RANDOMLY STARTED SIGNALS WITH WHITE NOISE

by

Burgess Davis and Itrel Monroe Purdue University
W. Lafayette, IN 47907

Statistics Department Mathematics Department University of Arkansas Fayetteville, AR 72701

Technical Report #83-13

Department of Statistics Purdue University

May 1983

¹Supported by National Science Foundation.

Randomly Started Signals with White Noise

by

Burgess Davis and Itrel Monroe

Abstract

It is shown that if B(t), $t \ge 0$, is a Wiener process, U is an independent random variable uniformly distributed on (0,1), and ε is a constant, then the distribution of B(t) + $\varepsilon \sqrt{(t-U)^+}$, $0 \le t \le 1$, is absolutely continuous with respect to Wiener measure on C[0,1] if $0 < \varepsilon < 2$, and singular with respect to this measure if $\varepsilon > \sqrt{8}$.

1. INTRODUCTION. Let $C[0,\infty)$ be the space of continuous functions on $[0,\infty)$, let $\mathfrak F$ be the Borel subsets of $C[0,\infty)$ for the topology of uniform convergence on compact sets, and let $\mathfrak F$ be Wiener measure on $\mathfrak F$. For $t\geq 0$ define the random variable B(t) on $(C[0,\infty), \mathfrak F, \mathfrak F)$ by B(t)(f)=f(t), so that $B(t), t\geq 0$, is a standard Wiener process. Let U be a random variable independent of $B(t), t\geq 0$. (Formally, we must enlarge our probability space to permit such a U.) For a positive constant δ define $W_{\delta}(t), t\geq 0$, by

$$W_{\delta}(t) = B(t) + \int_{0}^{t} \delta 2^{-1} (s-U)^{-\frac{1}{2}} I(U \le s \le U+1) ds,$$

where I denotes the indicator function, and let γ_δ be the distribution of $\textbf{W}_\delta.$ We prove

THEOREM 1. If $0 < \delta < 2$, γ_{δ} is absolutely continuous with respect to μ . If $\delta > \sqrt{8}$, γ_{δ} is singular with respect to μ .

¹Supported by National Science Foundation.

AMS 1980 Subject Classification 60 J 65

Key Words and Phrases: Brownian motion paths

We do not know what happens for $\delta \in [2, \sqrt{8}]$. We remark that Theorem 1 is essentially equivalent to the statement that the distribution of $B(t) + \delta \sqrt{(t-U)^+}$, $0 \le t \le 1$, is absolutely continuous with respect to Wiener measure on C[0,1] if $0 < \delta < 2$, and singular with respect to this measure if $\delta > \sqrt{8}$. Also, notice that it is easy to show that, for a fixed number a and any constant $\varepsilon > 0$, the distribution η of the process

$$Y(t) = B(t) + \int_{0}^{t} \epsilon 2^{-1} (s-a)^{-\frac{1}{2}} I(a \le s \le a+1) ds$$

is singular with respect to μ . This can be done either using Girsanov's formula, which will be stated in Section 3, or by showing that if

$$F = \{f \in C[0,\infty): \lim_{n\to\infty} n^{-1} \sum_{k=0}^{n-1} (f(a+2^{-k})-f(a+2^{-(k+1)}))2^{k/2} > 0\},$$

then $\mu(F) = 0$ while $\eta(F) = 1$, both statements holding by the strong law of large numbers for iid random variables.

The result ([1]) that, for constant ε , the probability

$$P_{\varepsilon} = P(\exists t: B(t+h)-B(t) > \varepsilon \sqrt{h} \text{ for all } h \in (0,1))$$

equals zero for $\varepsilon > 1$ and equals one if $\varepsilon < 1$ has somewhat the same flavor as Theorem 1, although the proofs of these results are only related in that both the proof that $P_{\varepsilon} = 0$ if $\varepsilon > 1$, and the proof that γ_{δ} is singular with respect to μ if $\delta > \sqrt{8}$, have a common ancestor in Dvoretsky's argument in [2].

2. SINGULARITY. Let $\epsilon > \sqrt{8}$. The measure γ_{ϵ} will be shown to be singular with respect to μ by exhibiting a set $A_{\epsilon} \in \mathcal{F}$ such that $\gamma_{\epsilon}(A_{\epsilon}) = 1$ and $\mu(A_{\epsilon}) = 0$. Put $\varphi(s) = [2(s-1)\ln s]^{\frac{1}{2}}/(s^{\frac{1}{2}}-1)$. Then $\varphi(s)$ decreases to $\sqrt{8}$ as s decreases to 1. Let $r(\epsilon) = r > 1$ satisfy $\sqrt{8} < \varphi(r) < \epsilon$, put $\beta = \epsilon^2/\varphi^2(r) > 1$ and $\alpha = (\beta+1)/2$. For integers $n \ge 1$ and $0 \le k \le [r^n]$, where [] is the greatest integer function, define the functions $Q_{k,n}$ on $C[0,\infty)$ by

$$Q_{k,n}(f) = n^{-\frac{1}{2}} \sum_{m=1}^{n} (r^{-m+1} - r^{-m})^{-\frac{1}{2}} (f(kr^{-n} + r^{-m+1}) - f(kr^{-n} + r^{-m})),$$

and put

$$S_n(f) = I(\max_{0 \le k \le [r^n]} Q_{k,n}(f) \ge (2n\alpha \ln r)^{\frac{1}{2}}).$$

The set \mathbf{A}_{ϵ} is defined by

$$A_{\epsilon} = \{f: \lim \sup_{n\to\infty} S_n(f) = 1\}.$$

To show $\mu(A_\epsilon)=0$, we note that, considered as a random variable on $(C[0,\infty),\,\mathfrak{F},\,\mu)$, $Q_{k,n}$ is $n^{-\frac{1}{2}}$ times the sum of n independent standard normal random variables, so that $Q_{k,n}$ itself has a standard normal distribution. Thus if $\Phi(x)=(2\pi)^{-\frac{1}{2}}\int\limits_{-\frac{1}{2}}^{x}e^{-t^2/2}dt$,

$$\mu(S_{n}(f) = 1) \leq ([r^{n}]+1)(1-\Phi[(2n\alpha \ln r)^{\frac{1}{2}}])$$

$$\leq 2r^{n}e^{-[(2n\alpha \ln r)^{\frac{1}{2}}]^{2}/2}$$

$$= 2r^{n(1-2\alpha)}.$$

Since
$$\alpha > 1$$
, $\sum_{n=1}^{\infty} \mu(S_n(f) = 1) < \infty$, so $\mu(A_{\epsilon}) = 0$.

Now let k(U,n)=k be that integer satisfying $kr^n \leq U < (k+1)r^n$. The conditional distribution of

$$(r^{-m+1}-r^{-m})^{-\frac{1}{2}}[W_{\epsilon}(kr^{-n}+r^{-m+1}) - W_{\epsilon}(kr^{-n}+r^{-m})]$$

given U = u is normal with variance 1 and mean equal to

$$(r^{-m+1}-r^{-m})^{-\frac{1}{2}} \int_{0}^{kr^{-n}+r^{-m+1}} \varepsilon 2^{-1} (s-u)^{-\frac{1}{2}} ds$$

$$kr^{-n}+r^{-m}$$

$$\geq (r^{-m+1}-r^{-m})^{-\frac{1}{2}} \int_{0}^{kr^{-n}+r^{-m+1}} \varepsilon 2^{-1} (s-kr^{-n})^{-\frac{1}{2}} ds$$

$$= \varepsilon (r-1)^{-\frac{1}{2}} (r^{\frac{1}{2}}-1)$$

$$= (2\beta \ln r)^{\frac{1}{2}},$$

so that conditioned on U = u

$$Y = n^{-\frac{1}{2}} \sum_{m=1}^{n} (r^{-m+1} - r^{-m})^{-\frac{1}{2}} (W_{\epsilon}(kr^{-n} + r^{-m+1}) - W_{\epsilon}(kr^{-n} + r^{-m}))$$

is normal with variance 1 and mean exceeding $(2n\beta \ln r)^{\frac{1}{2}}$. In particular, $P(Y > (2n\alpha \ln r)^{\frac{1}{2}} | U = u) \ge \Phi[(2n\beta \ln r)^{\frac{1}{2}} - (2n\alpha \ln r)^{\frac{1}{2}}] = q_n, \text{ so }$ $\gamma_{\epsilon} \{ f \in C[0,\infty) \colon S_n(f) = 1 \} \ge q_n. \text{ Since } q_n \to 1 \text{ as } n \to \infty \text{ we get } \gamma_{\epsilon}(A_{\epsilon}) = 1.$

3. ABSOLUTE CONTINUITY. If f(s), $s \ge 0$, is a measurable function such that $\int\limits_0^\infty f^2(s) ds < \infty$, Girsanov's formula (see [3]) gives that if ρ is the distribution of the process $B(t) + \int\limits_0^t f(s) ds$, $t \ge 0$, then the Radon Nikodym derivative of ρ with respect to μ is

$$\frac{d\rho}{d\mu} = \exp(\int_{0}^{\infty} f(s) dB(s) - \frac{1}{2} \int_{0}^{\infty} f^{2}(s) ds).$$

We let EX stand for $\int_{C[0,\infty)} Xd\mu$. Of course, $E \frac{d\rho}{d\mu} = 1$.

For an integer n>1 and a constant $\delta>0$ put $\alpha_n(v,t,\delta)=\alpha_n(v,t)=\delta 2^{-1}(v-t)^{-\frac{1}{2}}I(t+n^{-1}\leq v\leq t+1)$. Let

$$W_{\delta}^{n}(t) = B(t) + \int_{0}^{t} \alpha_{n}(s,U)ds,$$

and let γ^n_δ be the distribution of $\textbf{W}^n_\delta.$ We will show that, for 0 < δ < 2,

$$E(\frac{d\gamma_{\delta}^{n}}{du})^{2} \leq M_{\delta} < \infty,$$

which gives that the random variables $\frac{d\gamma_\delta^n}{d\mu}$ are uniformly absolutely continuous with respect to μ . Since $W_\delta^n(t) - W_\delta(t) \le \delta/\sqrt{n} \to 0$ as $n \to \infty$, this implies that γ_δ is absolutely continuous with respect to μ if $0 < \delta < 2$.

We have

$$\begin{split} E(\frac{d\gamma_{\delta}^{n}}{d\mu})^{2} &= E[(\int_{0}^{1} exp(\int_{0}^{\infty} \alpha_{n}(v,t)dB(v) - \frac{1}{2} \int_{0}^{\infty} \alpha_{n}^{2}(v,t)dv)dt)^{2}] \\ &= E \int_{0}^{1} \int_{0}^{1} exp(\int_{0}^{\infty} (\alpha_{n}(v,t) + \alpha_{n}(v,s))dB(v) - \frac{1}{2} \int_{0}^{\infty} (\alpha_{n}^{2}(v,t) + \alpha_{n}^{2}(v,s))dv)ds dt \\ &= \int_{0}^{1} \int_{0}^{1} E \exp(\int_{0}^{\infty} (\alpha_{n}(v,t) + \alpha_{n}(v,s))dB(v) - \frac{1}{2} \int_{0}^{\infty} (\alpha_{n}^{2}(v,t) + \alpha_{n}^{2}(v,s))dv)ds dt \\ &= \int_{0}^{1} \int_{0}^{1} exp(\int_{0}^{\infty} \alpha_{n}(v,t)\alpha_{n}(v,s)dvE \exp(\int_{0}^{\infty} (\alpha_{n}(v,t) + \alpha_{n}(v,s))dB(v) - \frac{1}{2} \int_{0}^{\infty} (\alpha_{n}(v,t) + \alpha_{n}(v,s))^{2}dv)ds dt \\ &= \int_{0}^{1} \int_{0}^{1} exp(\int_{0}^{\infty} \alpha_{n}(v,t)\alpha_{n}(v,s)dv)ds dt \\ &= 2\int_{0}^{1} \int_{0}^{1} exp((\epsilon^{2}/4) \int_{0}^{s+1} [(v-t)(v-s)]^{-\frac{1}{2}}dv)ds dt. \end{split}$$

Now if s < t < s+1,

$$\begin{array}{c} s+1 \\ \int \\ t+n^{-1} \end{array} \left[(v-t)(v-s) \right]^{-\frac{1}{2}} dv < \int \limits_{t}^{s+1} \left[(v-t)(v-s) \right]^{-\frac{1}{2}} dv \\ = \ell n \left[(2-(t-s) + 2\sqrt{1-(t-s)})/(t-s) \right] \\ \leq \ell n \left[4/(t-s) \right], \end{array}$$

so that
$$E(\frac{d\gamma_{\delta}^n}{d\mu})^2 \leq 2\int\limits_0^1 \int\limits_s^1 (4/(t-s))^{\delta^2/4} dt \ ds < \infty \ \text{if } 0 < \delta < 2.$$

References

- 1. Davis, B. On Brownian slow points. To appear, Zeitschrift fur Wahrskeinleikeitstheorie.
- 2. Dvoretsky, A. On the oscillation of the Brownian motion process. Israel J. Math. 1(1963), 212-214.
- 3. Liptser, R. S., and Shiryayev, A. N. Statistics of Random Processes. Springer 1977 English translation of book originally published in Russian in 1974.