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Abstract

Assume the bivariate random vectors Y(i) (i =1, ..., k) are independently

(1) (i)
o Mmoo .

distributed as‘N2(0,z(i)), where z(i) = o(i) 0(1) We wish to test

12 22
oty LT
the hypothesis 0 ) = 0 n (i,d=1, ..., k),

i i J J
do7y" + boyy aoqy” + bopy

where a and b are fixed constants. The ML-estimates of Z(i) under this

hypothesis are derived, and their consistency is proved. The practical meaning
of some special choices of a and b is explained. The case a = 1, b = 0 is
discussed in detail for k = 2 populations. Generalizations to higher dimensions

are outlined.

Keywords: bivariate normal distribution; log=1ikelihood ratio; characteristic
vectors; equality of regression slopes



1. Introduction

It is often useful to model multivariate normal data with a priori
restrictions on the covariance matrix. Such restrictions can arise from
situations where some variables are independent, conditionally independent,
equally correlated, etc. In a broad sense, most tests of one-sample-hypotheses
about covariance matrices (Anderson 1958, p. 230ff, 247ff, Morrison 1976,

p. 247, 250, 253) can be considered as tests for special patterns. ML-
estimation of some special patterns is discussed by Anderson (1970, 1973),
Szatrowski (1976, 1978, 1980) and by Rubin and Szatrowski (1981).

In contrast to this, the simultaneous estimation of k > 2 covariance
matrices under restrictions of some parameters has not been treated. A
frequent assumption is the one of equality of all k covariance matrices.

When thé hypothesis of equality is rejected, the usual reaction is td estimate
every matrix individually. However, there might be some "similarity" between

two or more matrices which could lead to a reduction of the number of parameters.
This paper treats the special case of 2 dimensions and the restriction that in
every population the ratio of the covariance to a weighted sum of the variances

is the same, that is

4y 4
H.: - ~ = _ ~ VisJ <k (1.1)
0 (1) (1) (3) (3) -
acyq" + bog, a0y + boyy
where a and b are fixed constants, and

o) off 0.2
B, =
(1) (i) (4)
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is the covariance matrix of the i-th population (i = 1, ..., k).
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Actua]]y; the study of this brob]em was motivated by investigations on
two properties of the characteristic vectors of the matrix ZZ})Z(Z), which turned
out to be special cases of the problem stated above, as discussed in section 4
of this paper. Since it was found that a common treatment could be given to
both cagés, the general solution is given here rather than the solutions of

the two special cases.

2. Derivation of the ML-estimates

Assume Y(i) i=1, ..., k are independently distributed as
N2(0,z(i)), z(i) > 0. Samples (Y(i)z)’ 2=1, ..., n; (ni > 2) are taken from

the k populations. Let
n; |
Sy Ty 4y Yo Ve T (2.1)

denote the sample covariance matrices. Then the common log-likelihood function

of the k samples is

k
1 -1
B, L Bg) Tz L mleslzg | e areg) s(q))

k

- log (2n) } n; (2.2)
i=1 :

While in the unrestricted case S(i) results as the ML-estimate for E(i)

(Muirhead 1982, p. 84), estimation turns out to be more complicated under HO'



Assume that ab # 0 and ac%}) + boéé) £0(i=1, ..., k). Now we reparametrize

as follows:
( N
i) _ . (i) (1)
o @ aoy;" * bog,
o5 = aolil - pold) } i=1, ...,k (2.3)
- (1) i)
c = 0w )
Thus the parameter space under Hy is
(i), (i)
?1 't 9y ¢ o ()
2a 71
p = {Z(-l), ceey Z(k): Z(_i)= . s Z(_i)> O:Vi} (2.4)
(i)_ (1)
c o) Y1 T %2
1 2b

Since the reparametrization (2.3) is nonsingular, Z(i) can be estimated by
estimating q>§i), q>£i) and ¢ (Anderson 1958, lemma 3.2.3., p. 47). Note that
the reduced parameter space p contains only 2k + 1 parameters, compared with‘3k
in the unrestricted case.
To simplify notation, let D, = |x,.,| and Z, = o(i)s(i) + o(i)s(i) -
o i (i) i 11 "22 22 "1
20%;)5§%)s thenty (ZZ})S(i)) = Z,/D;. Note that in terms of the new

parameters we have
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D, = - [(1-4abc2) cp-f” - <p§_‘) ] . odi=1, ..,k (2.5)

Z, = o ﬂuﬂ‘) - dabe s{i)) o () {0 (péi)], P=1, ok (2.6)

where we have set

(1) 46(0) 4 peli)

" 1 22
f i=1, ...,k (2.7)
Wl *

. k ) v
(| (1) q}£1))’ i=1, ..., k, c) = Z] n; (log D; + Z./D.) | (2.8)

Setting the first derivatives of (2.8) with respect to qn%l) and tp£1) equal

to zero yields

(1-42bc?) (2, - ;) o) = (i) - 4 apes{d)) D, (2.9)
and
(z, - D,) q)éi) = wiio, (2.10)



Assume now that 4abc2 # 1, a condition which we will have to discuss later. Then

solving (2.9) for wéi)(Zi-Di),putting this into (2.10) and solving for wgi)q>§i)

yields

(i (i
i) (1) i w]])- 4abcs];) (i)

1-4abc? 92

(2.11)

Putting (2.11) into (2.5) and (2.6) and some algebraic manipulation gives

12 2
()% - 1. ()
Wo Dy T mab 92 9 (2.12)
and
w(i)zz = S w(i) (1) (2.13)
2 ST 7ab Y2 w29 | -

and therefore

2 . . .
w§1) (Zi - Di) = ?%E' <p£1) gi(w£1) - %'q)£1)) (2.14)
where we have set
(1) (1)y2 |
(w - 4abess,’) \2
9= — ) _ (2.15)

1 - 4abc

Putting (2.12) and (2.14) into (2.10) gives

(1)) = w(I) ————5 9; q)§1) (2.16)



Assuming that 9; # 0, it follows that

. 2 13
(]) <p(1) = (1) (2]7)

i . .
The solution q)£1) = 0 of (2.17) would imply either w£1) =0 or D; = 0 by

(2.10). The latter case would mean singularity of E(i)‘ Therefore we have the
ML-estimate

&;éi) = wéi) = asgi) - bsgz) (2.18)

Note that this solution holds also for wéi) = 0, since we avoided divisioh by
wgi) in the above derivation. This result shows the rather surprising fact
that the»ML-estimate Q)éi) does not depend on the common parameter c. Actually,
this is the justification for the reparametrization (2.3).

Before deriving the estimates for q)%i) (Gi=1, ..., k) and c, let us

check the two assumptions made above.

Assumption 4abc2 # 1: Assume the opposite is true. Then we have c2 = 1/4ab, and,

by (2.9), ¢ = w]i)/4abs$;), since D; > 0. Combining these two equations gives

(1) . 4ap(s(d) (i)zsgg))

5 12 - s]] . Since

](1')2 - 4abs§;)s£;) = W

]; s Or W
ab > 0 in this case, the last equation can only hold if w§1) = det S(i) = 0,
an event which occurs with probability 0.

Assumption g. # 0: Otherwise we would have
i

. . 2
(w§1) -4 abcs§;))2 = w§1) (1-4abc2) ' (2.19)



from which we could get an estimate of c by solving for c. Written as a polynomial

in ¢, (2.19) becomes

12 . .
()2, (1)% 2 ( ) (i) (i) (i) _
(4abs * Wy ) ¢© - $12°C * 59s5," =0 (2.20)
2 2
The discriminant of this equation is 4w£1) (s(j) (1) (1)), and a real
solution exists only if wé 1) . 0 and det S(i) = 0, which has probability 0.
Therefore 95 # 0 can be assumed without loss of generality.

From (2.18) and (2.10) it follows now easily that

, = ZDi (i=1, ..., k) (2.21)

A

' A= _ . a :
and therefore tr z(i)S(i) 2 must hold for the ML-est1m?tes 2(])§ ceos z(k).
Putting (2.18) into (2.11) gives the ML-estimate for q,$‘):

- 12 _ - (2.22)

() w%i) - 4abcs(i) as%j) + bsgz) - 4abcs§;)
! 1-4abc? 1-dabc?

P

which depends on the estimate of the common parameter c. For estimating c, we
need -the first derivative of h with respect to c, set this equal to zero and

use (2.21) to obtain

H~12%
>

Lnver o sfmg o (2.23
1
k

or, by multiplication with @ Di/(n] +...4 nk)
v i=1



k . . . k
,Z] f ¢§‘) (c m%‘) - sf})) jn] D, =0 (2.24)
": -
j#i
. k
where we have set fi = ni/ Y on..
=1

Putting the estimates §>§1) (2.22) and §>§1) (2.18) into (2.5) yields

(i (1):2 » (.52
b, = (w]1) - 4abcs];)) - ;] - 4abc”) w21 (2.25)
4ab(1 - 4abc®)

S [ S\ s .12 12
s%})sgé) - 2w§1)s$;)c + (w§1) + 4abs$;) )c2

1 - 4abc2
and similarly we get

) (w%i) -4 abcs%;))(wgi)c - 5%;))
(1 - 4abc2)2

(1(c (1) _ 4(1),

T o-sh (2.26)

Thus multiplication of (2.24) with (1 - 4abc2)k+] yields the equation

k . . 2 2 _ . .
P(c) = .Z] fi [—w§1)s§;) + (w§1) + 4abs$;) ) ¢ - 4abw$1)s§;)c2] X
i= : :
k sy g . . 2 12
X .H][ssg)ség) - 2w$3)s§%) c + (wéJ) + 4abs]2(3) ) c21=0 (2.27)
J=
j#i

P(c) is a polynomial of degree 2k. Since for S(i) > 0, the Tikelihood-function

(2.2) must have a maximum, (2.27) has at least one real root, and therefore at
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least two. The ML-estimate & must thus be found by computing &;%i) (2.22)
and the value of the log-likelihood-function (2.2), taking as ¢ the root
which yields the largest value of (2.2). Let 8%}) = (¢ (1) éi))/Za,
~(1') ~(1)
912

. 4+ . ) U]]
0 o

using (2.21), the maximum of the log-likelihood-function is simply

k k
R(E(]), cees f(k)) ; Z n, ]og|2(1)| - (log 2r +1) ¥ n; (2.28)

i=1
and therefore the log-likelihood-ratio statistic (Silvey 1970, p. 113,
Serfling 1980, p. 157) for testing HO is

. . k 1Z¢5y]
—2(2,(2(]), cees Z(k)) - Q(S(-I), ceey S(k)) = 12] n_i ]Og 'l"s‘%;—l (2.29)

Numerical examples show that "normally" P(c) has exactly 2 real roots,
and more than 2 real roots occur -when two or more of the sample covariance
matrices S(i) are nearly singular and "far" from the pattern defined as HO‘ In
this case, some of the real roots of P(c) may even lead to non-positive definite
estimafes of Z(i)' No exact conditions are available to determine the number
of real roots except for special cases (see section 4).

In deriving the above results we made use of the assumption that

q)§1) # Gvi. Actually, this assumptibn was already used in the form in which

N 6§ VRN D IS ) IV ) IS . .
Ho: 012"/ eq " = 013"/ @™ ¥ 1,J was stated. However if we write Hy as

o(1) (J) = (J) q>$i) v 1,J , there is no reason why q;%i) # 0 should be
12 .
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assumed, and the reason to prefer the former version was only its solvability.
Sin;e in préctical applications the case q)%i) = 0 might occur, we give it
a special treatment.

Sugpose, for simplicity, that q)%l) = 0. This implies that either

a) °$;) =‘0 or b) q)gz) = ... = q>§k) = 0.

o$/2a 0

Case a) In this case, 2(]) = s which does not

0 R

depend on the common parameter c, and therefore the likelihood function can

be factorized in a part involving only z(]) and a part involving 2(2) to z(k),
ML-estimation of z(]) does therefore not depend on the second to k-th sample, and
it can‘easily be shown that &>£]) = wgl) = as%}) - bsgé). (Actually, in this
case the_vériances of two independent normal variates are estimated given a

fixed constant of proportionality).

oglizm off
Case b) In this case, Z(i) = ‘ , and the likelihood
i ]
LU

function can be written as a product of k independent factors. It can be

shown that &)éi) = w%é% = asgi) - bség) and 8%;) = s%;) (i=1, ..., k).

In finite samples from non-singular bivariate normal distributions,
é,§1) = 0 will occqr only with probability zero. However, values of §)§1)
close to zero indicate that a further reduction of the parameter space to

the cases a) and b) above might be possible.

3. Consistency of the ML-estimates

If Z(i) >0 (i=1, ..., k), the asymptotic theory of likelihood ratio
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tests (Rao 1973) can be applied. Therefore, the Tog-likelihood-ratio statistic
(2.29) 1; asymptotically (min (n],,..., nk) + =) distributed as chi square
with k-]*degrees of freedom, if H0 is true.

However, we can learn more about the nature of the ML-estimates f(i) by

proving their consistency under H0 directly. To do this, let us assume that

q>§1), q)£1) and c are the true parameters of the i-th population, and write

the polynomial (2.27) as a function of x rather than of c. If min n; » o,
I<i<k

we have the following convergences in probability:

40 )y 0
w%i) = asgi) + ng;) > q;$i) : >> i=1, ...,k (3.1)
o of?

ok 2 2 .12
P¥(x) = } ¥ [-c q)%1) + (g ( )" + sabc? q>$1) )x - 4abq>¥1) c x%] R¥(x)
i=1
(3.2)
where
f* = Tim ni/(n] +.. .+ nk) (3.3)

min n. » o
J
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K
RE(x) = (1 - 4abx2)k-1 b 0¥ (x) (3.4)
J:
Jj#i
and i
() () L. (3)? (3)2 2 (§)? 2
D*(x) } O’-” 0'22 - 2C(p-| X + (tpz + 4abc (p-l ) X (3.5)
J ] - 4abx2 '

Since Dg(c)

1 - dabc? > 0 (see below), it follows that R?(x) > 0 for x in a sufficiently

|z(j)| > 0 by the assumption of non-singularity, and since

small neighborhood of c.

Since the term in rectangular brackets of (3.2), is

0% (x) = o (1) -
; X) = ¢ (c-x)(4abex-1) (3.6)
we have
k 2 .
P*(x) = (c-x)(4abcx-1) .Z] % q>$1) R¥ (x) (3.7)
'|=

and thus clearly P*(c) = 0.

As a single real root of a polynomial is a continuous function of the
polynomial coefficients, it remains to show that P*(x) has no second root
at x = ¢c. Since f? > 0 and R?(x) > 0 for x in a neighborhood of c, we have to
show that the root x = 1/4abc cannot be equal to c. Otherwise we would
have ¢ = 1/4abc or c2=11/4ab, which is only possible if ab>0. The determinant
of the i-th covariance matrix would be ((1-4abc?) q;%i)z - q;éi)z)/4ab =
- q>£1)2/4ab < 0. This contradicts the assumption of all covariance matrices
being positive definite. Therefore, one root of the polynomial (2.27) provides a
consistent estimate of c, and the asymptotic theory of maximum 1ikelihood indicates

that this is the root which maximises (2.2).
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4. The meaning of three special choices of a and b, and their generalizations

to higher dimensions

As already mentioned in the introduction, this research was motivated by
a study 6¥Lcertain properties of the matrix ZZ})E(Z). From now on we shall
therefore restrict our considerations to the case of k = 2 populations. However,
it must be borne in mind that if the pairs (z(]),z(z)) and (2(2),2(3)) satisfy
H0 for fixed a and b, the same is not necessarily true for.(z(]),z(3)); that is,

the property defined by H0 is not transitive. Counter-examples to transitivity

can easi]y be found by setting Py 0 for one population.

“11 “12 -1
We will denote @ = = 2(1)2(2) throughout this section.

Y21 Y22

The case a-= b: In this case, Wy = -wlz; and if (x],xz)' is a characteristic
vector of @, then the other characteristic vector is (x2,x])‘. An obvious

genercjization to higher dimensions is the case where ZZ})Z(Z) can be written
as the sum of a diagonal and a skew-symmetric matrix. However, this case does

not seem to have any practical importance.

The case a = -b: q is symmetric in this case, and the generalization is obvious.
It can be shown (Flury 1982) that z(]) and 2(2) have the same characteristic
vectors, and these are identical with the characteristic vectors of ZZ})Z(Z).

Thus this case has a relation to the principal component analysis of two (or more)
groups, and the ML-estimation of the common principal axes of several populations

is presently under study.

The case a = 1, b = 0: In this case, Q is upper triangular (w2] = 0), the
diagonal elements of @ are the characteristic roots, and the characteristic
vector associated to 911 is (1,0)'. Note that the above derivation of the

ML-estimates does not hold since ab = 0. However, we will discuss this case
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in detail in the next section. A straightforward generalization to higher

dimensions 1is the condition that ZZ})Z(Z) is triangular. A less restrictive

Y1 %2
Q

generalidation is as follows: Partition 9 as s Where Q]] is g X q

21 %2

and o9 1s (p-q) x q, and let 8 = (B], cees Bq)' denote a characteristic vector
of 2 Then the generalization is to request 2,18 = 0, in which case

@], eees B.s 0, ..., 0)' 1ds a characteristic vector of 9. If q=1, 297 = %19

q
is scalar, its only characteristic vector is the scalar 1, and therefore

RIRLY.

2518 = 0 implies 251 = 0. Thus @ = » and it can easily be seen

o 2
that (1,0, ..., 0)' is a characteristic vector of g associated to the characteristic
value wll; while the remaining p-] characteristic va]ués of @ are identical with
fhose of Qg+ |

Note that the hypothesis 0§;)/0$}) = o§§)/c§¥) states that (1,0)' is a
characteristic vector of zz})z(z), and nothing is implied about the associated
characteristic root or the second characteristic vector. If we wish to test
simultaneously whether the characteristic root not associated with the
hypothetical characteristic vector (1,0)' is equal to unity, a test dervied
by Khatri and Piliai (1969, p. 236ff) can be used.

Another interpretation of the hypothesis is equality of regression slopes
in two populations. However, our approach is more general in the sense that
it avoids conditioning as well as the assumption of equality of the residual

variance in both populations.
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5. The casea=1,b =0

As stated above, the derivation of the ML-estimates given in section 2 does
not hold in this case. However, it is very similar and can be done without
reparameéfization (see Flury 1982). The result (in the case of k = 2 samples)

is:

~(i) 2 (H)
M TN o
i=1,2 (5.1)
Ség) = ség) -2 Esgg) + 2 Ezs§;)
and ¢ is a real root of the polynomial a3x3 - a2x2 + X = ag, where
_ (1) (2)
a3 = S11°517
_ (M(2) . (M.(2) (M2) , (N (2)
8y = Iny(Zsqy7sy5" + syp7s97") *+ ny(259575777 + 57478157) 1/ (ng + )
_ (1)_(2) (1).(2) (1).(2) (1) .(2)
ay = Inq(sqy7spp’ + 25q57s757) + mylsp’s7) + 257575157) 1/ (ny + ny)
ay = ("15%)-“%) ¥ nzsgé)sgg))/(nl +n,) (5.2) -
~(1) (i)
~(i) - an(d) A I 912 o
If we set o = Co and £,.y = » then the Tog-1ikelihood
12 1 (i) I
~() ~(i
92 922

ratio statistic takes again the form (2.29).
Since the polynomial (5.2) has degree 3, it has either one or three real
roots. We will show a little later that "normally" there is exactly one

solution.
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Any real root of (5.2) yields a positive definite estimate of i(i) (i =1,2).
This can bevseen as follows (where the group subscript i is omitted for
simplicity): Since 822 is a continuous function of ¢, 11 and Sops it suffices
to show that 522 can take positive values, but not zero. Putting c =0 in
(5.1) sths that 822 can take positive values. If 322 were zero, then the
ML-estimate of ¢ would be a root of the equation

2 -

The discriminant of this equation is sfz - 2511522 < 0 (since {S] > 0), and
therefore no real solution exists. This proves 822 > 0. Now since

0 < (€syq - 512)? = 825112- 2?:5”512 + 5122 = |£] - |S] , it follows that
|£] > |S] > 0. As also 811 >0, £ is positive definite.

If HO](wZI = 0) and HOZ(m]Z = 0) hold simultaneously, o is diagonal,
and the two characteristic vectors are (1,0)' and (0,1)* (or can be chosen
in this way if w]] = Uy Thus HO]\ri H02 means that the two covaéiance
matrices are either proportional, or the two variables are uncorrelated in
both groups.

Let us now derive some results about the number of real roots of the

polynomial (5.2). First we write (5.2) in the form

00wl isD /D D
5 1 1
sgg)x - S$2) S%])x' S%Z)
(x-2p) + hp/(x-ap) — my \ <0 (5.4)

- (x—a]) + h]/(x-a]) N ny
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12/
i=1,2 (5.5)

AP .12 .\ 2
3 (sf sz - sig) Vst

Lettingy = x - a and d = 3y - a7, (5.4) can be written as

2
-d h :
f(y) = y[(y ) 2+ 2] = <) = - 2.2. . (5.6)
(y-d) (y“+hy) i

To solve (5.6), we note that h] > 0 and h2 > 0 (since ls(i)l >0, i=1,2).

We assume in the sequel that d > 0, but a similar treatment can be given for

the case d < 0. The f(y) <0 «0 <y < d, and the solution of (5.6) is unique
ifff(y) fs monotonic in the interval (0,d) that is, f'(y) <0 v y €(0,d) or
f’(y) >0 vy € (0,d). It can be shown that f'(y) = 0_¢=(y—d)2(dy2+2h]y-dh]) =

h2(2y3-dy2+ch]). Thus we look for conditions under which the equation

r(y) = hyes(y)

where  r(y) (y—d)z(dy2+2h]y-dh]) = r](y)rz(y) (5.7)

2y3 - ay? + dh

and s(y) 1

has solutions.
For the function s(y), s(0) = dh] > 0 and s(d) = d(d2+h]) > 0. s decreases
in the interval (0,d/3) and takes the local minimum d(h]-d2/27) at y = d/3. In

(d/3,d) s(y) is increasing. Thus, if hy < d2/27, s(y) takes positive and
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negative values, which shows that under certain conditions the polynomial (5.2)
has three real roots.

For the function r(y) we have r(0) = —d3h] <0, r(g) = d5/8 > 0 and
r(d) = 03 Therefore there is Yy € (0,d/2) with r(yo) = 0. Since Yo Must

be a root of rz(y), it follows that

Therefore r(y) takes positive values for all d and h], and (5.6) has solutions

if h, is small enough. Asymptotically we have 1im Yg = /ﬁ; ,» that is,

dso

Yo a:/ﬁ; if d is large. If d2/h] < 1, we note that the function /I+x can

be written as the power serjes 1 + %-- %-xz + f% x3 - .. =1+ %-- o(x), and
2 2
h, (-1+41+ 53— - o{L))
Yo 1 ehy WM/ d
therefore 1lim T - : > = 5 Thus Yo ®7 for.small d (but
d-»0 d

Yo < d/2 holds for all d since r(%) > 0).
Since r(yO) = r(d) = 0, r must take a local maximum at a point

¥4 e(yo,d). By differentiating r we get

‘/(3h]—d2) 2 3h,-d?

= —_— + h -

N ad 1 4d (5.9)

A . . 1 1 . d

symptotically, we have 1im 477 and therefore 1 %% for large d.
d-o

2
: 3h,-d [5——
For d2 < 3h],“we put z = ——=— and have therefore ¥y = 22+h] -z. Since
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lim z = o, we look at the behavior of /22+h1 - 2z for z >~ », Since

d-+0
' /2
z+h, + z
(V2%h, -2)(/2%hy +2) = h; and Vim ——5——= 1, it follows that
Z-3c0
' 2
i ‘ 3h,-d
lim 2z (/22+h -z) = hy. Therefore we have h; = Tim |y S VR
1 1 1 d 1 2d
Z0 =0
3h] a\l 3h]
Tim |y, 57— - 5]} . Since 1im y,d = 0, lim |y, =»+}= h, holds, and
50 112d 2 0 1 &0 1 2d 1

therefore ¥q ar% d for d small.

2

Since r'(%d) > 0 and r'(%d) = -5y < 0, it follows that

1

%d <y < %d, and therefore we try to give conditions for the solvability of
(5.7) based on the values of the functions r(y) and s(y) at y = %d and y = %d.

Bound for y = %d: It can easily be checked that r(%d) = d3(4d2+3h])/81 and

2 2.\ 2 d”(4d%+3h)
d(4d” + 27hy)/27. For Ky = r(gd)/s(gd) = ————  we have
3(4d +27h])

s(5d)

r(%d) = k]-s(%d). As max r(y) > r(—d), (5.6) has at least one solution
O<y<d

for h2 < k]. The critical values of n and n, can be computed by putting

y = %d in (5.6).

d-(P*

Bound for y = %d: Thanks to r(ld) and s(g) = dh], (5.7) has at least

one solution for h2 2 (d) /h The critical values of ny and n, foliow

n
2 _ (d/ 2)%
from (5.6) as‘n] h]

Comparison of the two bounds: For hy < k = max(k],kz), (5.7) has always

at least one solution. By solving the equation k] = k2 for d, it can easily
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be seen that

ky if d<1.1889 VAT
k= (5.10)

i k, if d> 1.889 Ay

Therefore k] éives the better bound for small d.

Thus we have found a condition under which the polynomial (5.2) has
three real roots for certain sample sizes ny and n2. However, it might
also be interesting to know conditions under which the solution of (5.2) is

unique for all ny and n,, that is, equation (5.6) has no solution. This is

certainly the case if max r(y) < hy - min s(y). While min s(y) = d(h]—d2/27)
| O<y=<d O<y<d O<y=d |

was obtained above, the exact maximum of r(y) is a rather complicated expression,
and we will give therefore an upper bound for it. Since at Yy =¥ both
r](y) and rz(y) are positive, an upper bound for r(y]) can be obtained as the

product of two upper bounds for r](y]) and rz(y]). Since %d < y]<-§d,

2
Iy]-dl < %- and (_y]—d)2 = r](y])< %r- hold. By the same argument,

_ 2 2.\ 2 2 _1,/4,2 -
PZ(Y]) = dy} + 2h1y] - dh] <d - (§d) + 2h](§d) — dh] = §d(§d +h]), and therefore

a3 4.2
max r(y) = r(y;) < 17 (3d *hy) (5.11)
O<y<d

Thus we get the bound

d?(h,+4d%/3)
k* = 1 5 (5.12)
12(h, -d%/27)
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and for hz‘z_k* the polynomial (5.2) has exatt]y one real root for all sample
sizes Nys Ny
It 'may be noted that, lacking a better solution, the problem was treated

somehow %éymmetrica]]y; treating h] and h2 in a different way. However,

by exchanging S(]) and 5(2), more conditions can be obtained.

As a numerical example, let S =(1 0 and S (11 » that is,
M \g ; (@) "\7 .

d=1, hy =1 and h, = w-1. Using (5.12) we get k* = 21/104, which means that

ifw>1.2, the solution of (5.2) will be unique for all s Ny On the other

hand, using the simple bound k2 = (g)4/h] (though ky would be a Tittle more
1/4, which means that (5.2) will have 3 real

precise) we get ko = 1/16 and A

10

roots for S =
(1) (o 1

f1 1 )
s S = > and n, = 4n,. These roots are
) (2) (1 1.0625 T2

.8, .5 and .5.
The bounds k and k* given above indicate clearly that three real roots
of (5.2) must be expected when h] or h2 are small compared with d, that is,
when S(]) or 5(2) is close to singularity. Moreover, under HO’ we expect d close to

zero. Therefore the solution of (5.2) is asymptotically unique under HO'

6. Conclusions

As shown in section 2, the derivation of the ML-estimates is quite
complicated. As thederivation isn't much simpler in each of the three special
cases treated in section 4, we can assume that the generalizations to higher
dimension will be of considerable difficulty. However, we could try to replace
the ML-principle by some other (preferably easier) conditions and hope to

get results which do not depend on normality assumptions. For instance in
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the case a = -b, we note that tr ﬁ(i) = tr S(i) (i = 1,2), that is, the total
variance is unaffected in both groups. This condition can easily be generalized
to higher dimensions; however, it doesn't determine the solution entirely.

In the casea=1,b =0 Pi]]ai*) has suggested the following large sample
estimate for the case of two groups: Since 22})2(2) is triangular, its
diagonal elements are identical with the characteristic va]ues_xi, that is,
M= (o%})ogg) - czos})cgf))/A and 1, = (oé%’c%%) - Czo%})ogf))/A, where

2
A= 0%}) g;) - c20$}) . By taking the ratio A]/Az we get easily

o2, T2z
6D I SN ¢) B

2. 1 (6.1)
| MoTA -

. . A(i) (1) ~(3) ()
Thus an estimate of Z(i) (i =1,2) is o117 = S37°s Oop" = S50 and

8%;) =C . 8%:), where C is obtained from (5.1) by using the above estimates

and replacing M and Ao by the characteristic values of SZ})S(Z)" This

estimate differs from the ML-estimate and has the advantage that 322 is

unbiased even if H0 is false. Moreover, it does not depend on assumptions

about the distribution of the two sample covariance métrices. However, it has
two serious shortcomings: First, it is not obvious how to determine the sign of
c, when sgé)and s%S) have different signs. Second, since SZ})S(Z) will in |
general not be exactly triangular, it is also not obvious, which characteristic
root should be labeled as M and which as Ap. Nevertheless, Pillai's

suggestion gives an alternative idea about the estimation of special patterns

avoiding assumptions on underlying distributions.

*
) personal communication
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