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ABSTRACT

The problem of estimating a multivariate normal mean under quadratic loss
is considered for the nonsymmetric situation. Shrinkage estimators have been
developed which allow incorporation of prior information, performing very well
when the prior information is correct while being quite satisfactory when the
prior information is misspecified. In this paper versions of these estimators
are developed which perform well even when the prior information is misspecified
for some of the coordinates of the normal mean. This is done by utilizing a

truncation technique developed by Stein for the symmetric situation.



1. INTRODUCTION

t

Let X = (X .o X have a k-variate normal distribution with mean vector

preeeX)
6 = (61,...,ek)t and known positive definite covariance matrix f. It is desired
to estimate 6, using an estimator §(X) = (6](X),...,6k(X))t, under a quadratic

loss

L(0,6) = (8-8)%Q(6-0),

where Q is a known positive definite matrix. An estimator will be evaluated

by its risk function
R(e,6) = Eg[L(e,8(X))],

that is the expected Toss. For the sum of squares error loss function, that is
Q =1, and for t = 021 (02 known), James and Stein (1961) showed that the usual
estimator GO(X) = X is inadmissible when k > 3 and that the estimator
s(x) = (1 - {k=2)a"yy | (1.1)
XX »

has uniformly smaller risk than 60. Estimators having uniformly smaller risk
than 60 for the:.general situation above have been found by many authors. See
Berger (1982a) for references.

A key feature of any Stein type estimator is that it has risk significantly

better than that of 60

only in a relatively small region (or subspace) of the
parameter space. For Stein estimation to result 1n'sign1ficant improvement,
therefore, one must carefully select an estimator designed to do well in the
region in which ¢ is thought 1ikely to lie. This is essentially done by finding
a Stein type estimator which shrinks towards the desired region. Often, regions

in which 6 is thought to lie can be represented as ellipses such as



Cc = {o: (e-u)tA'](e-u) < k}.

A more convenient way to think of this is to use Bayesian ideas, specifying a
prior mean u and covariance matrix. A for 6. Such simple features of prior infor-
mation are relatively easy to specify, as opposed to more involved features such
as the functional form of the prior. See Berger (1980, 1982a) for more dis-
cussion.
In Berger (1980) an estimator was developed which utilized u and A, was
significantly better than 60 if this prior information accurately reflected
the location of 6, and yet was 1little, if any, worse than 60 for ¢ in conflict
with the prior information. A simpler and in some ways better (see Berger (1982b))
version of this estimator is |
o (X B) T (X)) E
§(X)= X - T - $(3+A) 7 (X-u), (1.2)
(X-u) "(3+A) 7 (X-u)

where rk(v) = min{k-2,v}. For a general discussion of the properties of this

estimator see Berger (1980 and 1982b). Its desirable behavior is at least

indicated by noting that when

(=) B(4+R) 1 (X-n) < k-2, (1.3)

SRB is the usual conjugate prior Bayes estimator, while otherwise GRB is a

Stein type estimator with bounded risk R(9,8) (typically smaller than R(e,ao)).
Since (1.3) can be roughly interpreted as implying that the data supports the

prior assumptions (the marginal mean and covariance matrix of X are u and I+A,

respectively) the claimed desirable frequentist and Bayesian properties of GRB
seem plausible.

RB 0

The estimator ¢ is not always minimax (i.e. uniformly better than &

in terms of risk). While it can be argued that this is not a serious concern,

0 may be demanded by some (although this can entail a

uniform domination of &
substantial decrease in average improvement). An estimator allowing incorporation

of u and A and yet guaranteeing such dominance was developed in Berger (1982a).



For notational simplicity, only the case in which Q, §, and A are diagonal with
diagonal elements 95> 0?, and Ai’ respectively, will be considered. (The general
case can be dealt with along the 1ines of Berger (1982a).) 1If, without loss

of generality, the X are indexed so that qf > q2 ce z_qi, where

qi = qici/(°1+Ai)’ the minimax estimator is given coordinatewise by

2
k .
MB,\y _ % 2(j-2)
65 (X) = Xy = =5 (X;-u, )[ ) (q* -a% ) min{l, ==L}
‘ T (ol i1 9 TSIl

where

12 = 3 )P eRem ) and a, = 0

=y = a2y Ml 0T and Gy = U
This estimator will also often act like the conjugate prior Bayes estimator when
the data "supports" the prior, yet it is always better than 60 in terms of

frequentist risk.

RB MB

An undesirable feature of 6" and & 1is that, if the prior information is
misspecified for a few of the coordinates 0.4 then (X-u)t($+A)'](X-u) or the
||Xj-uj||§ will tend to be large and the estimators will collapse back to ao(X) =
even when the prior information specified for the other coordinates is fine and
could result in substantial improvement in estimation of those coordinates. One
could, of course, informally drop the offending coordinates from the simuitaneous
estimation problem, dea]ihg with them separately. While satisfactory to a
Bayesian, this would result in a procedure with uncertain frequentist risk, an
unappealing consequence for non-Bayesians. Also, it would be desirable to have
an automated procedure to deal with the problem.

The techhique we adopt is one employed by Stein (1981) in the symmetric

case. In place of (1.1) he proposed use of



2 .
'\ (Q—Zio mnl Z(’L')/lx"l})x., (1.5)
Lo Xj AT

Jj=1

where 2 is a large fraction of k, aAb denotes the minimum of a and b,
Z_i = |X_i! and Z(-I) < 2(2) < ... < Z(k) (].6)

are the order statistics of Z]""’Zk' Stein proposed this to (i) eliminate the
detrimental influence on (1.1) of a few very large 0: s and (ii) reduce the maximum
component risk of the estimator. This estimator was further developed and
analyzed in Dey and Berger (1983). 1In Sections 2 and 3 we apply this truncation

RB and GMB

technique to ¢ to reduce the detrimental effect of misspecified prior
information for a few coordinates. A beneficial side effect, as with (1.6),
will be a reduction in maximum component risk of the estimators (see also Efron
and Morris (1972)).

It should be noted that we are not considering an empirical Bayes situation
here, in which the'ei are felt to be related in some fashion and the other Xj
can be of use in estimating features of this relationship. The prior inputs
u and A are considered to be solely subjective inputs and are not estimable in
any way from the data. To a Bayesian, if there is no suspected relationship among
the ei, there seems (at first sight) to be no reason to combine the Xi in a
simultaneous shrinkage estimator. A justification can be given, however, in
terms of Bayesian robustness, i.e. robustness with respect to possible misspeci-
fication of the prior information. For discussion of this issue see Berger (1980,
1982b, 1983). At the very least, a Bayesian can be somewhat satisfied with GRB
since it will frequently be equal to the conjugate prior Bayes estimator with
inputs u and A.

As a final comment, the results of Berger and Dey (1983 ) should be mentioned.

In that paper it was shown, somewhat surprisingly, that coordinates should not



be dropped from the simultaneous estimation problem if there is no fear of prior

misspecification. (Intuitively, one might have -thought that large 0?+A1 on]d

make elimination of 0. from the simultaneous estimation problem desirable.)

2. TRUNCATION FOR &RB

RB

The following series of transformations exhibits 6 in a form where trunc-

ation can be easily implemented. Let;A be the (kxk) orthogonal matrix such

that
Q% =0 A (3+A) "/ 2hap(gen) TR AT (2.1)
is diagonal with diagonal elements q? > q2 > ... z_qﬁ, and define
=y A (3+A) /2571, xx = BX, e* = Be, | (2.2)

= B§BY, u* = By, and A* = BABY.
k
The problem of estimating 6* under loss ) q*(e* 6*) , based on X*, {*, u*,
and A*, can be easily seen to be equiva1z;l to the original problem of estimating
6 under loss (e-a)tQ(e—s).
It can be observed, as in Berger (1982a), that in the transformed problem
(f*+A*) = i*z. Thus the robust generalized Bayes estimator for eo*, as defined in

(1.2), becomes

k t* (X* *))

sRB™ (xx) = x - g~ (goroyx) (2.3)
X*-u* i* (X*-u*)
Defining Y = z*'](X*-u*) this can be written
re1Y1%)
(X*) = X* - ——I——‘z——-Y. (2.4)
Y|

This Tast form is very convenient, since an easy calculation shows that Y

has marginal mean O and marginal covariance matrix Ik. Thus, unusually large



values of IYiI indicate that the prior information about the corresponding (trans-
formed) coordinates seems to be in error, and will have the effect of collapsing

SRB* back to X*, even if the other Yj are reasonably small. Furthermore, Stein's
truncation procedure can be easily applied to (2.4). Thus we propose, as the

truncated estimator for o* (which can easily be transformed back into an estimator

for o),
. r (121%)2
§T(X*) = X* - ——I——I-Z-— (25)
Z
where
Z; = (san YUY EA Y] () 151,200k, (2.6)

and IYI(]) < |Y|(2) < ... < [Yl(k) are the ordered IYi]’ This estimator clearly
limits the influence of large IYil.

The remaining issue that must be addressed is that of choosing 2. The
approach we will take is to try to choose % so as to optimize the overall perfor-
mance of &% with respect to plausible prior distributions m. Thus we will

investigate
r(n,s%) = E"R(e*,6%).

The reason for looking at this overall measure is that §% will usually have satis-
factory frequentist risk for reasonable % (in terms of suE R(e*,dg)), so of
concern in choosing & is its overall average performance?

In choosing plausible m, recall that 6 was determined to have prior mean
p and covariance matrix A, but that further information was presumed not to
be available. Note also that, for the marginal distribution m*(y) (obtained by

transformation from the marginal distribution m(x) = E“f(x|e), f(x|e) being the

normal density of X), the Yi have marginal means 0 and variances 1. To make



further progress we will make the somewhat restrictive assumption that

p(y;), (2.7)

i.e., that the Yi are independent with a common marginal density p. This, of
course, will be the case if the original prior = is taken to be normal with mean
u and covariance matrix A, and it can be shown to hold in a number of other cases,
such as when 7 is an appropriate mixture of normals. Indeed mixtures of normals
can be found which result in m* as in (2.7) with p having tails as thick as
desired. This is important, in that it is precisely thick tails for the prior,
and hence m*, that are feared. (Thick tails for the prior are a convenient way
to represent the feeling that some of the prior specifications for the 0,

might not accurately reflect the location of the 0, To a Bayesian actually
believing in a prior distribution, thick tails are very reasonable since "“surpri-
sing" 6, are a fairly common experience.) The assumption that all Yi have a
common marginal is, of course, unrealistic, but we are only seeking rough guide-
lines as to how to choose ¢ and will virtually never have detailed information
about the functional form of = or m*; thus proceding on the basis of (2.7) is

not unreasonable. (In certain of the following results (2;7) could be relaxed
somewhat, but the relaxation leads to the same methodological conclusions.)

The following theorem gives a useful expression for r(w,s).

Theorem 1. Suppose m* is exchangeable (clearly true if (2.7) is satisfied) and
s(x%) = x* - g(]2)?)z, (2.8)

where g is a bounded, continuous, piecewise differentiable function. Then

r(m,6) = tr(@xp%) - eren)E™ T2g((2(%)e + [2]%049"(1217) - oP(121)30.
(2.9)



Proof. Clearly Y is (conditionally) normally distributed with mean n = f*~ (e*

-1

and covariance matrix j* Defining h(Y) = (h](Y) .»h (Y) Q(IZI

an expansion gives

EXLL(X*-0%-h(Y)) f¥(x*-s%-n(Y))]
tr(Q*) + EpLh(V)barh(V)] - 26X, 00-e%) Born(N) 1. (2.70)

R(e*,s)

Also,

e*[(X*—e*) Yorn(v)] = E [ $%(Y-n)) Yorh(y) ]
i Z q% 5$—- h. ()7,

the last step following from an integration by parts (i.e. use of Stein's unbiased

estimator of risk). Taking expectations over 6* (or n) in (2.10) thus gives

-
r(nc) = tr(Qp) - 1 a" [¢°(12]%)Z5]
it

K *
-2 ) Q™ [=o— h (V) ]. (2.11)
i= i

By the assumption of exchangeability of m*, it must be true that, for all i,

k3 k *
" [o%(12]%)251 = ¢ e [g°(|2}%)25]
i=
- Le™g(1219) 2/, (2.12)
and
£ [0 h, (V) f = L E™ § 2 h (] (2.13
Ly s (N1 = KE R A 13)

Letting IB denote the usual indicator function of an event B, it is clear that

: o
Yl < ¥y T

-1 = o
(sgnY )(sgnY. )I{IY > |Y | = IYI(Q)} if j# i,



and hence

5 _ 2y . 2
—B-Y__l-h'l(Y) - g(lzl )I{IIY-iI _<_ ly|(2)} + 29 (lzl )Zi

. + L. Y. Y.)I
X{ZTI{IYil f_lYl(g)} Z J(Sgn 1)(Sgn J) {lel N ‘le =

J#i

Using this in (2.13) yields

* * L
E™ [so— ho (V)] = & E" [g([Z]%)s + Zg'([ZIZ){.Z1 z

1

~|—

Using this and (2.12) in (2.11) yields the desired conclusion.

Corollary 1.1. If m* is exchangeable, then

r(r,6%) = tr(Qs) - %(trQ*)[ / (20-[2| %) (y) dy

| 2] <2-2

T -2z Py ay].

|z]|“>2-2

Proof. Simple calculation. ||
Theorem 2. When Q* = cI and 6 is as in (2.8), then

R(6*,8) = ctr{* - cEe*[Zg(lzlz)z

+ 12)%089' (121%) - (11911

Proof. Almost identical to that of Theorem 1. ||

Corollary 2.1. When Q* = cI, (2.9) and (2.74) hold for all m*.

E™[g(12]%)0 + 29'(|2]2)]2/2 1.

10

|YI(2)}}.

2
+ (k-z)Z(l)}]

(2.14)

(2.15)
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*
Corollary 2.2. When Q* = cI, R(e*,sz) < R(e*,so ).

Proof. The same calculation as in (2.14) shows that R(e*,az) < ctri* = R(e*,GO*). |

For particular m*, the expression (2.14) for r(n,al) could be minimized
numerically over & to find the optimal choice of 2. Since m* will rarely be
known, however, we seek general guidelines by looking at the asymptotic (large k)
situation as in Dey and Berger (1983) (which dealt with the symmetric case).

We consider the choice
2 = [akl], (2.16)

where 0 < A < 1 and [n] denotes the nearest integer to n. Thus we will be

considering truncating the fraction 1-) of the largest |Y1]. Of interest will be

() = Time [ 2e-lz[Bmydy ¢ [ ((e-2)% |2 " () dy],
k-0 2 2
|z} <e-2 |z|“>2-2 (2.17)

since an easy calculation (using (2.14)) shows that

r(x) = lim r(n,éo*)*— T(ﬂ,ﬁz)
koo P(m,607) = r(r)

where r(w) is the Bayes risk of the optimal Bayes rule. (Of course, m is the
prior corresponding to m*.) Thus r(A) can be interpreted as the asymptotic .
proportional improvement of s* over 60* compared with the maximum possible

improvement. We will seek a value of A which seems to provide good r(a) for

a wide range of m*. To this end, the following theorem is needed.

Theorem 3. For 2 as in (2.16) and m* as in (2.7),

r(a) = (2.18)

2x -V if A2V,
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where

- Em*[Yg/\az(i)]

<Z
t

ald) 5 2
ym*(y)dy + o~ (2)(1-1), (2.19)

1
N

-a(A)

and a(2) is the ath fractile of lYil defined by

a(X) Y
J m*(y)dy = A.
-a(k)

12
|Z]

Proof. Thd idea of the proof is to note that |Y|(2) + o(r) and k™ >~V

and that the condition [Z|2 < #2-2 becomes in the limit (after dividing by k)
VA < A. The rest follows in a very straightforward way from (2.17). The details
are very similar to a related proof in Dey and Berger (1983 ) for the symmetric

case, and will be omitted. ||

It remains only to try various m* in (2.19) and calculate the A maximizing
(2.18). Ideally, one would want to use m* that clearly correspond to actual
priors w, but for calculational simplicity attention was restricted to m* of

the form (2.7) with the p(yi) being t-densities given by

2
r(nt1)/2) (g 4 _f%;-(n+1)/2, N (2.20)
/nr T(n/2)c no -

p(Y*) =

This class provides a wide range of tail behaviors for m*, and should be suffi-
ciently representative of realizable marginals for our purposes.

One final choice that was needed was that of appropriate scale factors o for
the p(yi). Here we reasoned as follows. In talking about a prior mean p and
covariance matrix A, one is implicitly thinking in terms of a conjugate normal
prior. For more realistic thicker-tailed priors, however, means and variances may not

even exist. Thus it is more realistic to think of u and A as indicating prior
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medians and fractiles. For the conjugate prior, the'Yi will be marginally
normal with mean zero and variance one, which can be thought of instead as
normal with median zero and quartiles +.68. Thus we choose the scale factors
o in (2.20) to give densities with the same quartiles x.68. (Again, there is
some inaccuracy in matching up the marginals instead of the priors themselves,
but we are only seeking rough guidelines.)

The five cases considered were n=1, (Cauchy density), 2, 3, 4, and = (normal
density). The corresponding matched o were .68, .82, .89, .91, and 1, respec-
tively. Table 1 gives values of r(A), calculated from (2.18) and (2.19).

(Formulas for VA in these cases can be found in Dey and Berger (1983 ).)

Table 1

Values of r(a)

n

A 1 2 3 4 ®

0 0 0 0 0 0
A 19 19 .19 19 19
2 36 35 .35 35 35
.3 50 49 .49 49 48
4 62 61 .61 61 60
.5 70 70 .70 70 70
.6 63 77 A7 77 79
7 63 73 .80 83 86
.8 45 73 .78 83 92
.9 24 59 71 81 96

1 0 0 .42 60 1

As. can be seen from Table 1, the optimal values of A seem to be about .5,
.6, .7, .8, and 1 for the five cases studied. A good compromise value seems
to be A = .8, which costs about 8% in the normal (n=w) case, is optimal for
n=4, costs 3% when n=3, and costs 5% when n=2. (The cost for the Cauchy case is
36%, but the Cauchy case may be a bit extreme.) Of course, these results are
asymptotic results as k + », and must be modified for smaller k. A choice of

2 such as
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2 =3+ [.8(k-3)]

seems reasonable for general use.

3. TRUNCATION FOR &'B

Consider the estimator GMB given in (1.4), where recall we are assuming
(for simplicity) that Q, , and A are diagonal. Paralleling (2.1) and (2.2),

define q¥ = q1c§/(o§+Ai)f(assumed to be decreasingly ordered),
_ .2 1/2, , 2 _ (.2 1/2 2
X = (o3thy) "X /0y, 0F = (oy+Ay) 7705/,

* 2
o? = (o§+Ai)/c§, u? = (0§+Ai)]/2u1/01-

The estimator GMB was derived (see Berger (1982a)) from consideration of

the "subproblems" of estimating the first j coordinates of o*, namely

ox) = (e*,...,eg)t, based on X*J = (x7,...,x§)t.

use the truncation methods of Section 2. Thus define

In each subproblem one can

_ 2%
Yi - (X$ - U?)/Gi s

and order |Y][,...,|Yj|; denote the resulting order statistics

]Y]%%% < ‘Y]ggg < ... < ]Ylgg;

(The superscript j is included because the ordering will typically depend on
the subproblem, j, considered.) Then let 0 <25 < J denote the desired truncation

point in the subproblem, and define
(J) . (J)

Zi - (SgnYi)(lYill\‘Yl(i))
and Z(J) = (Z%J),...,Z(J)). The truncated robust Bayes estimator in (2.5) for the

J
subproblem (with a sTightly altered choice of rZ) is
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+

sl (xdy = xd _ min1, E%;%g;%?-}z(j) , (3.1)

where a+ denotes the positive part of a. Note that 6(]) = X*] and 6(2) = X*2,
since zj < J implies that (zj-Z)+ = 0 for j=1 or 2. The use of the constants
.2(zj-2)+ instead of (zj-Z)+ in the estimators is because X*j-(Y1,...,Yj) can be
seen to be the conjugate prior Bayes estimator for the subproblem, and it seems
desirable from a Bayesian viewpoint to use an estimate as close to X*j-Z(j)
(and hence as close to X*j-(Y],...,Yj)) as possible. The choice Z(Qj-2)+
is optimal from this viewpoint, in that it is the largest possible constant for
which the resulting estimator is still minimax.

As in Berger (1982a), the appropriate estimator for the entire parameter

vector o* is constructed from the 6(3) (based on an idea in Bhattacharya (1966)),

and is given componentwise by

k . .
= g+ (3) (yxdy
s¥(X*¥) = g% jZi (q%-q¥,q)637/ (x+)
_ * (j) *_] k * * . 2(2j‘2)+
= Xi - Zi [qi jzi (qj-qj+])m1n{1,.—1213717-}], (3.2)
where q§+] = 0. (Of course, multiplying by °§/(G§+Ai)]/2 will convert this

back to an estimate of ei.)

Theorem 4. The estimator &* defined by (3.2) is minimax (i.e., R(e*,s%) 5_R(e*,60*)

for all e%).

Proof. Following the argument in Berger (1982a), it is only necessary to show
that the subproblem estimators G(J) in (3.1) are minimax under sum of squares

error loss. But using Theorem 2, a calculation gives

2% 3),2
o - gl - 120012y

R(o*,64)) = T o

I B~1,

—te
—

PANE < 2(2,-2)")

* - R(e*,ao*). |

A
1l b~
Q
™N

e
—
]
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No attempt will be made to formally investigate the effect of truncation
in 6%, but the nature of the construction of the estimator from the subproblem
estimators suggests that the %j should be chosen to be approximately equal to
the "optimum" truncation values in the subproblems. The analysis in Section 2

thus suggests the choices

Py = 3+ [.8(j-3)].
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