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ABSTRACT:
We provide a model to build up prior distributions over density functions,
to select a density from that prior. We also indicate how to draw a random

sample from density, which is arbitrary close to the randomly selected density,

in a reasonable amount of time.

AMS 1980 subject classification. Primary 65U05, secondary 65C10

KEY WORDS: Prior distribution, orthonormal basis, random sample generation.



§1. Introduction.

One of the methods used in practice to compare density estimators is to
generate random sampies and compare the goodness of fit for those samples.
Usually this is done for common distributions such as the normal, gamma, Cauchy,
triangular, etc. However, if one believes the distribution to be of one of
those forms, much better parametric procedures exist.

Since a motivation for "nonparametric" density estimation is that the den-
sity is not of a standard parametric form, it seems desirable to use a "typical"
density of the type under consideration. Consequently we suggést that densities
should be selected by a random process, and that estimators should be compared
on random samples form those densities. If one density estimator performs con-
sistently better than another for randomly selected densities, there is reason
to believe it a better density estimator.

How can one choose a probability density at random? 1In this paper, we pro-
pose a method to represent a density function, which converts the above problem
into choosing a point at random from the infinite-dimensional sphere. 1In
Séction 3, we show how this can be accomplished in practice for a specific
model.

In Section 4, we give a general method to generate random numbers according
to the density selected. We also give an example to illustrate how one can
improve the efficiency of the general procedure by using local'bounds for the

selected density function.

§2. The Model.

Let {&n(t) : n=1,2,...} be an orthonormal basis for the square integrable

functions with respect to the measure u, S be the set of sequences of real (or



complex) numbers with sum of absolute squares 1. For A = (an : n=1,2,...), we

use fA(t) to denote |} an¢n(t)|2. It is easy to see that
n

(1) fA(°) is a probability density function with respect to u if Ae S,
and
(II) for any probability density function f(¢), it is possible to find an

A € S such that f(t) = fA(t) p-almost everywhere.

In fact, a possible choice A = (a_: n=1,2,...) in (II) is a = f/TTf7'¢n(t)u(dt).
By the above scheme, we have transformed the problem of choosing a probabi-
1ity density at random (i.e. according to some distributions over the set of all
probability density functions) to the problem of choosing a point from the infi-
nite dimensioha] unit sphere S according to some distributions over S.
The following proposition shows that we are able to use a finite number of
terms to represent a density function which is arbitrarily close to a

preassigned density function. This is important for the purpose of simulation.

For (an :n=1,2,...) =Ae Sand 0 <e <1, let T€(A) be the first j such

that ) lail2 > 1-¢.

1<i<j

Proposition 1. Suppose g(t) is a given density function, and

A = (an : n=1,2,...) where

a = INL183) $h(t) p(dt) , n=1,2,... .




a, - if n< TE(A)
~ ncl 2172
(1) a_ = Q af{1- 7 la, | if n=T_(A)+1
n . i €
i=1
\ 0 otherwise

where a is chosen so that the real part of En Eh is not greater than 0

ggg_lal = 1. Then:

(a) the squared Kakutani distance between g and FK s

(2) (g, 7 = [Ua®) 112 - 101132 ey < 2e

(b) the absolute deviation between g and FK s

(3) Ly(g.f5) = flg(t)-fx(t)lu(dt) < /8 .

Proof.

From the definition of En, it is easy to see that
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K(g.fx) = [T a ¢ (t)] = [T 3o ()7 at
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For (b), we apply (a) and the following inequality:

(Ly (9,502 < {[1g 2015200 |- 16 21 oe /2 ) futa))?

1/

N

1/2
[1g"

g 20)-65 200 2utan)e 16 2o+ A (Pu )

N

K(g,fx)°f2(g(t)+fx(t))u(dt)

4 K(g,fx) .
Q.E.D.

§3. An Example of a Method to Choose a Density Function at Random.

Suppose Rl’Rz"" is a sequence of random variables such that
= >.> > SN
(4) 1 R0 R1 R2
and
(5) R > 0 almost surely .

For any sequence of numbers with absolute value 1, {en}, if we define

A= (an:n=1,2,...) as

_ p y1/2
(6) ay = O Ry 7Ry) ’

then A € S almost surely. Therefore, fA(t) = |} an¢n(t)|2 is a density function

randomly chosen according to a prior distribution.

One way to construct the Rn sequence is the following:
Let Ul’Uz"" denote a sequence of independent random variables having a
nontrivial distribution on (0,1). (For example, we may chose Ui.to be uni-

formly distributed over (0,1).) Define Rj as



(7) R, =U U ...U,.

It is easy to see that the sequence {Rj} satisfies (4) and (5).

Notice that in order to fully determine a density function fA(°), we need to
. get infinitely many random variables Un' This is obviously impossible to
achieve in a finite time. But the truncation modification procedure describe in
the Proposition 1 give us a computable reasonable approximation to FK(.)' The
number of U's we need to compute fi(') is TE(A), which is usually not very large

as shown in the following two propositions.

Proposition 2. If the U's are i.i.d., then
' loge < 2 log €
(8) Flog 07 © ETe W) < ¢iaaxiiog U,Tog ey -
- - (1- _ R = 2
Proof.  Since 1-R = (1-R,)+(R -R )+...+(R _ -R ) 1 a5 , we have

{Te(A)+1=n} = {n is the first j such that Rj < e}
(9)
= {n is the first j such that ) log U, € log e}.
1<i<j !
The above equation implies that TE(A)+1 is a stopping time for the i.i.d.

“sequence {Tog Us s i=1,2,...} and the following inequatlity

(10) ) log U, < log € < Y Tog U, .
: 1<4<T_(A)+1 1 1<i<T€(A) 1

Applying the Wald equation to the first half of (10), we have



(11) log € > E( Y log U,)
1<i<T€(A)+1 1

= E(log U) E(TE(A)+1) .

Since the second half of (10) implies

2 log € < y Tog U, + log €

1<i<T_(A) 1

(12)
< ) max(log U,, log €) ,

1<i<T_(A)+1 1

we have
2 loge < E Y max(log U., log €)

1<4<T_(A)+1 1

(13)

= E(max(log U, log €)) E(TE(A)+1).
Q.E.D.

Proposition 3. If the U's are i.i.d. Uniform (0,1) random variables, then

Te(A)_l has a Poisson distribution with mean A = -log €.

Proof. This is a well-known result. See, for example, Karlin and Taylor
(1981), page 128, problem 16.

For the above case, if we sete = 10_22, so the L, distance is less than

1
10720, then
(14) E(T_(A)) = 51.66 ,
(15) var(T_(A)) = 50.66 ,
5

(16) P(T_(A) < 26) < 0.488 x 10°

L



and

(17) P(T,(A) > 86) < 0.633 x 107° |

§4. Generating a Random Sample According to a Randomly Selected Density:

An Example.

Once we have density function f, we are able to generate random numbers
according to this density function. A general method is the (von Neumann's)

Acceptance-Rejection Procedure which is stated in Rubin (1976) as follows:

To obtain a random variable whose distribution has density f (with
respect to Lebesgue measure), one obtaihs a random variable Y whose density
is b.g where f < g, and then set X = Y with probability f(Y)/g(Y).

(See also Ripley (1983), page 311.)

The acceptance rate of this procedure is b, i.e. on the average one need to
generate 1/b number Y's to compute a X. If we want to generate a large sample,
it is worthwhile to use better local bounds in the acceptance-rejection proce-

dure. To illustrate this point, Tet us consider the following example:

Suppose we want to generate random sample according to density function

58
(18) f(t) = {a(0) + ) a(2j-1WZ sin(2njt) + a(22Z cos(2njt)}
j=1

2

where {a(i)} are reported in Table 1. (The graph of fx(t) is in Figure 1.
' Although fx(t) has extremely small values around [0.375, 0.438], it has only two
zeros.) This density function ﬁx is a randomly selected density function

according to the procedure we describe in Section 3, with orthonormal basis



{¢n(t):n=1,2,...} = {1,/Z sin(2rjt), ¥Z cos(2njt) : j=1,2,...} ,

uniform (0,1) U's and randomly chosen sign {en}.

Since, for this orthonormal basis,
(19) {Lage ()" <{I]7 |}°,

if we put b = {2|3n|}-2 , we have

1 -
(20) fi(t) < £ 1 }(t) = g(t) .

[o,1

Hence, thé following Acceptance-Rejection Procedure results X which has density

function f~ if the Y has density function b g(t) =1 (t) .

A [o,1]

Acceptance-Rejection Procedure:

(AR1) Generate a Y ~ U(0,1).

(AR2)  Generate U ~ U(0,1). If {2|§n|}2 «U> {23n¢n(v)}2 ,
GO TO (AR1). ‘

(AR3)  Return X =Y.

If we know the maximum value of fx(') is M, we could replace {ZIEnl}Z in
(AR2) by M. This modified Acceptance-Rejection Procedure has better acceptance
rate, 1/M, than that of the Procedure (AR1) ~ (AR3).

Another method to increase the acceptance rate is to use better local bounds
and to apply a variants of Acceptance-Rejection method, namely, the Squeeze

Method. (See Marsaglia (1977) page 321 or Ripley (1983) page 312.)



Squeeze Method:

(S1) Break the unit interval into k subintervals of equal length
11,12,...,Ik. Compute the maximum, Mj’ and the minimum, mj, of ﬁx(t)
on each subinterval Ij'

kK
(S2) Select the j-th interval Ij with probability Mj/ Y M.
i=1

(S3) Select X uniformly in Ij'

(S4) Generate U ~ U(0,1). 1If Mj U< mj, accept X and we can resue Mj U/mj
as a uniform random variable independent of X. Else accept X exactly

when Mj U < f(X).

In the '‘example, fi(t) defined in (18), we find_ that if we use k = 32 inter-
vals, that to compute 1000 sample points, on the average 1087 X's (Step (S3))
will be generated and 173 densities evaluated. This compare with on the average
2767 Y's (Step (AR1)) will be generated in the modified Acceptance-Rejection

Procedure.

§5. Conclusions and Remarks.

It is possible to build up prior distributions over density functions,
to select a density according to that prior, and generate random numbers |
according to density function, which is arbitrary close to the density chosen at
random, within reasonable amount of time.

There are many problems related to this simulation scheme. What properties
do these randomly chosen densities fA(t) have? How to choose unimodal density/
function at random? How to randomly choose density function which have specific

moments?



10

We are unable to answer all of the above questions, but the following facts

are known to us:

(a) If the elements of the orthonormal basis are smooth functions and the
sequence (an : n=1,2,...) € S converges to zero sufficiently fast, the

resulting density (Xan¢n(t))2 will be smooth.

(b) Given a density function g(t) and a positive number &, there is a
positivernumber e such that with positive probability that Ll(g’fA)’
K(g,fy)s Ll(g’fi) and K(g,fx) are all less than §. Here A e S is the
random point described in Section 3 and A e S is the random point
resulting from A and the truncation-modification procedure described

in Proposition 1.

We shall report these results and another properties of fA(t) elsewhere.
Finally, we want to mention that Kraft (1964) has another method to randomly
select a probability density function on the unit interval. However, these den-

sities are discontinuous at all binary rationals almost surely.
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a(i)

.4461134e-01
.5837020e-01
.4423854e-01
.6595802e-02
.3638465e-03
.7838685e-04
.2732561e-05
.2776456e-05
.4747862e-05
.4365186e-06
-7919963e-07
.9635951e-07
.6266013e-07
.1980375e-08
-0901869%e-09
-6479048e-08
.5788516e-09
.1240625e-09
-1657520e-10
-8146884e-10
-4994553e~10
.4873387e-10
.1017821e~11
-5028370e-11
.3798249e-11
.1359469e-13
.5047494e-13
.5240195e-14
.2514841e-14
.9124416e-15
.3080753e-15
.1181220e-16
-3554017e~15
.4104557e~-16
.2739767e-16
.8326178e-17
.3272892e-17
-1930393e-18
.5455540e-18
.3693718e-18
.9060753e-18
.6395760e-20
.6434637e~-19
.7897024e-20
.6609308e-20
.838866€3e-20
.8909226e-20
.8649134e-21
.8955675e~-22
.7187625e-21
.7333553e-22
.7603077e~-22
.6515355e-23
.4498206e-23
.4207942e-23
.2761956e-24
.1245310e-25
.8563529%e-25
.0857506e-25

a(i)

.6554103e-01
.8704963e-02
.0169992e-03
.3260103e-03
.0001775e-04
.9707323e-05
.0666291e-05
.2741440e-06
.5046789e~07
.0162950e-06
.1581500e-07
.3748485e-08
.4469099e-08
.2340562e-09
.3634036e-08
.8500272e-09
.9715822e-09
.6356275e-10
.6252322e-10
.5135062e-10
.9860760e-11
.5742200e-11
.0976158e-11
.1806823e-12
.4062408e-12
.2632739e-13
.0613403e-14
.1441427e-15
.1805710e-15
.8432151e-15
.0039514e-15
.2923404e-16
.5893563e-16
.6183522e-16
.2490170e-17
.8299995e-18
.5302493e-18
.5737401e~18
.4165115e-18
.1327650e-18
.9009035e-19
.8145851e-19
.8178549e-19
.9336716e-20
.7382083e-20
.0031774e-20
.3491477e-21
.7963895e-21
.3820918e-21
.3345872e-22
.3667905e-22
.4873525¢-23
.0584718e-23
.3143942e-24
.6307769e-25
.0749040e-25
.4548586e-25
.1968444e-25
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