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1. INTRODUCTION

It is a commonplace of inference that the magnitude of an effect
as well as its statistical significance should be reported, and that
these two concepts are not identical. In particular, significance
is strongly influenced by the sample size n, while the magnitude or
degree of effect present ought not to depend on n. We consider here
measures of the degree of lack of fit of data to a parametric family
of distributions that are naturally associated with test statistics
based on discrete or grouped data. The paradigm such statistic for

testing fit is the Pearson chi-squared statistic, X2. X2

itself measures
the significance of the lack of fit. The associated measure of the
degree of lack of fit is X2/n.

This measure (and its square root) have long been employed in a
variety of contexts. They remain popular in psychometrics, but are
not recommended as measures of association in contingency tables. Fleiss
(1981), Section 5.2, gives a discussion and references on these points.
See also Bishop, Fienberg and Holland (1975), Chapter 11. The strongest
arguments against Xz-based measures of association are: (1) the availa-
bility of more easily interpreted measures such as the odds ratio; (2) the
fact that the value of X2/n depends on whether a two-way table is
studied prospectively, retrospectively, or naturalistically; and (3) the
fact that the value of X2/n depends on the cutting points used when
continuous distributions underlie the two-way table. Here, however,
we are concerned with testing fit to parametric families of distribu-
tions, e.g. with tests of normality. Only the third argument retains

its force in this setting. The dependence of the statistic on the choice



of cells in continuous cases is indeed a drawback of chi-squared-1like
methods. Yet it is this discretizing of the data that allows the use
of these tests with standard critical points when parameters must.be
estimated from the data and when the data are multivariate. The flexi-
bility of X2 and related statistics is responsible for their continued
use, and this in turn warrants a systematic study of the associated
measures of lack of fit.

Cressie and Read (1983) have sysﬁematized the theory of tests of
fit based on the multinomial distributions of cell counts by pointing
out that a family of measures of discrepancy between finite probability
distributions gives rise to the chi-squared, Neyman modified chi-squared,
log 1ikelihood ratio, Freeman-Tukey, and many other test statistics as
special cases. These tests, and the minimum-discrepancy estimators based
on them, have identical asymptotic properties under the null hypothesis
and local alternatives, but not under distant alternatives. Read (1982b)
has provided some guidance as to the sensitivity of various tests in this
class to different types of deviations from the null hypothesis, and
hence to the choice of discrepancy measure in practice.

Suppose that X "Xn (which may be multidimensional) are iid

'I’l .
with common cdf G, and are to be tested for fit to a family of cdf's
& = {F(-]8): o in Q}. The parameter space 2 is an open set in Euclidean

m-space. Partition the range of Xj into k cells, whose probabilities

are pi(e) under F(-|6), i=1,...,k. If N, are the observed cell fre-
quencies and b, an estimator of & based on X]""’Xn’ the Cressie-Read

statistics are



R*(e,) = 2nI*(N/n : p(e )

where N and p(8) are the vectors of N and pi(e) and 1" is a directed
divergence between probability distributions on k outcomes. The real
number A indexes the class of divergences employed, with R1 = X2.
Another class of statistics for testing fit, studied in detail by
Moore and Spruill (1975), consists of nonnegative definite quadratic
forms in the standardized cell frequencies [Ni - npi(en)]/[npi(eﬁ)]]/z,
The Pearson statistic is the sum of squares, and hence the simplest
member of this class. These statistics can also be considered as
based on a measure of the discrepancy of N/n from p(en). Unlike the
Cressie-Read statistics, the Moore-Spruill statistics have differing
asymptotic behavior under the null hypothesis.
If Tn is a menmber of either of these classes, then in regular cases
Tn has a nondegenerate limiting distribution under H0 : Gin &,
Thus Tn measures the significance of lack of fit. But Tn/n will be
seen to measure directly the discrepancy between the empiric distribution
of X],...,Xn and F(-|en), obtained in the grouped data setting as a

discrepancy between N/n and p(en). Under H Tn/n + 0 a.s., but we

0°
will show that under G not in &, Tn/n has an a.s. limit that is a
corresponding measure of the discrepancy between G and'F(-!GO), where
6, > 8y a.s. (G). When o, is the m1'n1'mum-Tn estimator, F(-Ien) is the
"closest" member of 3 to the empiric distribution of the observations,

and we will see that F(-

eo) is then the "closest" member of:& to
G. Thus Tn/n estimates the "distance" of the true G fromid , where the

particular "distance" can be chosen for sensitivity to specific types



of alternatives. The purpose of this paper is to study the large
sample behavior of the measures Tn/n.

Section 2 summarizes our results in the case of the Pearson statistic,
and so forms an introduction to the more general study. Section 3
introduces the Cressie-Read and Moore-Spruill statistics. Data;dependent
cells are often employed in practice, and were allowed in Moore and
Spruill (1975). We point out in Section 3 that if the random cells
converge to fixed cells as n + », all of our results (and those of
Cressie and Read) for statistics based on the limiting set of fixed
cells extend to the random cell case.

Section 4 discusses the behavior of estimators 8, under G not in
the hypothesized family:& . Convergence 8, * 8 2.5.> and identification
of the 1imit 6y, are needed for our study of measures of lack of fit.
Such results are available for many classes of estimators, but are not
- given by Read (1983) in his study of minimum-R" estimators. We give
a very general result of this kind. Section 5 contains the main-resu]ts-
for measures of lack of fit based on both Cressie-Read and Moore-Spruill
statistics. We discuss pointwise convergence, the relation to approxi-
mate Bahadur slope, and asymptotic expansions that can lead to asymp-
totic normality.

Finally, Section 6 presents an example using the data compiled by
Stigler (1977) from 18th and 19th century measurements of physical
constants. Since series of repeated measurements "ought to" be
approximately normal, we measure degree of nonnormality. The example
affords an opportunity to discuss several practical matters, such as

the choice of cells.



It is apparent from the outline above that this paper contains some
complements to the work of Cressie and Read on general statistics for
testing fit based on multinomial data. Nonetheless, the primary purpose
is to increase understanding of certain measures of lack of fit by

a thorough study of the large-sample properties of these measures.

2. The Pearson Statistic

The Pearson statistic for testing the fit of X]""’Xn to the family

& when 6 is estimated by en(X1,...,X ) is

k
Xz(en) = Z

- Dy/n - pi(0,) 1
151 pi(e,)

The second expression makes it clear that Xz(en)/n is a measure of the

discrepancy between the empirical probabilities Ni/n and the probabilities

pi(en) estimated under Hy: G intd, If G is in:d, then Xz(en)/n +~ 0

a.s. in regular cases. Our concern is the behavior of Xz(en)/n when G
is not in:d .

Estimators. Common classes of estimators o have the property
that 6, * 8 a.s. under G, where 8 depends on G as well as on the
estimation procedure employed. For example, if o, is the MLE of ¢ in

1& based on X .sX,, then Huber (1967) and Perlman (1972) give quite

10+

general conditions for a.s. convergence. In this case, 6, is the point

0
in @ at which EG[—log f(X|e)] is minimized, where f is the density

function corresponding to F. Similar results for minimum contrast



estimators are given by Pfanzagl (1969).
Specializing these general results to the case in which en is
the grouped data MLE of & in'd& based on the cell frequencies N],...,Nk

we obtain that in regular cases o is the solution of the equations

k Ni/n op; .
(2.]) iZ] B;TB) 563' =0 J = 1,...,m

and that 6, > 6y a.s. (G), where N satisfies

Py _

k T,
1 .
(2.2) 1Z]m 56: = 0 jg=1,...,m

where T = (ﬂ],...,ﬂk) is the vector of cell probabilities under G.

A natural choice of o, is the minimum chi-squared estimator, the
value of 6 in @ minimizing Xz(e). This is asymptotically equivalent
to the grouped data MLE under G in:& and under contiguous alterna-

tives, but not under G not in:d . 1In regular cases, this o, satisfies

k N./n 2 api .
(2.3) iZ] (5;r67) 563' =0 J = 1,...,m

and under G, en > 60 a.s. where 60 satisfies

28 ) gy o
' j=1 Pil®

—1 =0 j=1,...,m
30 .
%

A general theorem implying these results will be given in Section 4.
Note that if G(.) = F(-]eo) is in:3d , then 0, > o is just a.s. consistency.

Pointwise convergence. We have seen that common estimators o




will satisfy 6, > 0y a.S. (G). It is then easy to see that

2
k [n.-p.
(2.5) n" > Z [—-‘—f‘—]— a.s. (G)

where p; = pi(eo). The measure X2(en)/n is thus a consistent estimator
of the measure d = z%[wi-pi]z/pi of discrepancy between the true cell
probabilities s and Py - When o, is the m1'n1'mum-X2 estimator, p(eo)
is the closest point to = among all p(e) for & in @, in the sense that
o satisfying (2.4) has smallest discrepancy d among all & in Q. Thus
Xz(en)/n consistently estimates a measure of the "distance" of the true
G from¢d . This measure depends on the choice of cells, but if G,
F(-|eo) have pdf's g,f with respect to Lebesque measure, then as the
partition of the range of Xj into cells is refined, d approaches
f(g—f)z/f, an integral discrepancy measure.

Another interpretation of Xz(en)/n is offered by the fact that the
limit d is the approximate Bahadur slope of the Pearson statistic
Xz(en) at the alternative G. Since the slope d determines (asymptotically)
the sample size n required for Xz(en) to reach a stated P-value (computed
from the Timiting null distribution, which is chi-squared if o, is
the m1'n1'mum-X2 estimator) against G, this fact suggests an easy-to-grasp
restatement of the measure Xz(en)/n of lack of fit. If Xz(en)/n = c
is observed, and <, is the Tevel o critical point of the 1imiting null
distribution of Xz(en) (i.e. PHo[Xz(en) z_ca] + a), then N, = cu/c
is the number of observations required for an effect of size ¢ to reach
the level of significance a. Na is thus an alternative to ¢ as a measure
of lack of fit. For example, if for a sample of size n = 100, X2 = 28.1

with the x2(9) Timiting null distribution, then the P-value is 0.0009

and X2/n = 0.281 is the estimated discrepancy. An effect of this size



would require N'05 = 61 observations to be found significant at level
o = 0.05. Note that while Na calls attention to the fact that an
effect of any fixed magnitude will be significant for n sufficiently
large, it does not in itself report which of many possible measures of
effect magnitude was employed.

A final interpretation of X2/n, though one so far afield that we
will not discuss it, is given by the concept of resistance to rejection
proposed by Ylvisaker (1977). Ylvisaker shows that in the no-estimation
case, the resistance to rejection of the critical region X2 > ¢ is propor-
tional to (c/n)% .

Asymptotic normality. When pi(e) are continuous and (as happens in

1
regular cases) n® (pi(en) - pi) = Op(1) under G, expansion of Xz(en)

in Taylor series shows that

N

ol
ol

(2.6) n

ne~-1x

2 _ "4
(X“(e,)/n-d) = 2 Logom (N;/n - )

2

: (ﬁ) n® (p;(0,) - py) + 0 (7).

T

s

]
ne-1x

.i

ul
When pi(e) are differentiable and an appropriate expansion of n® (en-eo)

exists (see Huber (1967) for such expansions in the MLE case), then
(2.5) will imply asymptotic normality of Xz(en)/n. We can then use
Xz(en)/n to obtain approximate confidence intervals for d, as well as
for point estimation.

In general, the variance of the normal Timiting Taw is so complex

as to defeat use. But if o is the minimum chi-square estimator and
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pi(e) are continuously differentiabie at 6> then o, satisfies (2.4)
and expansion of pi(e) about 99 shows that the second term on the right
in (2.6) is o (1). It follows at once from asymptotic normality of

p
the Ni that under G,

1 8
n® (F(e,)/n - d) > N(0,°)
(2.7)
k k
12 =4{ ) ﬂ?/D? - () ﬂ?/pi)z}.
i1 i=1

In the no-estimation case of testing fit to F(-[eo) with known 83>
(2.7) was obtained in another context by Broffitt and Randles (1977).
Since m and p; can be estimated by Ni/n and pi(en), T2 in (2.7) can
easily be estimated to obtain approximate confidence intervals for d.
Note that (2.7) does not hold for o other than the minimum chi-squared
estimator, even for 6 (such as the grouped-data MLE) asymptotically

equivalent under HO'

3. General Statistics of Chi-Squared Type

We will consider two general classes of statistics for testing fit
from the cell frequencies N],...,Nk.' The Pearson statistic is the only
common member of these classes. The first class was introduced by Cressie
and Read (1983), with full detail given by Read (1982a). If p = (p],...,pk)
and g = (ql,...,qk) are probability distributions on k points, define

for -» < A < w

I*(p:q) = ] E p:[(p./q:)" - 1]
: miz] RS Tl
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to be the directed divergence of p from q of order A. For x = -1,0

the divergence is defined by continuity in A. Cressie and Read discuss

the properties of 1" and its relation to other divergences. Only for

A==-1/2 1is 1t a metric, the Hellinger or Matusita distance.
The Cressie-Read statistics for testing the fit of XT"'”’Xn

to the family & of distributions are |

Rx(en) = 2nIA(N/n: p(e.))

n

where N = (N],...,Nk) is the vector of cell frequencies, p(e) = (p](e),...

the vector of cell probabilities under F(:|9), and o, = en(X1,...,Xn)

an estimator of 6. This family includes the Pearson (A = 1), Neyman

modified chi-squared (» = -2), log likelihood ratio (1 = 0), modified

log 1ikelihood ratio (x
A useful choice of o, is the minimum discrepancy estimator, for which
Rx(en) = inf R*(e) over o in 0. Cressie and Read show that when |
F(-|eo) is true and the regularity conditions of Birch (1964) hold:
(A) If 6, is any estimator satisfying
n% (8,-89) = 0(1), then R (g,) = X¥(e,) + o (1.
(B) The minimum RA estimators for all A share a common asymptotic
expansion ‘and are BAN estimators of o.
(C) For 8, any BAN estimator of e,

&

A 2
R™en) = Xyom-1-

Cressie and Read establish many other results as well, but (A),
(B), (C) illustrate the principle that the statistics Rx(en) share the

behavior of the Pearson statistic R](en) = Xz(en) under Ho: G in:d .

-1), and Freeman-Tukey (1 = - 1/2) statistics.
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This is also true under contiguous alternatives, but not under fixed
G outside: d .

It is often convenient in practice to employ data-dependent cells
rather than fixed cells in tests of fit of chi-square type. This is
done in the examples of Section 6. In this case, the cell frequencies
Ni are no longer multinomial. But when the random cell boundaries (which
are functions of the data X1""’Xn) converge in probability as n » «
to a set of nonrandom cell boundaries (which are generally functions of
G, the cdf of the Xj)’ it can be shown in general that the asymptotic
behavior of Xz(en) based on the random cells is the same as if the
1imiting nonrandom cells had been employed. This is done by Moore and
Spruill (1975) for rectangular cells (in particular for intervals when
Xj are real), and by Pollard (1979) for cells of quite general shape.
By combining Lemma 4.1 of Moore and Spruill (1975) with the work of

Cressie and Read the following result can be obtained. If conditions

(A1) - (A3) of Moore and Spruill (1975) and the conditions of Birch

(1964) hold, then (A), (B), (C) above remain true when RA(B ) 1is based
e ————— n —————

on data-dependent cells. The details of. the proof are similar to argqu-

ments in Moore and Spruill, and will not be given. Asymptotic results
under contiguous alternatives can be similarly extended.

Qur concern in Sections 4 and 5 is with the behavior of o and
Rx(en) when G is not iny& . It is easy to see that when (a) the cells
are rectangles Ein whose vertices converge a.s. as n -« to the vertices
of nonrandom cells Ei’ (b) G is continuous at the vertices of the Ei’
(c) the cell probabilities pin(e) = e dF(x|e) are continuous in

in

6 and the vertices of E. , then Theorem 5.1 on pointwise convergence

in?
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of Rx(en)/n remains true, the limit being the same as if cells Ei
had been employed for all n. A similar statement holds for convergence
in probability. Having made these remarks, we will not explicitly
consider random cells in Sections 4 and 5. |

The second class of generalizations of the Pearson statistic that
we discuss is studied in detail by Moore and Spruill (1975). Let
Vn(e) be the k-vector.qf the standardized cell frequencies
[Ni - npi(e)]/[npi(e)]%', and let M_ be a (possibly random) sequence
of kxk nonnegative definite matrices. The statistics are the quadratic

forms

where o, is again an estimator of 6. The Pearson statistic is the sum

~of squares Xz(en) = TI(en) obtained when M, = I, the kxk identity matrix.

Statistics of form T are‘also”meésuréé of the discrepancy of N/n from
p(en); similar distance measures are widely used in statistics, e.g. in
assessing influential cases in linear models, Beckman and Cook (1983), p. 140.

The statistics TM are of interest because for a given estimation method
en, one can usually find matrices Mn such that TM(en)L£l+ Xﬁ_1 under HO'

The proper Mn was obtained by Rao and Robson (1974) when o, is the MLE of
o from X]""’Xn' Moore (1977) showed in general how to choose Mn so that

the asymptotic null distribution of TM is chi-squared with maximal degrees

of freedom. The general method includes the Rao-Robson result, and when o,

is the minimum chi-squared estimator gives Mn = I with k-m-1 as the largest
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available degrees of freedom. LeCam. Mahan and Singh (1983) show that this
choice of Mn for given o, has some asymptotic optimality properties.

Thus statistics TM are usually chosen to obtain x2 asympfotic
critical points, and also an asymptotic optimality property, after
the estimator 6, has been selected. In this case, 6, 1s not the minimum-
TM estimator, and the minimum—TM estimator is of little interest. The
statistics Rx(en), on the other hand, do not even have o-free limiting
null distributions in general for estimators o other than the minimum-R*

estimators (all of which are asymptotically equivalent under HO).

4, Asymptotic Behavior of Estimators

In order to 'discuss the behavior of measures of fit to parametric
families, we must establish the behavior of estimators o of & in

F(-[6) under G not in:3 . As was mentioned in Section 2, convergence

en > 6y a.s. (G) is known for common classes of estimators, such as
MLE's, that might be employed in the statistics TM(en), and the limit
8y can be identified. We require a similar result for o the minimum-R*
estimator. Because of the specific form of RA, a.s. convergence can
be proved without the hard-to-verify compactness assumptions employed
in the literature for MLE's. Parallel results for convergence in
probabiTity hold, both here and in Section 5, but will not be stated
separately.

Suppose that N = (N],...,Nk) has the multinomial (n,r) distribution
for m = (ﬂ],...,ﬂk). Define Qn(e) = IA(N/n: p(e)) and Q(v) = Ix(ﬁ: p(e)).
In general, en minimizing Qn converges a.s. to 60 minimizing Q. Here

is one such result.
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(A1) There is a % in @ such that Q(e) > Q(eo) for all.o # % in Q.

(A2) For any § > 0, there is an ¢ > 0 such that
inf Q(e) 3_0(90) + €.
|9-60|>§,
Assumption A2 is implied by the common assumption (e.g. Birch) that the

map 6 -~ p(e) is continuous and has a continuous inverse at 6g-

Theorem 4.1. If all i o> 0 and (A1), (A2) hold, then 6, ~ 8y a.s. for

any sequence en satisfying
(4.1) Qn(en) - 1gf Qn(e) + 0 a.s.

Proof. The details of the proof differ slightly for various A. We

give the proof for A > 0, the more difficult case. Note first that

)A+]

(A1) and =; > 0 imply pi(ey) > 0. Next, if (N./n)*"'/p.(8)* > M for

any i and e, then Qn(e) > (M-1)/Ax(a+1). This with a.s. convergence of
Ni/n to n; > 0 implies that there is a ¢ > 0 such that a.s. pi(en) >cC
eventually, for all i. Let

Q. = {6 in Q: pi(e) > ¢ for all i}.

We can assume 6, ina.. Now Qn(eo) 3_1‘nfe Qn(e) with (4.1) implies

that a.s.
Q(eo) = lim Qn(eo) > Tim sup Qn(en).

But
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sup [Qn(e) - Q(e)| ~ 0 a.s.

e

so that 1im sup Qn(en) = 1im sup Q(en). So, since Q(eo) 5_Q(en),
Q(eo) < 1im inf Q(en) < Tim sup Q(en) 5_Q(eo)

and therefore Q(en) > Q(eo) a.s. A2 then implies that o, must eventually

stay in the neighborhood ]e-eol < & for any § > 0, i.e., that 8, > 8y 2-.S-
Note that if = = p(eo) for some 6 in @, then Q(eo) = 0 and we

have proved a.s. consistency of o satisfying (4.1) under (A2). This

is a much stronger consistency result than appears in Cressie and Read

(1983) or Read (1983), where the emphasis is on asymptotic normality.

In regular cases, 1'nfe Qn(e) is actually attained at a point o, satisfying

(for A # -1)

k
(4.2) Z] (m) E =0 J = 1,...,m

k
(4.3) Z_I (51—(—6-)—) 'ée—J =0 J=T1,...,m.

The familiar equations (2.1), (2.3) are cases of (4.2), and (2.2),
(2.4) are cases of (4.3). Under conditions stronger than those of
1

Theorem 4.1, one can establish asymptotic normality of né‘(en-eo) under

G not iny& by following Huber's (1967) treatment of the MLE case.
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5. Measuring Degree of Lack of Fit

Associated with statistics Rk(en) or TM(en) for testing the signi-
ficance of lack of fit are natural measures Rk(en)/n and TM(en)/n for
estimating the degree of lack of fit. Once pointwise convergence of
en under G is established, pointwise convergence of these measures
follows at once.

Let 7 = (ﬂ],...,ﬂk) be the cell probabilities under G,

9), and

p(e) = (p1(e),...,pk(e)) the cell probabilities under F(-
p = p(eo), where 89 is the 1imit under G of 8 Here are our assump-

tions.

(B1) 6, = 8y a.s. (G), p(e) is continuous at 0q > and . > 0,

p; > 0 fori=1,...,k.

For statistics TM, we also require that Mn - MO a.s. (G) for a nonrandom
matrix My- Convergence of M under F(-|e) is required by the large
sample theory of Moore and Spruill (1975), and convergence under general

G is true in all practical examples, such as the Rao-Robson (1974)

SIS

statistic. Finally, let b = (by,....b )" with b, = (n;-p.)/p; % ,
so that if d is as in Section 2, d = b'b = 21 (n:p).
Theorem &.1. If (B1) holds, then

R (s, )
:n -+ ZIA(n:p) a.s. (G)

If in addition M, > My a.s. (G), then

0
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™)
- + b MOb a.s. (G).

Proof. The result for R* is immediate from continuity of I in its
M

arguments. That for T follows from the fact that n" 2 Vn(en) +b a.s. (G).
The result (2.5) for the Pearson statistic is a case (A = 1,
Mn = I) of both parts of Theorem 5.1. When o is the minimum-Rk esti-

mator and Theorem 4.1 applies, then
ZIA(w:p) = inf ZIA(w:p(e))
]

so that Rk(en)/n is a consistent estimator of the discrepancy of G
from»& . In the case of TM, fp is typically not the m1'n1'mum—TM
estimator. But F(-|eo) is often the closest member ofi3 to G by
some other measure, usually one based on the raw data rather than on
grouped data. For example, if o is the raw-data MLE, then its a.s.

Timit eO satisfies
E.[~ Tog f(X|6,)] = inf Eo[- Tog f (X|6)]
G 0 5 G

for f a density function corresponding to F. Thus F(-Ieo) is the closest
point iny3 to G in the sense of entropy, and TM(en)/n estimates a
grouped-data distance of G from F(-leo).

Standard arguments identify the limits in Theorem 5.1 as the
approximate Bahadur slopes of the respective test statistics. Spruill
(1976), who considers certain TM(en) statistics, gives as Lemma 1 a

result that implies the following.
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Theorem 5.2. When statistics Rx(en) ggg_TM(en) have o-free Timiting

distributions under HO’ and the conclusions of Theorem 5.1 hold, the

approximate Bahadur slopes at G are ZIx(ﬂ:p) ggg_b'MOb, respectively.

Statistics in practical use usually have 9-free Timiting null
distributions (data-dependent cells can facilitate this, as in the example
of Section 6). When this is not so, the 1imits in Theorem 5.1 are the
approximate slopes of the statistics when HO: G inid s replaced by
the simple hypothesis G(.) = F(-Ieo).

I[f it is desired to obtain the asymptotic distribution of RA/n
and TM/n, the following result can be employed. The proof is straight-
forward.

A
Theorem 5.3. If (B1) holds and nz(p(en)—p) = Op(l),.then under G

A
1 R%(e ) k m, 2 N,
n® [_‘—"_n LA 2‘I>\(“:p)] = L)\(?\"’]) + Af'l] 121 (B:—) n® (—':'." - '”.i)
k  m, A+l 2
b L GHT nE e - ) o)

If in addition Mn > MO(PG)’ then

2 TM(en) 1 - ) "% % i
n [_—77"—— -b MOb] = 2b'My{p; = n ("ﬁ" ni)}
il 3
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In Theorem 5.3 on]y,’{ai} denotes the k-vector with components

a.. In regular cases,

(eo)n% (6,-09) + 0,(1)

n* (p(s,) - p) = D ;

P

it

where Dp is the matrix of derivatives api/ae., and n (en—eo) is asympto-

J
tically a sum of n iid r.v.'s with zero mean. Since n

VIS

(N/n - 7) has

a similar form, the central 1imit theorem with Theorem 5.3 establishes
asymptotic normality of Rk/n and TM/n under G. When o, is the minimum-R*
estimator and Dp(e) is continuous at e, then (4.3) shows that in regular
cases the second term in the expansion of Rk(en)/n in Theorem 5.3 is

0. (1). Results (2.6) and (2.7) for the Pearson statistic are cases of

p
Theorem 5.3.

6. Example

In order to illustrate the use and Timitations of measures of
lack of fit, we must first choose a statistic from the broad classes
considered. In this section we use the familiar Pearson statistic.
Since the data sets are repeated measurements of physical constants,
1d is taken to be the family of univariate normal distributions. For
assessing the significance of lack of fit in this case, both simulations
by Rao and Robson (1974) and asymptotic theory by LeCam et. al. (1983)
give reason to prefer the Rao-Robson statistic. The Rao-Robson divergence
measure b'MOb,(see Theorem 5.1) is sufficiently more complex than the

Pearson measure
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(“i_pi)

k
6.1 d(m: =
6.0 g = ] T

i

that we prefer the Pearson statistic for illustrative purposes.

It remains to choose the cells, including the number of cells k,
and the estimator 8 of the parameters u and 02 of the normal family.
In testing fit to a single distribution using the Pearson X2, there are
compelling reasons to use cells equiprobable under HO: (a) the test is
then unbiased and has an optimality property within this class of tests
(Cohen and Sackrowtiz (1975)); (b) Mann and Wald (1942) establish a
minimax-type optimality property; (c) computational work, e.g. Roscoe
and Byars (1971) and Larntz (1978), shows that the chi-squared distri-
bution is a more accurate approximation in equiprobable cases. Data-
dependent cells having boundaries of the form X+cis' (X, s are the samb]e
mean and standard deviation) allow cells equiprobable under the estimated
normal distribution N(X,sz) to be used in testing fit to.& . The
asymptotic properties of the statistic under H0 are then identical to
those obtained by employing cells equiprobable under N(uG,oé), where
(“G’Og) are the mean and variance of the true cdf G.

Mann and Wald (1942) also found approximately optimal k in terms
of the sample size n and desired significance level a. The optimum
is very broad, and more accurate approximations by Schorr (1974)
confirm that about half the Mann-Wald value is preferable. We recommend
using k about half the Mann-Wald value for o« = 0.05, that is, approxi-

n2/5.

mately k = 2 (This is not an endorsement of o = 0.05, or any

other fixed o, in tests of fit. The Mann-Wald k decreases with a,
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but overstates the optimum k, so a small o is appropriate in our guideline.)
Now this choice of k is defensible for assessing significance, but the
discrepancy measure d(w:p) of (6.1) depends on k, so that d's for
different k's are not comparable. In discussing the data sets, it is
therefore convenient to also use a common k, k = 7 in our case.

Finally, we will estimate o = (u,oz) by 6, = (X,sz), the raw-data

MLE's. With the random cells as above, 6 - 90 = (uG,cé) a.s. (G),

n
whether or not G is inid , and under HO: G in:« &, the limiting null
distribution of Xz(en) does not depend OE go. This distribution is
not chi-squared, but is that of a r.v. 21=] Z? N i_z + xzzi_l,

where the Zi are iid (N(0,1) r.v.'s. The-characteristic roots i; have simple
expressions given on p. 345 of Watson (1957). This distribution‘is'easi1y
computable; the P-values below were obtained by the method of Section 4

of Moore (1971). Note that p; = pi(eo) = 1/k whether or not G is 1in

1 d, so that Xz(en)/n converges to

d(w:p) = k

2
(n. - 1/k)
i '

I~}
-

where s are the probabilities under G of k cells equiprobable under
N(“G’Gé)’

Stigler (1977) presents several data sets from historically
significant experiments in classical physics. We will consider the
following:

Data Set 1: Cavendish's 1789 measurements of the mean density of

the earth (n = 29).

Data Set 2: Michelson's 1879 measurements of the velocity of

light (n = 100).
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Data Set 3: Newcomb's 1882 measurements of the velocity of Tight
(n = 66).

Data Set 4: Newcomb's data less one egregious outlier, which
Newcomb himself eliminated (n = 65).

Data Set 5: Michelson's 1891 supplementary measurements of the

23).

velocity of Tight (n
Stigler also presents several sets of data from Short's 1763 determina-
tions of the parallax of the sun. These data are not strictly speaking
iid, and show puzzling variations in degree of nonnormality. We will
not consider them here.

Stigler discusses these fascinating data in some detail. For his
purposes, he breaks the larger data sets into groups of about n = 20.
Under the heading "Are real data normal?" he examines 20 such groups
collectively as potentially a sample of normal data sets. The emphasis
here, on the other hand, is on comparing the degree of nonnormality of
the individual data sets.

Table 1 displays the analysis. First, Data Sets 1-5 were analyzed
using the number k of cells recommended for the sample sizes n. Com-
parison of sets 3 and 4 shows the effect of the outlier in Newcomb's
data, both on the significance and the degree of nonnormality. Data
Set 3 is not considered further. For direct comparison, Data Sets
1, 2, 4, 5 were next analyzed with k = 7, the number of cells appropriate
for the smallest sets. In addition, for each of the sample sizes

n =23, 29, 65, 100 (matching Data Sets 1, 2, 4, 5), 1000 random samples
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Table 1

Data

Set n k X2 P-value X/n
1 29 7 1.655 0.867 0.057
2 100 13 26..620 0.003 0.266
3 66 1 43.333 <0.0001 0.657
4 65 1 15.723 0.052 0.242
5 23 7 7.130 0.159 0.310
1 29 7 1.655 0.867 0.057
2 100 7 7.520 0.137 0.075
4 65 7 7.908 0.118 0.122
5 23 7 7.130 0.159 0.310
IMSL 100 7 4.336 0.429 0.043
IMSL 65 7 4.495 0.407 0.069
IMSL 29 7 4.341 0.428 0.150
IMSL 23 7 4.531 0.402 0.197
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were generated using the normal random variable routine GGNML from the

2 column contains the mean value of the Pearson

IMSL library. The X
statistics from these samples.

Consider first the IMSL results. The Timiting null distribution
of X2(en) has expected value 4.469, which is closely matched by the
sample means displayed in the X2 column. Other sample moments also
closely match those expected under the hypothesis of normality. The
P-values given are for the mean X2. Since the mean of the theoretical

2 exceeds its median, the P-value of the sample

null distribution of X
mean will be <0.5. The X2/n entries for the IMSL samples show the
convergence to zero with increasing n that is expected under normality.
The IMSL samples are quite closely normal, and provide a standard of
comparison for the sets of real data.

Turning to the real data sets, note first the considerable effect
of the choice of k on both the significance and the degree of nonnor-
mality for Data Sets 2 and 4. The strength of this effect on significance
is sometimes overlooked by users of chi-squared tests; it argues for an
"objective" choice of k and P; such as that discussed above and employed
in the first portion of Table 1. For comparing degree of nonnormality,
a common k is needed. The Cavendish data fit the normal family very
well, better than even the average IMSL sample of the same size. Stigler
observes that Cavendish's measurements with a torsion balance are
considered "an ideal example of scientific experimentation." It is

not surprising that his data are closer to normality than those of

Michelson and Newcomb, who reflected 1ight between a rotating mirror
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and a fixed mirror 600 to several thousand meters distant.

The Michelson and Newcomb data sets of sizes 23, 65 and 100 show
a pattern similar to that of the IMSL samples: Xz and its P-value are
quite stable, and therefore X2/n decreases with increasing n. The
discrepancy X2/n is in each case between 1.5 and 2 times that of the
corresponding IMSL mean result. Some of this discrepancy may be due
to positive dependence among the observations, which tends to inflate
Xz. Michelson's Data Set 2 in particular shows long runs of similar
values. Although the velocity of Tlight experiments used similar apparatus,
they of course differed in many details, and in fact Michelson's data
are velocities while Newcomb's are passage times. The stability of

2

X¢ for Data Sets 2, 4, 5 is remarkable. (This is not an artifact of

the choice k = 7. Fof example, with k = 11 Data Set 2 yields X2 = 13.520,
again close to Data Set 4 for this k.)

0f the data sets considered, only Data Set 3 is distinctly non-
normal. Data Set 1 appears very close to normality. The velocity of
light data, while not as close to the normal family as the supposedly
normal IMSL samples, show collectively behavior that suggests conver-
gence of Xz/n to a small value. We had a priori expected these data
to show significant nonnormality, resulting in P-values decreasing with
n, and perhaps stable X2/n. This pattern appears in simulations with
nonnormal distributions. As Stigler observes, the measurements of

Newcomb and Michelson are pioneering work with novel apparatus, and might

be expected to be less regular than more routine series of laboratory
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measurements. We have found no evidence against the common assumption

that series of careful measurements are normally distributed.

Acknowledgment. I am grateful to Regina Becker for assistance with the

computing required for Section 6.

References

Beckman, R. J. and R. D. Cook (1983). Outlier........ s. Technometrics
. 25, 119-149. |

("Birch, M.W. (1964). A new proof of the Pearson-Fisher Theorem. Ann.
Math. Statist. 35, 817-824,

Bishop, Y.M.M., S.E. Fienberg and P.W. Holland (1975). Discrete Multi-

variate Analysis. MIT Press, Cambridge.

Broffit, J.D. and R.H. Randles (1977). A power approximation for the
chi-square goodness of fit test: simple hypothesis case. J. Amer.

Statist. Assoc. 72, 604-607.

Cohen, A. and H.B. Sackrowitz (1975). Unbiasedness of the chi-square,
likelihood ratio and other goodness of fit tests for the equal

cell case. Ann. Statist. 3, 959-964.

Cressie, N. and T.R.C. Read (1983). Multinomial goodness-of-fit tests.

J. Royal Statist. Soc. Ser. B, to appear.

Fleiss, J.L. (1981). Statistical Methods for Rates and Proportions,

2nd Ed. Wiley, New York.
Huber, P.J. (1967). The behavior of maximum Tikelihood estimates

under nonstandard conditions. ‘Proc. Fifth Berkeley Symp. Math.

Statist. Prob. 1, 221-233.




28

Larntz, K. (1978). Small sample comparisons of exact Tevels for chi-

squared goodness of fit statistics. J. Amer. Statist. Assoc. 73,

253-263.

LeCém, L., C. Mahan and A. Singh (1983). An extension of a theorem of
H. Chernoff and E.L. Lehmann. In M.H. Rizvi, J.S. Rustagi and

D. Siegmund, Eds., Recent Advances in Statistics: Papers in Honor

of Herman Chernoff, Academic Press, New York, 303-337.

Mann, H. and A. Wald (1942). On the choice of the number of class
intervals in the application of the chi-square test. Ann. Math.
Statist. 13, 306-317.

Moore, D.S. (1971). A chi-square statistic with random cell boundaries.

Ann. Math. Statist. 42, 147-156.

Moore, D.S. (1977). Generalized inverses, Wald's method, and the con-

struction of chi-équared tests of fit. J. Amer. Statist. Assoc.

72, 131-137.
Moore, D.S. and M.C. Spruill (1975). Unified large-sample theory of

general chi-squared statistics for tests of fit. Ann. Statist. 3,

599-616.
Perlman, M.D. (1972). On the strong consistency of approximate maximum

likelihood estimators. Proc. Sixth Berkeley Symp. Math. Statist.

Prob. 1, 263-281.
Pfanzagl, J. (1969). On the measurability and consistency of minimum

contrast estimators. Metrika 14, 249-272.

Pollard, D. (1979). General chi-square goodness-of-fit tests with data-
dependent cells. Z. Wahr. verw. Geb. 50, 317-331.




29

Rao, K. C. and D. R. Robson (1974). A chi-square statistic for goodness-

of-fit within the exponential family. Comm. Statist. 3, 113gf1153.

Read, T.R.C. (1982a). On choosing a goodness-of-fit test. Ph.D. thesis,
Flinders University of South Australia.
Read, T.R.C. (1982b). Small sample comparisons for the power divergence

goodness-of-fit statistics. J. Amer. Statist. Assoc., submitted.

Read, T.R.C. (1983). Minimum distance parameter estimation for the

multinomial model. Canadian J. Statist., submitted.

Roscoe, J.T. and J.A. Byars (1971). An investigation of the restraints
with respect to sample size commonly imposed on the use of the

chi-square statistic. J. Amer. Statist. Assoc. 66, 755-759.

Schorr, B. (1974). On the choice of the class intervals in the appli-

cation of the chi-square test of goodness of fit. Math. Operations

Forsch. u. Statist. 5, 357-377.

Spruill, M.C. (1976). Cell selection in the Chernoff-Lehmann chi-square
statistic. Ann. Statist. 4, 375-383.

Stigler, S.M. (1977). Do robust estimators work with real data?
Ann. Statist. 5, 1055-1078..

Ylvisaker, D. (1977). Test resistance. J. Amer. Statist. Assoc. 72,
551-556.



