \tag{3.1}$$

where Q > 0 is a known matrix, $\delta_0(X)$ is minimax. An extensive literature [see Berger (1982)] considers classes of estimators of the form

$$\delta_{\mathcal{C}}(X) = \delta_{\mathcal{O}}(X) - ch(X) \tag{3.2}$$

which dominate δ_0 in risk when p \geq 3. On the other hand, δ_0 is known to be admissible when p = 1,2. This last fact, plus Theorem 1 and Remark B of Section 2, yields the following interesting result.

Lemma 2. When p = 1,2, no measurable px1 function $\ell(X)$ can exist, $\ell(X) = (\ell_1(X), \dots, \ell_p(X))', \text{ for which}$

$$\inf_{\mu} \frac{\sum_{i=1}^{p} cov_{\mu}(x_{i}, \ell_{i}(X))}{\sum_{i=1}^{p} E_{\mu}(\ell_{i}^{2}(X))} > 0.$$

<u>Proof.</u> Let $h(X) = Q^{-1} \ell(X)$ in Theorem 1, and use Remark B of Section 2, plus the fact that $\ell' Q^{-1} \ell \leq \ell' \ell \lambda_{max}(Q^{-1})$.

From now on, assume that $p \ge 3$. For any vector-valued function h(X): pxl which is absolutely continuous with respect to p-dimensional Lebesque measure, let

$$\nabla h(X) = \left(\left(\frac{\partial h_{j}(X)}{\partial X_{i}} \right) \right) : pxp$$
 (3.3)

be the gradient of h(X) at X. Using Stein's integration-by-parts method,

$$B(\mu) = B(\theta) = \frac{E_{\mu}[h'(X)Q(X-\mu)]}{tr(Q\Sigma)} = \frac{E_{\mu}[tr(Q\Sigma\nabla h(X))]}{tr(Q\Sigma)}, \quad (3.4)$$

whenever $E_{\mu}[h'(X)h(X)] < \infty$.

Theorem 3. In order that for some c > 0, an estimator of the form $\delta_c(X) = X - ch(X)$ dominates $\delta_0(X) = X$ in risk under the loss function (3.1), it is both necessary and sufficient that

$$\Delta = 2 \inf_{\mu} \frac{E_{\mu}[tr(Q\Sigma\nabla h(X))]}{E_{\mu}[h^{+}(X)Qh(X)]} > 0.$$
 (3.5)

If (3.5) holds, $\delta_c(X)$ dominates $\delta_0(X)$ in risk if $0 < c < \Delta$, and only if $0 < c < \Delta$.

Proof. Note that

$$\lambda_{\min}(Q) E_{\mu}(h'(X)h(X))$$

$$\leq \operatorname{tr}(Q\Sigma)A(\mu) = E_{\mu}[h'(X)Qh(X)]$$

$$\leq \lambda_{\max}(Q) E_{\mu}(h'(X)h(X)).$$
(3.6)

If $E_{\mu_0}[h'(X)h(X)] = \infty$ for any μ_0 , then by (3.6), $A(\mu_0) = \infty$. In this case, Lemma 1 verifies Theorem 3. If $E_{\mu}[h'(X)h(X)] < \infty$, all μ , then Theorem 3 follows as a direct consequence of (3.4) and Theorem 1.

Corollary 1. Let $\delta^*(X)$ be absolutely continuous with respect to p-dimensional Lebesgue measure. For $\delta^*(X)$ to dominate $\delta_0(X) = X$ in risk with respect to the loss function (3.1) it is necessary that

$$\frac{2E_{\mu}[\operatorname{tr}\{Q\Sigma\nabla(X-\delta^{*}(X))\}]}{E_{\mu}[(X-\delta^{*}(X))^{\dagger}Q(X-\delta^{*}(X))]} \geq 1, \text{ all } \mu.$$
(3.8)

The condition (3.8) is also sufficient for $\delta^*(X)$ to dominate $\delta_0(X)$ in risk, except that when $h(X) = X - \delta^*(X)$ satisfies the partial differential equation

$$2 \operatorname{tr}[Q_{\Sigma} \nabla h(X)] = h'(X)Qh(X), \qquad (3.9)$$

 $\delta^*(X)$ and $\delta_0(X)$ have identical risk functions.

<u>Proof.</u> The necessity of (3.8) follows directly from Theorem 3. Unless the inequality in (3.8) is an equality for all μ , Theorem 1 shows that (3.8) is also sufficient. However, if (3.8) is an equality for all μ , then

$$E_{\mu}[2tr(Q_{\Sigma}\nabla h(X))] = E_{\mu}[h'(X)Qh(X)], all \mu, \qquad (3.10)$$

in which case Theorem 1 states that $\delta^*(X)$ and $\delta_0(X)$ are risk equivalent. Since the family $\{\text{MVN}(\mu, \Sigma), -\infty < \mu < \infty\}$ of distributions of X is complete, (3.10) can hold if and only if (3.9) holds almost everywhere. This completes the proof.

It is worth noting that the class of nonzero solutions of (3.9) is nonempty, since

$$h(X) = \left(\frac{2(p-2)}{X'\Sigma^{-1}Q^{-1}\Sigma^{-1}X}\right)Q^{-1}\Sigma^{-1}X$$
 (3.11)

satisfies (3.9). The class of all nonzero solutions to (3.9) is worth obtaining, since it is easily shown that every convex combination

$$h*(X) = \sum_{i=1}^{a} \alpha_i h_i(X), \alpha_i \ge 0, \sum_{i=1}^{a} \alpha_i = 1,$$

of nonzero solutions $h_i(X)$ of (3.9) defines an estimator $\delta^*(X) = X-h^*(X)$ which dominates $\delta_0(X) = X$ in risk.

REFERENCES

Berger, James O. (1982). Selecting a minimax estimator of a multivariate normal mean. Ann. Statist. 10, 81-92.