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Randomly Started Signals with White Noise1

by

Burgess Davis and Itrel Monroe

Abstract

It is shown that if B(t), t > 0, is a Wiener process, U is an independent
random variable uniformly distributed on (0,1), and ¢ is a constant, then the
distribution of B(t) + ¢ (t—U)+, 0 <t<1, is absolutely continuous with
respect to Wiener measure on C[0,1] if 0 < ¢ < 2, and singular with respect

to this measure if ¢ > /8.

1. INTRODUCTION. Let C[0,») be the space of continuous functions on [0,x),
let & be the Borel subsets of C[0,~) for the topology of uniform convergence
on compact sets, and let y be Wiener measure on & For t > 0 define the
random variable B(t) on (C[0,=), &, u) by B(t)(f) = f(t), so that B(t), t > 0O,
is a standard Wiener process. Let U be a random variable independent of
B(t), t > 0. (Formally, we must enlarge our probability space to permit such

a U.) For a positive constant § define ws(t), t >0, by
t N
ws(t) = B(t) + [ 627 '(s-U)2I(U < s < U+l)ds,
0

where I denotes the indicator function, and let s be the distribution of WG.

We prove

THEOREM 1. If 0 <& <2, v, is absolutely continuous with respect to

w. If s > /8, vs 1s singular with respect to w.
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We do not know what happens for s € [2, V/8]. We remark that Theorem 1
is essentially equivalent to the statement that the distribution of
B(t) + & (t-U)+, 0 <t <1, is absolutely continuous with respect to Wiener
measure on C[0,1] if 0 < 6 < 2, and singular with respect to this measure
if 6 > /8. Also, notice that it is easy to show that, for a fixed number a
and any constant € > 0, the distribution n of the protess

Y(t) = B(t) + Z 92'](s-a)'%I(a < s < atl)ds

is singular with respect to y. This can be done either using Girsanov's

formula, which will be stated in Section 3, or by showing that if

n-1 _
F = {fe C0,e): Tim 071 ] (Fav2 K)-p(arz™(K41)))2k/2 5 oy,
k=0

then u(F) = 0 while n(F) = 1, both statements holding by the strong law of
large numbers for iid random variables.

The result ([1]) that, for constant ¢, the probability

P = P(zt: B(t+h)-B(t) > e/h for all h € (0,1))

€
equals zero for ¢ > 1 and equals one if ¢ < 1 has somewhat the same flavor
as Theorem 1, although the proofs of these results are only related in that
both the proof that P€ =0 if ¢ > 1, and the proof that Ys is singular with

respect to p if § > V8, have a common ancestor. in Dvoretsky's argument in [2].

2. SINGULARITY. Let e > V8. The measure v, will be shown to be
singular with respect to p by exhibiting a set A€ € & such that yE(AE) = ]
and ”(Ae) = 0. Put ¢(s) = [2(s-1)£n s]%/(s%-l). Then ¢(s) decreases to /8
as s decreases to 1. Let r(e) = r > 1 satisfy /8 < ¢(r) < ¢, put
B = e2/¢2(r) > 1 and o = (g+1)/2. For integers n > 1 and 0 < k < [rn], where

[ ] is the greatest integer function, define the functions Q. On C[0,) by



n

Qo) = 02 21(r_m+]-T-m)_%(f(kr'n+r'm+])-f(kr'n+r'm)),
’ _ m=
and put
1
Sal) = 1 () 2 (2 ).

The set Ae is defined by

A = {f: lim supn+wsn(f) = 1}.

€
To show “(Ae) = 0, we note that, considered as a random variable
1
on (C[0,=), &, u), Q.n is n © times the sum of n independent standard

normal random variables, so that Qk n itself has a standard normal

1 X %2
distribution. Thus if &(x) = (2r)2 [ e dt,

-0

1
2

u(So(f) = 1) < ([r"11) (1-e[(2na £n 1)<])
L N -L(2na 2n 1)E17/2

_ 2rn(1-2a).
Since o > 1, ) u(Sn(f) = 1) < », SO “(As) = 0.
n=1
Now Tet k(U,n) = k be that integer satisfying kr" < U< (k+1)rn. The

conditional distribution of
- —m. L -on - -n -
S I O I I (T b

given U = u is normal with variance 1 and mean equal to

-n, ~ml
1 kr Nep 1
(r-m+1_r-m)-2 f 32-](s-u)-§ds
ke e
- -mt+1
_ _ 1 kr Ny M _ n
(r™1_ -2 f 2"V (s-kr™ M) 2 ds
ke MM

e(r-1)ZF(r2-1)

1
(28 Ln r)?,



so that conditioned on U = u

L -1 -n - -n -
V=0 3 ™™ (e e ™) (ke )
m=1 € €
1
is normal with variance 1 and mean exceeding (2ng8 £n r)2. In particular,

L 1
2 2

1
P(Y > (2n0 £n r)2|U = u) > o[(2n8 Zn r)® - (2na £n r)2] = q,» SO

y (f € C[0,): S (f) =1} >q . Sinceq +1asn~«uwegety(A)=1.

3. ABSOLUTE CONTINUITY. If f(s), s > 0, is a measurable function such

2(s)ds < », Girsanov's formula (see [3]) gives that if p is the
‘ t

distribution of the process B(t) + [ f(s)ds, t > 0, then the Radon Nikodym
0

that [ f
0

derivative of p with respect to u is

b . exp([7(s)dB(s) - %é f2(s)ds).
We Tet EX stand for | Xdu. Of course, E g%—= 1.

C[O s°°)
For an integer n > 1 and a constant § > 0 put an(v,t,a) = an(v,t) =

- 2
§2 ](v-t) 21(t+nf] < v < t+l). Let

W3 (t)

t
B(t) + [ an(s,U)ds,
0

and Tet yg be the distribution of wg. We will show that, for 0 < § < 2,

Y

which gives that the random variables HEQ-are uniformly absolutely continuous
with respect to y. Since wg(t) - wa(t) < 8//n >0 as n~>«, this implies
that Ys is absolutely continuous with respect to u if 0 < 8§ < 2.

We have



d o o]
E(55)? - E[(f exp(Ja (1, £)88(Y) - -}éaﬁ(v,t)dwdt)ﬁ
11w )
= E [ Jexp([(a (v,t) + a (v,s))dB(v 21 j
00 0 0

+ aﬁ(v,s))dv)ds dt

8

O

11 ©
[ [E exp(f(an(v,t) + an(v,s) YdB(v) - f
00 0

" aﬁ(v,s))dv)ds dt

Lol

11 o
= é éexpéan(v,t)an(v,s)dvE eXp(é(“n(V’t) +a (v,5))dB(v)

1

-z (v,t) + an(v,s))zdv)ds dt

(a

n

O 8

(o]

11
= [ Jexp(fa (v,t)a (v,s)dv)ds dt
00 0

11 s+1 .
= 2 fexp((e /4 [ [(v-t)(v-s)]2dv)ds dt.
0s t+n—]
Now if s < t < s+1,
S+1 s+1
o [lv=-t)(v-s)T Zdv < f [(v-t) (v-5)]Zdv
t+n~

= tn[(2-(t-s) + 2/T=(t=s))/(t-s)]
< 2n[4/(t-s)1],

dYn

11
so that E(==2)% < 2 [(4/(t-s))® /4
dw’ =g

dt ds < = if 0 < 6§ < 2.
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