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Summary

Asymptotic Properties of M-estimators with

Applications in Discriminant Analysis

Consistency and asymptotic normality for a large class of M-estimators
is demonstrated under a set of useful regularity conditions. The results
are used to study the asymptotic theory of a class of logistic-type
discrimination functions. The normal equal and unequal covariance matrix

cases are examined in detail.



Asymptotic Properties of M-estimators with
Applications in Disciminant Analysis

by

. Tzu-Cheg Kao '
Indiana University-Purdue University at Indianapolis

and
George P. McCabe

Purdue University

1. Introduction.

Let Zi’ i=1,...,n be independent, not necessarily identically
distributed random vectors with cumulative distribution functions
Fi(Z;n) and denSities fi(Z;n) with respect to some o-finite
measure A. Note that A may be Lebesque measure or counting measure. Thus,
we include absolutely continuous and discrete distributions. We assume
that n is a p-dimensional parameter vector in QO’ a non-empty subset of
RP. Furthermore, we assume that n = (ei,...,ek,y“)' and that F. depends
upon n only th£ough 6, and y for i = ng_1*1s...ong_y#ng, where ny=1.
Clearly, n = Z] ng- In other words, {Zi} contains k sets of iid random
vectors. Tﬁ; sets are of size ng and the common cumulative distribution
function will be denoted by F(Z;es,y) where convenient. The parameter
y is common to all of the random vectors while O refers to the sth
set..

Let B = (B],...,Bq)' be a vector valued function of n lying in Q,
an open convex subset of Rq, with q < p. We will be concerned with

estimation of the parameter g8 using the following framework.



Let gi(Zi,s) be an a.e. positive function and let

n
(1) "(e) =1 _g,(z,.8).

i=1
An estimator, é, which maximizes ¢'](B) with respect to g€ @, is called
an M-estimator. In the special case where gi(zi,s) is the density of
Zi’ the maximizing é is called the maximum likelihood estimator.

Several authoré, such as Cramér (1946), Chanda (1954), Bradley and
Gart (1962), and Tarone (1974) have studied maximum likelihood estimation
of g, under the conditien that 61=...=6 and 8=n. They require regularity
conditions involving the third order partial derivatives of gs - Other
authors such as Huber (1967) and Inagaki (1973), have studied M-estimation
with regularity conditions not involving second and higher order partial
derivatives of 95 -

We have encountered applied problems for which the regularity
conditions in the above papers are very difficult to verify. Therefore,
we have developed general theorems on the consistency and asymptotic
normality of the M-estimator which can be easily verified for the problems
which concern us.

Under regularity conditions involving second order partial deriva-
tives, we show the consistency and asymptotic normality of the M-estimator
in sections 2 and 3, respectively. . In section 4, an area of application is
descfibed. Sections 5 and 6 discuss detéi]ed models using the results in

the previous sections.



2. Consistency

Let
p;(z.8) = Tog g,(z,8),
¢" (8) = Tog ¢"(8),
n
() = Lag (8)
r n 3B
r
and
Ln £B) = _ l 325En (B)
P n 9808,

for n=1,2,... and r,s=1,...,q. Let (Lg(s)) and(Lgs(B)) denote the

vector of first derivatives and matrix of second derivatives, respectively.

0

Let nO denote the true value of n and let 8~ be the corresponding value

of 8. In what follows, all probabilities and expected values are calculated
under the distribution evaluated at n = no.

We now state some regularity conditions.



(C]) The funetions pi(z,e) are twice continuously differentiable with

respect to g for all g€ q.
(c2) (%) %o.
(c3) sup {L" (8)3=0,(1).

geq 'S

We are now in a position to prove

Theorem 2.1. If a sequence*of M-estimators, {&"}, exists with probabiTtty

tending to 1 as n»« and the regularity conditions (C1) to (C3) hold,

then

™ >
=]
+ o
o

n _
Proof. From (C1), we can expand (ii- (6)) in Taylor series about

o8
80 as '
@) el - el oly Tt 0)

3B B 9B 3B

where g* = )g + (1—x)80, for some A, 0 < A < 1.

n . s -
By assumption, (§55———i§20 = 0 has a root, 8", with probability

BBr



tending to 1 as n. Letting B8 = 8" in (2.1) and dividing by n gives

n o ,sNyysan 0y _ ,n/ 0
(2.2) (Lo (B*¥))(87-87) = (LL.(87)),
&N _ .on 0
where g* = A8 + (1-A)B~ for some A, 0 < A < 1,
From (C2), the right-hand side of (2.2) converges in probability

to zero. Therefore,
(2.3) (") (e"-6%) %o

Since @ is convex,.we have s*n‘GSL Applying (C3) gives
sup(L?s(B*n)) = Op(]) and hence, (2.3) implies AP0 o

Now suppose that the M-estimators are not unique. For any two of
them say én and én, it is straightforward to show that
n _ é" E

B 0.

Theorem 2.1 remains valid if the condition (C3) is replaced by
o n _
(c3") (L7 (8)) - (Lg(8)) = o (1)

where

sup {(Lrs(B))} is finite.
BEQ :

This result is a consequence of the fact that (C3') implies (C3).



To obtain strong consistency results, we simply replace convergence
in probability by almost sure convergence in the appropriate places.

Thus, we obtain,

Theorem 2.2. If a sequence M-estimators. {Bn}, existé.with probabi]ity

tending to 1 as n+~ .and conditions (C1) to (C3) hold with almost sure

convergence in place of convergence in probability for (C3), then

The proof follows that of Theorem 2.1 with trivial modifications.
Again, suppose that the M-estimators are not unique. For any
two of them, say g" and 8", it is straightforward to show that

g _ g0 a.s. g

If we replace convergence in probability by almost sure convergence
in condition (C3') we get a similar alternate condition for the validity

of Theorem 2.2.

3. Asymptotic Normality

To demonstrate asymptotic normality for the sequence én, we use

the following regularity conditions.

n, 0 P 0
IR DEESEN (W CLVE
where (Lrs(BO)) is a positive definite matrix.

(N2) For any: €> 0 and B = BO,



S| -

op. op. 2
n q —1 _ (X S
Zi=1 g Zoap Lag - EGggD 1 dFy(zasn”) = o).
n,i ror

where

Lo .q Py 8P 2
Dn’-1. = {Zr=][m' E(gs—r")] > € n}.

(N3) For all r and s, and g = BO,

op. ap. ap

1.0 %P iy L0y
B0 e [ E(BBL))<3B; - Elgg ) 0F; (253w > V.

In addition, the following lemma is needed.

Lemma 3,1, If

n

(Lps

(8)) = (Lyg(8)) = 0 (1),

and (L__(B)) is positive definite, then (L:S(B)) is positive definite for

rs
sufficiently large n with probability 1.

Proof. For each i = 1,...,q, let (R (B)). denote the square matrix with

rs i

i rows, obtained by deleting the last g-i rows and columns of (ng(s)).

The quantities (L (B))i are defined similarly. It is sufficient to

rs

show that for each i, det{(L: (B))i} > 0 with probability 1 for sufficiently

S
large n.

Since a determinant is a continuous function of the matrix elements,

it follows that

det{(Lis(8));} - deti(L ((8));3 = 0 (1), for each 1.

By the assumption that (L. (B)) is positive definite, det{(L

Ly (8)):3 > 0

Ys.

for each i. Hence the result follows immediately. O



The fo]]owing theorem gives conditions for the asymptotic normality
of the M-estimator sequence, g". Let Nq(u,i) denote the g-variate

normal distribution with mean p and covariance matrix f.

Theorem 3.1. If a sequence of M-estimators, {&"} is consistehtjand condi-

tions (C1), (N1), (N2) and (N3) hold, then

(3.2) A (8"-p9) % Nq(L_]u,L-_]VL_1)

where

op.
. 1 .n i
u=Tim (—z;_; E(=D)){ .,
oo /17 BBr_ g0
_ 0
L - (LY’S(B ))s

and V is defined by (3.1).

Proof. From (2.2), we have



(3.3)  (U0s(e*(E"-6) = (L0(e")),
n_ .on 0
where g* = g + (1-A)g~ for some x, 0 < X < 1.
Also we note that condition (C1) implies that Lgs(s) is uniformly

0

continuous on H(B",s8) for ¢ > 0. Consistency of {én} therefore implies

~ 0 _
(L0 (8"))- (L3 (87))= o (1)

S

Combining this fact with condition (N1) gives

- 0
(L0 (8")- (L, (67))= op(1).

In a similar fashion, it follows that
n sy 0yy-

(3.8)  (Lpg(8¥M)- (L (87))= 0 (1),

where g8*" is defined by (3.3)

Now, Lemma 3.1 implies that the inverse of (LQS(B*n))exists for

sufficiently large n with probability 1 and hence,

Ayy-1 0yy~1 _
(3.5) (L (87 - (L (7)™ = o (1),

Conditions (N2) and (N3) with the multivariate central Timit theorem
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(see Serfling (1980)) imply

0,, &
(3.6) /n (Lr,l(s )) = Nq(u,V),

where u is defined above and V is given in (3.1).

Combining (3.3), (3.5) and (3.6) gives the desired result. LI

Corollary 3.1. If a sequence of M-estimators exists with probability

tending, to 1 as n», then conditions (C1), (€2), (N1), (N2), (N3)
and either (C3) or (C3') imply (3.2).

Proof. This result is a direct consequence of Theorem 2.1, the comment

following it, and Theorem 3.1. [

4. 'Applications

We are concerned with the two sample discriminant analysis problem.

Specifically, let'Y be a random variable with
P(Y=1) = 1 - P(Y=0) = =,

where 0 <7 < 1 and Y indicates from which of the two populations the
sample observation is drawn. A k-dimensional random vector X is assumed to

have conditional densities, depending upon Y, denoted by fy(x;ey,y), or

fy(x;n), or fy(x), whichever is more convenient. The-parameters ey and y

may be vectors, and n = (Gé,ei,y')'.
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Given an X from one of the two populations, the expected
misclassification probability is minimized by the rule which assigns

X to the Y=1 population if and only if
(4-]) '”f'l(x;e'le) > (]“W)fo(x;eoaY)-

See Anderson (1958) for details. This rule is also Bayes for a zero-one

loss function. An alternative statement of condition (4.1) is
(4.2) P(Y=1]X) > P(Y=0[X).

Cox (1966) proposed a logistic form for these probabilities, i.e.

B'Z
(4.3)  P(Y=1]X) = == ,
1+e
where Z = (1,X")" and 8 = (By,895...,8,)'. ~ His approach is called

logistic regression. Note that the usual discriminant analysis approach
involves conditioning on Y, i.e. X is the random variable. In Tlogistic
regression, however, we condition on X, i.e. Y is the random variable.
There is a great deal of confusion in the literature on this point and
the phrase maximum likelihood estimation is used without sufficient attention
to the exact model which is assumed.

Note that (4.3) holds if the distributions of X given Y are multi-
variate normal with equal covariance matrices. Lachenbruch (1975) gives

other sufficient conditions for this form.
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In this section, we assume
(4.4) P(Y=1|X) = G(L(X,8))

where G is a cumulative distribution function, L is a real-valued function

of (X,8) and g is a g-dimensional vector function of 6> 61 and m. Note that

here mO = (98.,e? ;yo )' is the true value of 0 and BO is the corresponding
value of 8. We will consider estimation of the parameter B under two sampling

procedures. The first, called mixture sampling (MS), is to take a random

sample of size n from the mixture of the two populations giving

{(Yl’Xi)’(YZ’Xé)""’(Yn’xﬁ)}' The second, called stratified sampling (SS)

is tc take random samples of sizes ny and Ny from the two populations, i.e.

}

{X "Xn } from the population corresponding to Y=1 and {Xn +1,...,X
1

-l,--
1
from the population corresponding to Y=0. We let the total sample size be

ny+ng

n, i.e. n=n0+n].

The estimation procedure, which we call general regression, is the natural

. . s s . . . n .
generalization of logistic regression, i.e. our estimator g~ maximizes

Y, 1-Y,
(4.5) ¢, (8) = H?=1 [a(L(X;,8))] - G(L(X;.8))] T,

n
where Y. may be random (MS) or fixed (SS) depending upon the sampling
procedure. Note that this procedure corresponds to that given by (1.71)
with

Y., 1-Y.
(4.6)  9.(Z..8) = [G(L(X;,e))] 01 - G(LOXe)] ' s

where Zi = (Yi,X%)' for RS and Zi = Xi for SS. We use the term logistic

regression to describe the special case where G(t) = et/(1+et).
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Note that the estimation procedure described above is not maximum
1ikelihood for MS or SS, even if (4.4) holds. For MS, the likelihood
function is

Y. 1-Y.
(4-7) QMS(SO’S]’Y’W) = H?=][ﬁf](xi;6]sY)] 1[(]'ﬂ)f0(xi;eosY)] !

The MLE procedure is to maximize this function with respect to (60,61,Y,h)
and then to use the functional relationship between 8 and (90,61,Ysﬂ)_w1th
the invariance principle to determine the MLE of g. Note that (4.7)

can be rewritten as

¥, 1-Y.
(4.8)  nyc(8g:01272m) = (Mg [60(X,8))] T1-6(L(X;,80 T} 14 F(X)3,

where f(xi) = ﬂf1(xi;6],y) + (1-n)f0(xi;eo,y); the marginal density of
Xs- Estimation of g by maximizing the first part of the right-hand side
of (4.8) is called the conditional 1ikelihood approach and has been studied
by Efron (1975) and 0'Neill (1980). Efron considered the multivariate
normal with equal covariance matrices while 0'Nef11 generalized his results
to the case where G has logistic form.

Under SS, the Tlikelihood function is

n
= | . .l )
(4-9) zss(eose]aY) = [Hi=]f1(xiae]sY)] [Hi=n]+]f0(xi’60’Y)].

This can be rewritten as
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n
(4.10)  ngo(80075v) = {[m311G(L(X;,8))] - [} 41 (1-6L0 81 Ty

M40
- A PO/ (P (3-m) O)3

Under the assumption that the Xi are multivariate Bernoulli random
vectors with marginal distributions that do not depend upon 8, Anderson

(1972) studied the MLE's for this problem. Using the constraints

and
r, G(L(x,8))f(x) = =,

he applied Aitchison and Silvey's (1958) results to obtain the asymptotic
covariance matrix of the estimator. For continuous variables, he recom-
mended an approximation based on discretizing the variables.
Efron (1975) suggests that the MS framework can be used for results
in the SS model by using the first part of the right-hand side of (4.7)
to derive an estimator and by replacing = by n]/n in all results. Actually,
some slight modifications are needed. These will be detailed in section 6.
Recall that X is assumed to be a k-dimensional random vector and
B is a g-dimensional parameter vector. The results presented in the
next sections apply to the situation where L(X,8) is a linear combin-

~ ation of known functions of X. More precisely, we assume
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L(X,8) = 8'h(X),

where

h(X) = (hg(X)shy (X),.cohg g ()",
and -
8= (BysBys-nsB_y)'

and the hj(X) are real-valued functions of the vector X. Here, we let

hO(X) = 1]
Let
- n .
Sn = {Zi=1Yiaih(X1)' a; > 0},
and

These sets are the relative interiors of the convex cones generated by
the (random) Xi vectors corresponding to Yi = 1 and Yi = 0 respectively.
We assume the following regularity conditions

(R1) For any Tinear subspace < of dimension less than q,
P(h(X): € &) = 0.

(R2) -log G and Tog(1-G) are convex.
(R3) G is a strictly increasing function with 0 < G(-) < 1.

(R4) support fo(x;eo,y) = support f](x;e1,y).

)
(R5) G has continuous derivatives of the second order.



16

Silvapulle (1981) has studied estimation of g under the condition
that h(X) = (1,X')', where g=k+1. He assumes a model where the Y, are the
only random variables. A straightforward generalization of his theorem

gives

Theorem 4.1. Let (R1) and (R2) hold. Then an M-estimator 8" exists.
and the set of such M-estimators is bounded if and only if Snﬂrl Fn F o
Furthermore, if (R3) holds, then the M-estimator én exists and is unique

if and only if snran # 6.

5. Mixture Sampling

Recall that the model for MS is that (Y1,Xi),...,(Yn,X6) are iid
random vectors. The estimation method is defined by maximizing (4.5).
Here we let Zi = (Yi’xi) .

The existence, consistency and asymptotic normality of the sequence

of M-estimators, {én}, is established in the following theorem.

Theorem 5.1. Suppose that regularity conditions (R1) to (R5) hold, the

integral defined by (5.1) exists and

' < 2
ey - (et b (00 (000 (s

{5.2)

1 14 2
-(1-m)f { Stk o (Sl el ] b (h(x) (h(x)) F (x3n®)dx

is uniformly bounded above.
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Then for mixture sampling and general regression,

(i) the sequence of the M-estimators, (8"}, exists and is

unique with probability tending to 1 as n»e;

(i1) én a.s. BO; and

(i14) o (8"-8%) —£— Nq(o,a"),

(5.1)  d=J (G'(L(x,Bog))z(h(X))(h(é))'f(x) .
6(L(x,6%)) (1-6(L(x,8°)))

and

F(x) = ofy(xsn®) + (-mFg(xin’).

Proof. It is easy to show that P(S,NF 7 ¢) > 1 as -m=. Part (i) therefore
follows from Theorem 4.1.

To establish the strong consistency of én we will apply Theorem 2.2.
It is therefore sufficient to verify regularity conditions (C1), (C2) and
(c3') for almost sure convergence.

From the definition of pi(zi’B) in section 2, it follows that

(5.2) p;(Z.8) =Y Tog(G(L(X,8))) + (1-Y)1og(1-G(L(X,8))),

for all i. The fact that the pi(Z,B) are twice continuously differentiable

(C1) thus follows from the corresponding assumption for G, i.e. (R5).
Recall that

oMy o W
¢ (8) = 1;qP(Z;.8).
Note that the subscript i is dropped from p since the function does not

depend upon i. By the strong law-of large numbers,
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0 (2 3¢ () Bp(Z B)
)) (PBBr )BO A8+ g( )

To prove (C2) for almost sure convergence it remains to show that the

latter expected value is zero.

From (4.4) and (R4) we note that

0
b7 6(L(x,6%)

(-mfolen®)  1-6(L(x,&)

The result follows immediately.

To prove (C3') for almost sure convergence, we proceed in a similar

manner. Recall that

2
3°p(Z ,8)
(Lps()) = - % (gs(Pas(B)) -5 558,

Therefore, by the strong law of large numbers,

(5.4) (L (8)) %° (%E%E—Bl) -

Note that the right-hand side of (5.4) is equal to (5.2). Therefore,

(C3') for almost sure convergence follows by assumption and (ii) is proved.

To prove (iii), we will apply Theorem 3.1. Given (i) and (ii),
it remains to show that regularity conditions (N1), (N2) and (N3) hold.
To demonstrate (N1) it is necessary to show that the matrix on the right-
hand side of (5.4) is positive definite. With a 1itt]e manipulation, this

matrix is seen to be the matrix J given in (5.1). Note that G'(L(X,R))
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denotes the derivative of the function G(-) evaluated at L(X,BO). This
derivative exists, is positive and is continuous by (R3) and (R5).
Furthermore, h(X)(h(X))' is positive definite by (R1). Therefore, the
matrix J is positive definite and (N1) is satisfied. Note that the assump-
tion on the second derivatives is used in verifying that the right—hand
side of (5.4) is equal to J.

To verify (N2) we first observe that for any: €> 0,

3p;(Z5.8)  3p;(Z;.8) 2

1.n q
(5.5) — 5.4 ] Lroql—7— - E(——7—)1 dF.
n “i=1 Dn 1 r=1 BBr aBr i
2
- q (8p{Z,8)
ID L1 dF,
n r

where

3p+(Z;,8) 3p;(Z;.8) 2

= ¢d p_ 11" ° _ .
Dp,i = Zpal 38, E( %8, )1 > € nky

Dn is defined similarly with P; and Xi replaced by p and X; Fi is the
distribution function of Zi- and F is the distribution function of
Z. The equality follows because the Zi are i.i.d., the Py

do not depend upon i, and E(api(Zi,B)/aer)BO = 0. Note that

- 2 :
op(Z,8) . ap(Z,8) - p(Z,8)
(5.6) (E BSP aBS )BO E( aSPaBS )BO’ )

which is equal to J and therefore assumed to exist by hypothesis. Thus,
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the left-hand side of (5.5) is o(1) and (N2) is established.

Finally, for g = BO,

ap:(Z.,8) 9p:(Z.,8) .3p.(z.,8) op.(z4,8)
(xohq S I - B I - ‘36; )1'dF,)

- (rop(Z,8) . op(Z,8)
= (E BBr * BBS ):

by the same argument used to establish (5.5). Since this matrix is J,
(N3) is thus established and the conditions for the validity of Theorem
3.1 are demonstrated.

To complete the proof of the theorem it suffices to note that

: 3p; (2, ,8) 3p(z.,8)
(L gty = /n E(2RALaR)) =0. O
- 521 3BY. BO BBY, BO

For Togistic regression, i.e. G(t) = et/(1+et), some of the assumptions
in the above theorem are automatically satisfied and the form of the matrix

J can be simp]iffed. The result is given in the following theorem.

Theoren 5.2. Suppose that regularity conditions (R1) and (R4) hold, the

integral defined by (5.7) exists and

exp(L(X,8)) 5 [h(x)I[h(x) 1" (x)dx
[1+exp(L(X,8))]

is uniformly bounded above, where

£(x) = 7f; (xsn®) + (1=n)f o (xsn0).



Then,
(

(i

(ii

where

(5.7)

Proof.

21

for mixture sampling and logistic regression,
i) the sequence of the M-estimators, {én}, exists and is unique

with probability tending to 1 as n+=;

i) " &S, g0 ang

i) /" - 80 £ Nq(O,J'1),

£ (x3n0) £y (30 2) [ (x) T (x) 1
J =1n(l-n)f X) dx.

First note that regularity conditions (R2), (R3) and (R5) are

satisfied by the logistic function. Furthermore, G'(t) = G(t)(1-g(t)).

Using

gives

G'(t)
that

ance

Thus,

(5.8)

where

this fact and

rf (x3n0)
G(L(x,so)) = : 1 0 .

ﬁf](X;ﬂO)+(]-ﬂ)f0(X;n

the desired result. O

Note that the simplification of (5.1) to (5.7) used the fact that
= G(t)(1-G(t)). This condition is equivalent to the assumption
G(t) is the logistic function.
The following theorem concerns the multivariate normal, equal covari-
matrix case. We assume that X given Y=1i is Nk (ui,i), for i=0,1.

letting g = (50,6')‘, we have

L(X,8) = 8y + &'X,
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(500 g = 1095 - 3 (wit ™y - it hg),

and

(5.10) 6 = §7M - ).

Theorem 5.3. Suppose that X given Y is Nk(uy,i). Then for mixture
sampling and logistic regression,
(i) the sequence of the M-estimators, {g"}, exists, and is unique
with probability tending to 1 as nsw;

(i1) é" a.s. BO; and

s s s n 0, » -1
(111)  /h (87-87) —=N,,,(0,07"),

where

(5.11) J = m(1-7) fﬂf.](x

Proof. First, (R1) and (R4) are satisfied for the norma] case. Also,
the posterior G is clearly logistic and it is easy to show that J exists.

Therefore, the result follows from Theorem 5.2. O

For the above problem, 0'Neill (1980) suggests using Bradley and
Gart's (1962) results to obtain the asymptotic distribution theory of
the estimator. To apply these results, the following regularity condition

must be verified:

310g G(L(X 8)) - 8109(1 G(L(X 8)))

(5.12) XlY 1

where G is the logistic function. Letting
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b= [lugmug) '$7 () 1172,
and

]Og(“/(]"ﬂ)) »

>
1]

we can reduce without loss of generality to the case where My = Mg T (A/Z)e]
and ¥ = I, where ey = (1,0,...,0)". Therefore, L(X,B)= A+ BX.

A straightforward calculation gives

EXlY:O[B]ogG(%éi,B))]B=BO = = 71 (AgsAys0s...30) ",
and
EX|Y=1[8]09(]_G(Léé;6)))]é;80 - (1on) (AO,A];O,...,o)',
where.
A - exp(-2%/8) tlexp(-t2/2)dt
T (o) 12 C(1-7) exp(-at/2)+nexp(at/2)

for i=0,1. Since A, > 0, condition (5.12) is violated.

0
The results in this section are sufficiently general to include the
normal, unequal covariance matrix case. We assume that X given Ysi

is Nk(“1’$1)’ for i=0,1. Here,
(5.13) L(X,8) = By *+ S!'X + X'BX »

where



(5.14)

(5.15)

and

(5.76)
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gl /2
BO 109((]_ﬂ l* l]/z) 2 (U]il U] - uoio UO)’

8 $-| U'l $0 an

The function L is clearly of the form g'h(X) where

= x2 2 2y,
(5.17) h(X) (1,X],.. K> ],ZX]X 2X1Xk X2,2X2X3, ..,Xk)_.
Here g = 1 + 2k + k(k-1)/2. The following theorem gives the result.
Theorem 5.4. Suppose that X given Y is Nk(ﬁy,iY). Then, for mixture

sampling and logistic regression,

(1)

(i)

(iii)

where

(5.18)

and h(x)

Proof.

the sequence of the M-estimators,{én}, exists and is unique

with probability tending to 1 as n - w3
gh 28, g0, ang

/I’T (én‘BO) —é_* Nq(os\]-]),

f () F(x)[h(x)1lh(x)]"
J=n(lm) T OF(T=a) 7, (%) dx;

is given by (5.17).

The result follows from Theorem 5.2 in the same way that Theorem

5.3 is proved. O
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and h(x) is given by (5.17).

Proof. The result follows from Theorem 5.2 in the same way that Theorem

5.3 is proved.

6. Stratified Sampling

Recall that the model for SS is that X],...,Xn are i.i.d. according
1
to fl(x;e],y) and Xn1+1,... X are i.i.d. according to fo(x;eo,y)

>n.tn
10
and the two samples are independent. The Yi are non-random indicators
which denote the two populations. The total sample size is n=n,+n,.
The estimation method is that defined by maximizing (4.5). Since Y

is not a random variable, we will define

Wf](x§e]sY) -
G(L(X’B)) ) "ﬂ'f'l(x-;e'l9Y)+(];W)f0(x;eosY)

(6.1)

A complication present with this sampling scheme is that the
sample fraction n]/n is non-random and does not necessarily relate to
the parameter w. Therefore, it will be necessary to either assume
that = is known or that a separate estimator for this parameter is

available. In what follows, we let

w* = 1im
N0

2

il
n

and we assume

n
(7%-— %) = o(n']/z).
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Let B* be the parameter which would correspond to a model with true
probability m*. Hence we have
ﬂ*f](X;mO)

(6.2)  G(L{x,m*)) = 0 0y °
n*f](x;n )+(]-n*)f0(x;n )

The following theorem gives results related to estimation of g*.

Theorem 6.1. Suppose that regularity conditions (R1) to (R5) hold, the
integrals defined by (6.3) and (6.4) exist and

(L{
G(L(x,8)) G(L(x,B

-y 3 6 (L(x,8)) Ea :

" ?3)] g (h(x))(h(x))'f](X;nO)dx

‘ 2
* G''(L(x, G'(L(x, ' .0
-(1-w%) §]_G§L§§,§§§ v (S ; (h(x)) (h(x)) ' lx5n®) dx

js uniformly bounded above. Then, for stratified sampling and general
regression,
(i) the sequence of the M-estimators, (8"}, exists, and is unique
with probability tending to 1 as n»«;

(i) 8" 2>+ g*, and

(i11) A(B"-8%) —E= N (0,9)

where

(6.2) Jo= L7 - LKL,
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| x)1))2
(6.3) L= [ gt it (001 f(x)d,
and
(6.4) K= mlmmey (6 (LOGEDRGOF()E) (] 6 (L1 8*)h()F(x)dx)
and

F(x) = w*f (xsn?) + (1=r%)fo(xin0).

Proof. The proof of this theorem follows from arguments similar to
those used in the proof of theorem 5.1. Part (i) follows from the
independence of Xi’ condition (R4) and Theorem 4.1.

To prove (ii) we verify the regularity conditions (C1), (C2) and (C3')

for almost sure convergence and apply Theorem 2.2. Condition (C1) follows

directly from (R5). Here,

(6.5) P1(Xi,8) Tog(G(L(X;,8))),

and

(6-6) po(xi:ﬁ) = 109(1 - G(L(Xi,B)));

Note that here Zi = Xi' Furthermore,



and

n n ap- (X ,B) n
n YA 1 1'% 0y,1 .n
(Lr‘(B)) = (T)(“n— Lis (_a‘é'——)) + (T)(n_ Ly +]
1 r 0 1
By the strong law of large numbers,
LI TR L N WL
1,1 .S. ’
ny i=1 38, g* 0 38,. -
and
1 n 3py (X »8) ) s - apo(X,B))
10 .S.
ng “i=n 38, o 0% 38, -
Therefore,
' apq(X,8) 3py(X,8)
N(ox))sSe % 1 + (1=7%)En(—te—
6.7 (D™ gl |+ (=)
Now,
Al I e AR
and
2Py (X,8) ¢ _G'(L(x,8)) 0
= - 2 ; d .
Fol g~ 7/ TmrreERy M folen DX
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Therefore, by (6.2), the right-hand side 6f (6.7) is zero and condition
(C2) for almost sure convergence is established.

To demonstrate (C3') for almost sure convergence, we first note that

2. n,
- (W (e)) =1 (S-Lﬁ—ﬁl)

BBrBBh
2 2
X.,B s
ST N s Rl e
n"'n, i=1 BBr B n ‘ny “i=n.+1‘' 93 98 )
Using the strong law of large numbers, it follows that
2 2
. 37p(X,8) 37pqa(X,8)
n a.s. 1 0 _
(6.8) - (LPS(B)) > W*E](_EE—EEM——) + (]_ﬂ*)EO(—EE—EE———i— LPS(B))'
r-s rs
Note that the right-hand side of (6.8) is the function which is to be
uniformly bounded. Therefore, (C3') for almost sure convergence follows
and (i1) is proved.
To prove (iii) we apply Theorem 3.1. To verify (N1) we need to
show that (Lrs(s*)) is positive definite. First, we note that
£ (), = ) Lt - (S i 1t T
r’Fs ¥ ’ G(L(x,8%))
. fl(x;no)dx,
and
3%pp(X8) 6 (L(x,8%)) . /6 (L(x,8%)) ¥ .
T - B I o 381 (”‘*“”"i“""’“][“(X)][h(x)] |
B g = 1-6(L(x,8%))/

. 10y
* fo(x9 n )dX,

Combining with (6.8) and simplifying by (6.2) gives

. 2
oy (G1(L{x,8*)))
(Les(8)) = | grone, e (-6l 5)

7 (0 ITR(X) ] F(x)dx,
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which is equal to (6.3). Positive definiteness follows from (R1), (R3)

and (R5) and thus (N1) is satisfied.
To establish (N2) we first note that for any: € > 0,

Ap;(x.,8) 3p. (X, ,B)
1 1 1 . 1 1 \ 2 .
(6.9) n?’ 1 =1 ID Zr=1 [ 9B 3B )] dF;
r r
n ap;(x,8) ap,(X,8)
1 q 1 \ 2 .0
= — 29, [ - E )17F, (x3n”) dx
n an’] r=1 BBT asr 1

n 3P (X 58) apn(X,8)

0 q 0 0 \ 2 .‘0
+ — A - E ) 1°F, (xsm” ) dx
n Dn,O r=1 38, 98, 0
where
ap.(X,B) ap.(X,8)
q J J 2 _
n,J {Z ][ 3Br - E( 3Bj ) > € n}

for j=0,1. Furthermore,

« o ([P p1'>'> o <<3po><"’po
m E] ((88 > (_E;h - + (1-7 )EO <BB BBS>>B* = (LrS(B*))

which is equal to L and assumed to exist by hypothesis. Therefore,

the left-hand side of (6.9) is o(1) and (N2) is established

In a similar manner, it follows that

(6 ]0) l_zn f (api(Xi,B) _E ap ( -38) ap. (X1’B) _E 3p1(Xi,B))
' ntisll e T 38 %, i 9,
> o P;é & - 1‘ p;(X’B) | p;(x’s) - 5 “_P;(X,B))_'f](xm
r BP BS BS
pO(X B) .BPO(X,B) Bpo(x,B) gpo(x,g)

- - ) _ A N
+ (1-1%) [ (e E0 35 ) ( 38, E0 38, ) fo(xam

O)dx
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Let the right-hand side of (6.10), evaluated at 8*, be denoted by V =

(vrs(s*)). Then

(Vi (8%)) = (L (8%)) - (K (8%)),

where

3py(X,8) 3py(X,8)
- 'lT*E (—_"—"‘"*— E-I T-—
S

(K :
1 BBr

wn
—
™w
*
~—
~
|

B* B*
(1or) (Bpo(x,s)) : (3PO(X,B)).
—’"' e ———— e —_—
0 9B, g 0% o -

+

A straightforward calculation reveals that (Krs(B*)) is the matrix
K given in (6.4). Clearly, (N3) is satisfied.

To apply the results of Theorem 3.7, we first note that, by (6.2)

3p.
u=tim 50 EGD)
e Vn r gk
n ap,(X,8) n,  3ap,(X,8)
. 1 1 0 0 -
= 1im v/n (— E (— IV Ty Yy =
Mo L 9B, gx N 0 98, p¥*

The Tast equality follows from the assumption that (w*-n]/n) = O(n"]/z);
Finally, the covariance matrix is

1y =1 1

TR

- 1y -1
Jg = L S (L

This concludes the proof of the theorem. [

For logistic regression, i.e. G(t) = et/(1+et), some of the assump-
tions in the above theorem are automatically satisfied and the form
of the matrix JS can be simplified.- The result is given in the following

theorem.
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Theorem 6.2. Suppose that regularity conditions (R1) and (R4) hold,
the integral defined by (6.12) exists and

exp(L{x,8)) > [n(x)1[h(x)]'F(x)dx
[1+exp(L(x,8))]

is uniformly bounded above. Here

F(x) = wrf (xin) + (1=m*)Fo(xsn’).

. Then, for stratified sampling and logistic regression,

(i). a sequence of the M-estimators, {8}, exists and is unique
with probability tending to 1 as n-«;
(ii) 8" 45+ g*; and

(111) /A (e"-p%) > N (0,3),

where

o] 1
(6.1 Jg =L - Ty B

£ 00 () I () TR () T
(6.12) L = p*(1-n%) "O‘ - ~ 0 dx,
oy (xsn) + (1-r%)F(x5n7) |
and E]1 is the gqxq matrix with one in the (1,1) position and zero
elsewhere.

Proof. This theorem follows from the previous one in the same way
that Theorem 5.2 follows from Theorem 5.1. It remains to verify the
simplified form for the covariance matrix.

First, using the fact that G' = G(1-G), (6.3) can be reduced to

L = [ 6'(L{x,8*))[h(x)I[h(x)]"f(x)dx.
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which is equal to (6.12). Let the columns of L be denoted by

85 r=1,...,q9. Then the matrix K in (6.4) can be rewritten as

_ 1 '
(6-]3) K - ']T* ]—'ﬂ'* 2]21].

Therefore,

and

=1y =1 _ 1

LKL = ey By

Substitution into the formula for JS given in Theorem 6.1 completes

the proof of this theorem. [

As noted by Anderson (1972), the bias in the SS estimator can
be removed by adjusting the coefficient of the constant term. The
following two theorems give-the asymptotic distribution theory for the

adjusted estimators.

~ Theorem 6.3. Suppose that 7 is known, regularity conditions (R1) ana

(R4) hold, the integral defined by (6.12) exists and

exp(L(x,8))
[1+exp(L(x,8))]

is uniformly bounded above. Here,

7 [h(x)I[h(x)]" £(x)dx

PO = w4y (n'%) + (1-m) £ (x309).
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Let
(6.14) 8" =g" + &
where
N ﬂ(]-ﬂ;)
BO (109 TT:;TFﬁ': 0: ’0)5
T* = hmn_—)m (n]/n),
and
* - (n1/n) = o(n']/z)

Then, for stratified sampling and logistic regression,
(i) the sequence of M-estimators,'{én}, exists and is unique with
probability tending to 1 as no«;

(i) 8" S g0, ang

(119) 7 (")) F N (0,3g),

where JS is given by (6.11).

"Proof. Since G is the Togistic function,

ﬂf](X) ) e(Bo)lh(X)
(T-a)F,(x).

Equivalently,

" f1(x) 0
109(7:;) + Tog ?6(§7'= (87) 'h(x).
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A similar formula holds for (w*,8*%). Therefore,

a(1-1%)

109 (yy = (8%-8%) 'h(x).

Since, hO(X) 1 and assumption (R1) holds,

v _ *‘='\‘
B 8 Bo-
The conclusions of the theorem follow directly from the fact that the

adjustment EO is a constant, i.e., non-random. O

In many practical applications, m is not known but is estimated
from an independent random sample for which the X's are not measured.
We assume that Y]"""n are i.i.d. Bernoulli random variables with
parameter m and that this sample is independent of the SS. Let

% = ?. We further assume that

where R is finite. The following theorem gives the adjusted estimator

- and its asymptotic theory.

Theorem 6.4. Suppose that regularity conditions (R1) and (R4) hold, the
integral defined by (6.12) exists and the uniform boundedness condition of
the previous theorem holds. Furthermore, suppose that = is estimated by T

from a independent sample as described above. Let
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(6.15)  #" ="+,

where
%(1-ﬁ*)
%)0 = (109 —_A'—n— ) 0:---30)
(J—H)ﬂﬁ
and ng = n]/n. Then, for stratified sampling and logistic regression,

(i) the sequence of M-estimators,'{%n}, exists and is unique with
probability tending to 1 as now;
(ii) gn ass. BO; and

- 0, & '
(111) v (E"-e") F N (0,9g + wrhmy Eqq).s
where J¢ is given by (6.11).

Proof. Note that the adjustment %b is random. It converges
almost surely to the "true" adjustment given in the previous
theorem. The obvious adjustment to the asymptotic covariance matrix

is a consequence of the independence assumption. ¢

The following theorem concerns the multivariate normal, equal
covariance matrix case. The notation is the same as that given in
section 5.

Theorem 6.5. Suppose that X given Y is Nk(uY,$). Then, for stratified
sampling and logistic regression,

(i) the sequence of the M-estimators, {g"}, exists and is unique

with probability tending to 1 as now;

(i1) 8" %5+ g%, and

(1) v (3M) T Ng(0:5)
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- -1 1
(6.]6) JS = L - ;;TT:E;T E]]a

1 (x)f(x) .
L = ﬂ*(]—ﬂ*) f ﬁ*f]IX) - (]-ﬂ*)fO(X) (X)(],X )dX,

g¥=  (p*,s')’

* T, & ¢-1 ye=1
80= 109(]ﬂ *)' ?{U] i U] - Uoi‘ Uo)s

-7

and
o=
§ = i (U]'U0)~

Proof. The proof follows from that of Theorem 5.3 with the obvious

modifications. |

The following two theorems concern adjustments to the estimator

for the cases where 7w is known and unknown.

Theorem 6.6. Suppose that m is known and X given Y is Nk(pY,i). Let "

be defined by (6.14). Then, for stratified sampling and logistic regression,

(i) the sequence of M-estimators, (8"}, exists and is unique

with probability tending to 1 as n-w;
(i1) B 2560 and

(ii1) vm(E"-g) £ NG (0.35)
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where Jo is given by (6.16).

Proof. The theorem follows from Theorem 6.3 using arguments given in

the proof of Theorem 5.3. O

Theorem 6.7. Suppose that X given Y is N $) and that = is estimated

k(UYs
by 7 as described previously. Let En be defined by (6.15). Then, for
stratified sampling and logistic regression,
(i) the sequence of M-estimators, {§"}, exists and is unique
with probability tending to 1 as now;
(1) & 35 6% and
cus an 0y L R
(iii) vh (8 -8") = Nq(O,JS YT Eqq)s
where Jg is given by (6.16).

Proof. The theorem follows from Theorem 6.4 using arguments given

in the proof of Theroem 5.3. O
The following three theorems concern the normal, unequal covariance
matrix case. The proofs follow the arguments given in Theorem 5.4

and Theorems 6.25.6.3 and 6.4, respectively.

Here,



L(X,8*) = B* + §'X + X'BX,

L(X,g) = By + 6'X + X'BX,

31172

B log
ST ey

-1
z(U]il U] - Uoio Uo)s

5= 47y - *o Ho»
I PP Y
- ?(io = i] )a
- z 2
h(X) = (1oXqs et oK X2X Xgn e o 052X X, X5, 20 X5

and

=1+ & + k(k-1)/2.
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2
X,

Theorem 6.8. Suppose that X given Y is Nk(uy,iY). Then for stratified

sampling and logistic regression

(i) the sequence of M-estimators, {én}, exists and is unique with

probability tending to 1 as n»«;
(i1) 8" %% g5 and

(111) va(eh-g0) T Ng(05d5)

where
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(6.17) J

and

fy (x)fo (x)IEh(x) 1[h(x)]"
w00+ - ()

L= a*(T-n*) | dx.

Theorem 6.9. Suppose that w is known and that X given Y is Nk(py,iY).
Let 8" be defined by (6.14). Then, for stratified sampling and logistic
regression,
(1) the sequence of M-estimators, {%n}, exists and is unique
with probability tending to 1 as n+w;
(41) gn a,s. BO; and
(119) /A F60 F N (0,3),

where Jo is defined by (6.17).

Theorem 6.10. Suppose that X given Y is Nk (uY,$ ) and that = is

Y
estimated by T as described previously. Let 8" be defined by (6.15).

Then, for stratified sampling and logistic regression,
(i) the sequence of M-estimators, {En}, exists and is unique
with probability tending to 1 as nsw;
(if) g" @sS- 30; and

(119) A (¥6%) F N (0,05 + Ry gy,

where Jg is defined by (6.17).
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