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ABSTRACT. This work yields improved estimators for quadratic loss of

m
linear functions, c¢=: asgy + 4o, of parameters indexing m inde-

j=1
pendent, exponential distributions. Here sz 0, §> 0 are assumed known,

while £; and ¢ respectively, denote the unknown left hand endpoint and
scale of the ith exponential population from which a sample of n; inde-
pendent observations is available. In the case when §> (zni +1) Z“i/(mni)
or = aqgy + o and 0 = § < a]/n], we construct an alternative to the
best affine equivariant estimator, 20, the risk of which is never more and

actually less than that of &O over much of the parameter space.
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1. INTRODUCTION

This paper is concerned with the estimation of Tinear parametric
functions of m independent two-parameter exponential populations. Samples

of independent observabies, Xi1,...;X , are available from the i-th of

1n1-

these, the population density function of which is

exp[—(x-gi)c']]c'] or 0 according as XZE; OF < £y i=1,...,m.

Our work is aimed at finding a superior alternative to the best affine

equivariant estimator of the parametric function
£ =af + 80 = LasE; + 80 (1.1)

of &= (gy,...,§,) and o, for known o and §. Of particular interest are
the choices (i) a = ey the jth basis vector, (ii) « = 0 and

(iii)a= On'],...,m']). In (i) ¢ is a quantile of the j-th population when
§>0. In (ii) ¢ = o, the scale parameter when &= 1. In (iii) one obtains

E+ 80 = m']

Lg; + 8o which is of statistical interest. However, it is not
possible to derive results which cover all possible choices of o without re-
ducing the analysis to a succession of special cases. For brevity we restrict

our analysis to the case of greatest statistical interest,

a; = 0,8=20,i=1,...,m, (1.2)

for which certain general results may be stated.
An estimator's performance is assumed to be measured by the quadratic
loss function, (2 - c)zloz. With respect to this loss function, the best

affine equivariant estimator is EO = aX’ + dOY (see Section 2) where

X = (X],...,X ), X. = min{Xij: 1<j=<n.}

m 1 1 (1.3)
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Our objective is to construct an estimator, Z, for which E(E-c)zfsE(EO-c)z
for all £ and o with strict inequality for some parameter values. In other
words we prove the inadmissibility of 20 for sqme values of o and §.

In the remainder of this section we state some implications of our
findings. Related earlier work is acknowledged and described in Section 4.

Other aspects of the problem are discussed there as well.
Let « = 0 and 6 = 1 in equation (1.1), so that 20 = dyY = n¥/(n-m+1).

Then (see Corollary 1)

dg¥[1 - v + y min{1,T}], X; > 0 for all i

g = (1.4)
dOY, otherwise
where T = [zzxij/(n+1)]/[(zzxij - Znixi)/(n-m+1)] is better than EO if
0 <y =2. Observe that T'] is, essentially, the 1ikelihood ratio for
testing HO: E1 = «-e S g, = 0. When y=1 our procedure, 7, takes values,

zzxij/(n+1) or (zzxij -Znixi)/(n-m+1) according as this preliminary test
accepts or rejects HO' Stein (1964) gave an analogous interpretation of
his estimator of the normal variance.
It would seem plausible that whenever § is "large" relative to o,
similar improvements should be possible. Indeed they are found in Corollary 1.

If § > (n+])2“i/(m"i) then

aX” + doY[l -y +y min{1,6T/(6-Zai/ni)}], if X; > 0or all i
(1.5)

ot
1]

aX” + dOY, . otherwise

is better than 20 where T is defined in equation (1.4) and 0 < v = 2.
As in equation (1.4) the significance level, a*, of the preliminary test

in equation (1.5) does not depend on y, 0 < vy < 2. However, in the latter



case it does depend on Zail(sni). As § decreases to (n+1)2ai/(mni),
the acceptance region contracts from that above for o = 0, {T < 1},

to {T < 1 - m/(n+1)} which maximizes o*. Under Hj, statistic T has
the representation T=[1-m/(n+1)] F where F has an F distribution and
a* = P[F < 1].

These results show that gains in estimating ¢ when § is large
are due to better estimating its component o. The size of the pre-
Timinary test's acceptance region (the region where improvements over
20 are possible) is a decreasing function of Z“i/(5"1) < 1. Improvements
are more difficult to achieve when this latter quantity is large than
when it is small.

If 6§ is a small positive number, our methods fail unless « is a
scalar, say af” = o & - The alternatives to 20 which are given in
Corollaries 2 and 3 do not seem to admit any simple interpretation. The
gains which they achieve are not made, in particular, by implicitly

tuning the estimator of o.



2.  TECHNICAL PRELIMINARIES

The sufficiency principle reduces the problem to observables (X,Y)
where X and Y are defined in equation (1.3). The joint density function
of (X,Y) is c'm']p(u,v) where u = (x-£)/o, v=y/o and
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p(u,v)= y-m exp(-Znjuj - nv), n>m.

A fully equivariant estimator, 2, of £ = aE” + 80, @ = 0, transforms
as £ ~az + ac when X > aX + ¢ and Y »~ aY (a > 0) since the parameters
transform as £ -~ a& + ¢ and ¢ - ac while ¢ >~ az + ac. It is easily shown
that any of these procedures has the form z = aX” + dY, for some real d.
Moreover, the examination of the risk of these estimators shows that the
best choice within this class is

20 = oX” + dyY, (2.1)

where dg = n(nfm+1)'](6—2ajnj']).

We study the inddmissibility of a more general scale-equivariant
estimator, z* = 9o(Z)Y, Z = X/Y. Notice that in the case of the best
equivariant estimator,

¢0(Z) =9l + do.

Guided by the concluding remarks of Stein (1964) we look for an improvement
upon ¢* of the form

z = z* - ¢(Z)Y

where ¢ is a real-valued measurable function. The risk of this procedure
depends on (£,0) only through £/c so it may be assumed without loss of
generality that o = 1.

The proo% of the following Lemma is based on the inequality x(x-2) < 0
for 0 < x < 2, and we omit it. Notice however that in our situation this
result is more precise than Theorem 3.3.1 of Brewster and Zidek (1974) which

deals with arbitrary bowl-shaped loss functions.



LEMMA 1. Suppose that there exists a measurable function W = w(Z)'such.
that,¢O is a function of W and

2 sup d(g,W) < ¢(W) <O

Q_E g
0 < ¢(W) =2 inf D(g,W)
g
where
D(gW) = ¢g - (ag” + 8)T
and

- _ 2
T = T(g,W) = E(Y[W)/EL(Y [W).

If =Ygy - Yo (W) is different from z*, with positive probability,
then it improves upon c*. '

In the sequel, W is typically Z or one of the coordinates of Z.
More generally let W = (Z],...,Zz)T, g =m. Define J(+) ={j: 1=j=2, Zj>01,
3(-) = {j: 1sj=x, Zj < 0} and let A = max{O0, max{aj/Zj: jed(+)1} if J(+) is
nonempty, A = 0 otherwise. Analogously let B = min{gj/Zj: jed(-)} if 9(-)
is nonempty and B = = otherwise. Then A < B with probability 1 and for
given W = w , T depends on & and w only through A and B since

T={yQWMW{y4Mw®, (2.2)
‘ %
where I =(A,B), fw(y) = yN'1exp(-ys), N=n+g-m and s=n+ J§1 n;z; =s(w).

It is easily seen that for a fixed W=w and with an abuse of notation,
T=T(A,B) is decreasing in A and B. We now consider the special case, A=0
and s = 0. Let K denote a Poisson random variable with mean t= |s|B.



LEMMA 2. If A=0ands =0,

T = (|s]/t)E(N+K+T) "V E(N+K#2) 7 (2.3)
. _ ) t N N
PROOF. Since A=0and s =0, T=|s| / y exp(y)dy/ 6 y exp(y)dy.
0
But
t N NeT LN
s y'e¥dy = exp(t)t S u exp[-t(1-u)]du,
0 0
and e't(]'u) = EuK. The remainder of the argument is now obvious.

The proof of the next result is straightforward.

LEMMA 3. For any function h such that E|h(K)| < =,

tEh(K) = EKh(K-1). (2.4)

These results now lead to

LEMMA 4. If s <0, c<0, and A = 0,

a - (aB+c)T = -a(N+ K+ 1)1 +cs(K + 1) (2.5)

where
0, if csA] < a

.
K:
r, if csAr+] < a < csh, : (2.6)

and A= (W) (M) () (e1) T, e = 1,2,

PROOF. By Lemma 2, (aB+c)T = (attc|s|)t | X E(Neks1)™V/E(N+K#2) ™!,

Lemma 3 implies that tE(N+K+2)-1 = EK(N+K+1)~1 and LE(N+K+1) = EK(N+K) ™ .
So a - (aB+c)T = a - EK(N+K+1)=T[a+a(N+K)~1 - csk~11/EK(N+K+1)=T =

-E[a/(N+K*) - cs/K*] where P[K* = k] « kP(K=k) / (N+k+1). Thus

a - (aB+c)T = -max{H(k): k = 1} where H(x) = a/(N+x) -cs/x, x = 0.

Since H has a unique maximum, the conclusion follows.



LEMMA 5. If z5> 0 for all j, W=2zand § >0

inf D(g,H) = ¢, - az” - ss(N+1)"1.
g
PROOF. Observe that the infimum in the condition of Lemma 1 is

%0 - sup(ag‘ + 8)T = ¢g = SUP ag”T - sup 6&T.

But &g’T < az” max (gj/;j)T < 0z”AT(A,») < oz~ since AT(A,») = 1 and this
with T = s(N+U'] jmplies the conclusion.

The last technical result which we shall need deals with the case
§ >0, a= ay > 0 (a scalar) and W = Z]. In this case s = n + NyZq-

LEMMA 6. If 6 >0 and Z = z is given with s = nin;z; = 0, then

sup D(g,W) = ¢, - agz;(N +2)/(N +1) » (2.7)
g
and
! v n "
sup D(£,H) = g - agzy(N + K+ 2)/(N+ K+ 1) +85/(K+1), (2.8)

where K is given in equation (2.6) wi

th a = aq]z4[, c = -8 and N=n-m+l.

PROOF. This is a straightforward application of the easily derived inequality
BT(0,8) = (N+2)(N+1)"', and Lemma 4.



3. PRINCIPAL RESULTS
The first of these pertains to the case when § is large.

THEOREM 1. Let s = n + In.z, and for some y, 0 =y = 2,

z = Y[¢0 - v max{0, ¢0 - az” - 65(N+1) 1] (3.1)

if zy > 0 for all j, and ¢ = z* = 9! otherwise. Then ¢ is better than c* if

Z # £* on a set of positive probability.

PROOF. Apply Lemmas 1 and 5.

As an app]ication of this result, consider the case ¢* = 20, i.e.,
g = @z” + dg- Then Z of equation (3.1) is d1fferent from CO if for a set
of z's of pos1t1ve probab111ty, dg - 65(N+1) >0, i.e., if
§ > (N+1)m™ Zaj/nj. This yields the following result.

COROLLARY 1. If & > (N+1 )m-]ZaJ-/nj then, given Z =

G =2y - v ¥ max(0, dg - ss(W1)71) (3.2)

is better than ¢ if0<y=s2.

In the next theorem we construct improvements of the kind given in
 Theorem 1.

THEOREM 2. Suppose § > 0 and Z = z is given. Let

z = Y[¢0 - v min{0, ﬁ}]

if zq < -n/n], 0<y=<2andz = ¢0Y otherwise where D is either of the
upper bounds given in equations (2 7) and (2.8). Then ¢ z is better than z*
if it is different from *, with positive probability.




PROOF. This is an immediate application of Lemmas 1 and 6.

Theorem 2 may now be applied to the case of prinicpal interest,

COROLLARY 2. If 0 = & < ajn] (n-m+2)™', Z = z, then

~

-V min{0, dg - a;z/(N+1)}, z; = - n/ny

A

Zo otherwise

is better than 2‘0 when 0 < v = 2, where N = n-m+l.

PROOF. Apply Theorem 2. Under the hypothesized constraints on &,
z # 20 on a set of positive probability when &, < 0.
To simplify the statement of the Tast result in this Section let

A = 6n1/u1 and fr = r(N1+r)'], r =0,1,2,... where N=n-m+1.

COROLLARY 3. Assume A < 1 and that Ao # f, for any r. Let

z =25~y Y min{0, dj - a]Z]](N +r+1) + s(ningzy)/(r+1)}

when
< -1 '

and ¢ = 20 otherwise.

Then z is better than EO for 0 < y < 2.
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PROOF. The proof consists of showing that z is different from io with
positive probability when the bound given in (2.8) is used. In the present
case, 9, = @qZy*d, where _do==nN'](6 -a]n{1) and N=(n-m+1). Thus
d =na n']N‘] (a-1) and:the upper-bound:in (2.8) becomes d.-a.z (N+k+1)'1+
0 1 ]& : , N N 6 "1 L
s(mtngzp)KH1) 7T = nay T TL(ATINT + u((Nke]) ™! - a(Ke1)TH) + a(Ke1) T where
N
K=0 or r according as (A—f]fz)u <A or (A-fr+]fr+2)u <A< (A-frfr+])u,
r=1,2, ... s U= -n1Z]/k. |

Let R=min{r=1: 4 - f f . =0} Then 0<K<Rifus>T,
probability of which is ‘positive.. - The proof reduces to showing that with

' ., N - N _
positive probability, (A-T)N l+u[(NK¥1T - a(ke1)71T + a(k+1)7! = B, say,
’ n

is negative for some K=r < R and an associated set of u-values which has
positive probability for each of a set of parameter values.

If R=1, i.e. 0 < A < ff,, then K = 0 with probability 1.
In this case, B= (a-1)N"1 +u[(N+1)71-a1+ s and, sice & = £1f, < £ = (N1)7),

B's infimum for u > 1 is attained at u=1 where B==N'1[A-(N+1)']] < 0. So

2 differs from 20 with positive probability and the proof is complete.

Now suppose foK+1 < A= fK+]fK+2 so that R=K+1, 1 = K < », Then K=r

< - -1 - < - .
when L <u <L where Lr"A(A'frfr+1) » 0=r=Kand Ly, == In this

r+l
case, B=(A-1N"V + u[(N+r+1)™7 = a(r+1)717 + a(r+1)™! and this is minimized

at either u==Lr or Lr+1 for0=r< K., At r=K, it is minimized at u==LK since
(N+K+1)'1 - A(K+1)'] > 0 and LK < u but this fact will not be needed. At u==Lr,

B=(a-1)N"] + H(r) while at u=L,.,r<K, B= (a=-TIN"T + H(r+1)

1
where H(r) = NA[A(N+r)(N+r+1) - r(r+1)]'1, for all r.

For a continuous argument, x, H(x) is minimized when x=¢ =[NA-%(1-A)][1-A]'],
i.e., (C+%)(N+C+%)'] = A, But ¢ < K since otherwise, K(N+K)'1 < (c+’/2)(N+<;+’/z)-]E
(K+1) (K+2) (N+Kk+1) " T (w+k+2) ™1 which s impossible if K(MK) = 2 as is true here

where K=1land N=1. Sor<z<r+ 1 for somer, o =r <K; let p denote
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this value of r and e=p -z so that p=z+e. Then H(p) = (1-_A)N']\)(v+’4,-e2)_1

- N2 -2 Cy - : - : -
v = aN(1-2)7%, and H(T+p) = (1-a)N To(wt%=[1+e18) 7. 1 H(o)<(1-a)N"T, B<0 at
usL,., r = p and the proof is complete. .Otherwise, H(p) EJ(J-A)N_], i.e., |

Sl <e=<-%sothat 0 <1+ e=<%, H(1+p) = (1-A)N'] and B=0at r=1+p and

u=L]+p. In fact, B < 0.since B=0 entails e=-%, i.e. ¢z=p + % or
A==fp+], a possibility which is ruled out by our hypothesis. So again the

proof is complete.
This proof reveals why A<1 is required in the application of (2.8).
For if 14, B is minimized by u=L ., when K=r. But then B=(a-T)N"' +

H(r+1) > 0 for every r.
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4, DISCUSSION.
The approach embodied in Lemma 1 for finding superior alternatives to

best equivariant estimators and variants of it have been used elsewhere
(see Stein 1964, Zidek 1971, Zidek 1973, Brewster 1974, Brewster and Zidek
1974, Shorrock and Zidek 1976, Sharma 1977, Tsui, Weerahandi and Zidek 1980
and Rukhin and Strawderman 1982)} Brewster and Zidek (1974) point out that
this method differs from those which yield estimators like the celebrated
James-Stein rule. It seeks improvement on an orbit-by-orbit basis, where-
as the superiority of the James-Stein estimators is achieved by integrating
across orbits.

Our results for small § = 0 generalize those of Rukhin and Strawderman
(1982) (hereafter RS), for the same case and our proof is a straight-forward
adaption of theirs. They choose y = 2 in this and the other cases, but this
choice is somewhat arbitrary since there is no uniformly best choice among
the rules indexed by v.

The result of Corollary 1 when specialized to the case of quantile es-
timation and m=1 differs from that of RS and is according to their numerical
comparisons, inferior to it. Their analysis for large & is a variant of ours,
which judiciously incorporates the "integration by parts" method of Stein
(1973), something we are unable to do when m > 1 for technical reasons. In
effect, they transform 3P X], Y into S, T which are independently distributed,
T is ancillary (given o = 1) and S has the gamma distribution with scale para-
meter -&1 when X] < 0 and hence gy < 0. By this formal device the problem is
forced into a form which is amenable to the application of Stein's method.

We have ignored the cases, 6 = a1r/[n-m+1+r] r=1,2,. . . As is
observed in RS a superior alternative to Eo exists here as well.

It is not known if, when a]/n1 =68 =< (n+1)a]/(mn]), the best equivariant
estimator of ajgy + &o is admissible. Some support in favour of this proposi-
tion is given by RS when m=1 and Rukhin (1983) proves this result in the same
case. On the other hand, even for 8's in this range it seems unlikely that
the simultaneous estimator of “igi + 850, i=1,..., mwould be admissibie at
least if m = 3 by analogy with the James-Stein result. This issue too remains
open.



13

Here, as in all similar studies, it is unclear whether the gains from
fine-tuning the parameter estimates are worthwhile when measured against
the inevitable approximation error introduced by the choice of the under-
lying sampling model. So the potential practical impact of such work
remains unclear, even though the exponential model is often assumed in the
reliability theory (for references see RS). Such work would seem to be en-
dowed with  theoretical interest because it be]ongs-to the theory of
multiparameter estimation. Results such as that of James and Stein (1961)
indicate that large sample theory may well be misleading when applied to
moderate samples from multi-dimensional statistical models. The two-parameter
exponential model is of particular interest in this context, because of its
structural irregularities, combined with its mathematical tractability.

ACKNONLEDGEMENT. We are indebted to a referee for an extremely careful review.
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