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INTRODUCTION. A nonnegative integer valued random varialbes

o—

(r.v.) X is said to have compound Poisson distribution if its probability

generating function (p.g.f.) G(s) is given by
(1) 6(s) = E(s") = expf-r(1-h(s))}, |s| < 1,
for some constant A > 0, and a p.g.f. h(s) given by

(2) h(s) = Is] <1,

il ~18

k=0

where the nonnegative coefficients rk's add up to one. These distribu-
tions as alternatives to Poisson distribution often arise in many live
situations and include distributions such as negative binomial, Neyman
type A distributions, to mention a few (see for instance Neyman [8],
Feller [4], Neyman and Puri ([11], [12]) and Puri [13]). The purpose
of the present work is to develop a test of the hypothesis that the

underlying distribution is Poisson against the compound Poisson alter-

*These investigations were supported in part by the U.S. National Science
Foundation Grant No. MCS-8102733.



natives based on a sample X]’XZ""’Xn' This same problem in the past
formed the basis of Neyman's contagious distributions [8], but more
recently it arose again in our work in the area of radiation biology
(see Neyman and Puri [11], [12j and Puri [13]).

Again in (1) since the parameter A is arbitrary, without loss of

generality we may assume that h(0) = Yo = 0. The Poisson hypothesis

H, under test and composite alternative hypothesis Hy of compound Poisson

0
can now be equivalently stated as HO: n = 1 versus H]: n > 1, where

n = h'(1). This suggests parameterising our original problem by intro-
ducing a suitable dependence of the p.g.f. h(:) on a nonnegative
parameter ¢ (for instance, £ could be taken to be n-1), so that if

we rewrite the p.g.f. (2) as

«©

(3) h (s) = kz1 r(£)s

“ sl <1,

with rk(g) > 0, rk(g) = 1, we have for k > 1,

kz1

(4) Timr (g) = 6,, 5  Timh_(s) = h,(s)
£50 k Tk 0 £ 0

S,
where le is the Kronecker delta. With this our hypotheses become
(5) H.:

where A is the nuisance parameter. From this point on our approach in

developing the desired test is based on Neyman's C(a)-test theory (see



Neyman [9], Neyman and Scott [10], Bartoo and Puri [1] and Biihler

and Puri [2]), which yields tests that are locally asymptotically
optimal in a class of so called C(a)-tests. In the next section we
‘give a brief outline of this theory, which is then used in Section 3

in developing under appropriate conditions an optimal C(a)-test for our
problem. The test so obtained is applied in section 4 to data taken

from Neyman [8]. The paper ends with some concluding remarks in section 5.

2 NEOUANS SONATERTHER -
Quite often in modeling real live situations, the distributions of

the observable random variables turn out to be much more involved than
the standard text book type distributions. Often they also involve

many nuisance parameters 6's beside the parameter £ under test. Also

the estimators available for the nuisance parameters 6's may not be

too good and in particular may be biased. Keeping these nonstandard
situations in mind, Neyman [9] developed tests for testing the hypothesis
say, HO: £ = & against the alternative hypothesis say, H]: &> &gs

in the presence of nuisance parameters. These tests are locally asymp-

totically most powerful in a class of so called C(a)-tests.

Let X1,X2,... be a sequence of independent and identically distri-
buted (I.I.D.) r.v.'s with probability density function (p.d.f.)
p(x;g,g) with respect to a o-finite measure u, which is independent

of ¢ and g, where t€[0,a) for some a > 0, and § = (61,62,...,6r)6 0,
with @ ‘being an.open set in R'.- Also we assume that the support of

the distribution of X is 1ndepehdent of ¢ and 9. Let the null hypothesis

for convenience be HO: £ = 0, which is to be tested against H]: £>0,

in the presence of nuisance parameters 8 = (e],ez,...,er)e ®. We impose



the following conditions on the p.d.f. p(x;g,g).

(C]) The derivatives

30n P(X;€,8)
(6) ¢6(X;,Q)= 39 ) J ]azs- ,Y‘,
J J £=0
and
3n P(X3£,6)
(7) ¢, (x50) = —————————3L—) ,
EY 0N og £=O

exist and are all Cramer functions (see Neyman [9] for their definition).

(C2) Under Hys q‘g(X;Q) is not expressible as a linear function of q:ej(X;g),

j=1,2,...,r, with probability one.

It may be remarked here that the functions (6) and (7) besides having
first two moments under HO’ satisfy few other "regularity conditions". These
regularity conditions are similar to the ones imposed by Cramer [3] in his
treatment on consistency of maximum Tikelihood estimates. Consequently
functions satisfying these regularity conditions are referred to by Neyman [9]
as Cramér functions. We shall not spell out these conditions in detail here
in defining these conditions; instead we refer the reader to Neyman [9] for
their definition.

Let g(x;g) be a measurable Cramer function, which we center around its

expectation to yield

(8) f(x;8) = {g(x;8) - E5la(X;0) 1%,

where the zero subscripts in E, here and in % below indicate that the

0
expectation and the variance cg are obtained under HO' Furthermore, let

r
(9) g*(xsp) = f(x38) - 7§ bj(,g) ¢q. (x38),
J=1 J



where bj's are the first order partial regression coefficients of f(X;g) on
¢ o(X;8)'s, computed under Hy. Finally let S(a) <R be a measurable set
with an almost everywhere continuous indicator function such that

(10) L expl- 2t2dt = .

v2r - S(a)

A typical member of Neyman's class of C(a)-tests is now defined for each
pair g(x;g), a Cramer function and a set S(a), by rejecting H0 whenever

Z (8 ). €S(a), where

n'vn
1 N
~ _ 7'7 n g*(x'l ;,Q,n)
T AR ey
(12) og(9%,8) = Vary(g*(X39)),

and én is a so called locally root n consistent estimator for 9, defined

by Neyman [9] to be such that for every j=1,2,...,r, and for some constants
Aj#O, the random quantities |5jn-ej—Ajg|/ﬁ' remain bounded in probability,
as n»~, for all ¢ and 9. Again based on a class T of local alternatives
{gn} such that /h En remains bounded as n»~, Neyman considers a local
asymptotic optimality criterion (see Neyman [9] for details) and obtains

a test which is optimal in that sense within the class C(a) of tests. This

optimal test corresponds to rejecting Hy» whenever Z;(Qn) > z,_,» Where

o feelist) - ] b3(8,) 7. (X;38,)
(13) (3 ) =n 2y 4] :
nn i=1{ a(8 )



Z1q is the upper a-point of the standard normal distribution and
(14) cz(e) = Var (¢ . (X;08) - E bO (X50))
0~ 0 ¢ £17°% j=1 J ¢ eJ. ML

Also to arrive at (13) we have taken the function g* in (9) as
r
: %y = . -
(15) g*(x38) = ¢ (x38) Zb

where as before b?'s are the first order partial regression coefficients
of ¢ g(X;Q) on g, (X38), computed under Hy- Finally for the local

J .
alternatives T described above, the asymptotic power of the above optimal

test is given by
(]6) 1 - Q(z]_a - Oo(ﬁ)gn/ﬁ)s

where o(+) is the cumulative distribution function of the standard normal

distribution.

The above theory of Neyman [9] was generalized by Bartoo and Puri
[1] and Biinler and Puri [2] for the cases where Xj's are mutually inde-
pendent but are not necessarily identically distributed and also where
the hypothesis under test involves more than one parameters. The reader
may refer to these papers for the corresponding optimal C(a) tests and

other relevant details covering these cases.

We now apply the C(a)-test theory of the preceding section to the
problem introduced in section 1, namely of testing a Poisson hypothesis

against compound Poisson alternatives. For our random variable X of



(1) with h(-) replaced by h_(-) of (3), let

g

(17) P, (£52) = P(X = m|g,2), m=0,1,2,...

Now it is well known (see Katti [5]) that these probabilities are

related recursively to each other and to rk(g)'s of (3) as follows:

po(€s2) = exp(-2)
(18)

3

A

Pre(E52) = = (m-k+1)py (527 g (E)s m > 0.

Il B~

k=0

Also in view of (4) we have

>\ITI
(19) pm(O,x) =TT exp(-A), m > 0.

Besides assuming that the probabi]itieS'rk(g)'s satisfy (4), we further

add the following assumptions (A]) - (A3) on these.

(Al) For k > 1, rk(g)'s are twice differentiable with respect to ¢ for

£ > 0 (the derivatives at £ = 0 are to be considered right hand deriva-

tives) and that these differentiations are valid under the summation

fod]

sign of kZ] rk(g) = 1. Also we assume that jzl jr&(O) js finite, with
ri(O) < 0.

Note that in view of (4) ri(O) < 0 holds in any case. MWhat we are
requiring here is that ri(O) be strictly negative (see also Temma 2(i)).

Also in view of (18) the assumption (A1) implies that for m > 0, pm(g,A)



are twice differentiable with respect to ¢ > 0 and also for A > 0.

(Az) These differentiations of pm(g,x) are permitted under the summation
sign of ) pm(g,x) = 1.
m=0

Define

80n P (E52) 3om Pp(E52)
(20) g m) = — ) = e

e ’ @A(m YN

€=O (C;:O )

(A3) We assume that

(2) £y Lo, (01 <,

and that the functions and are Cramér functions (see Neyman [9]
(Pg D

for their definition).

The reader may find an expression for (21) in Temma 3(iv) below.
Also the following lemma gives the needed expressions for the functions
Pr and Py -

LEMMA 1. Using (18) we obtain

CPg(m) = JZ'I —(——3')7 A -(- ])Y"(O) m>1,
(22)

@E(O) =0
(23) o (m) = (- 1), m>0.

PROOF. Proof for Py being similar, we outline briefly the derivation

for P Let



. 3p(€52)
(24) Ppl0s2) = —7—— o0’ m> 1.

Using (18) and (4), it can be easily seen that

(25)  pi0,2) =2 (AL(A) *+pr1(0,0), m > T,

where pé(O,A) =0 and form> 1,

m-1
(26)  A0) = 1 (R (00 (0).

Solving (25) recursively and after some algebraic simplification, we

obtain
@) (00 = (00 3 3T L o 2 I

j=1

which easily leads to (22) after using the combinatorial identity

Hr~13
—
X
ot
g
P
S

(28) 1<j<m

k=J

The following lemma is needed in the sequel.

LEMMA 2. (i) Subject to (4) ggg_(A]) we have ri(O) <0 ggg_rj(o) >0

for j > 2, with

(o]

29 -r;(0) = :(0).
(9 v = ] v

(1) Ey Lo (017>

(iii) Whatever be A~ >0, there does not exist a constant c such that
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(30) P, (9, (X)-c 9, (X) = 0) = 1.

PROOF. (i) easily follows from (4) and (A]) and the fact that

Loe]

'Z] rj(g) = 1. Proof of (ii) follows by contradiction; for if
%B,A[WE(X)]Z = 0, this would mean that PO’A(@E(X) = 0) = 1 or equivalently
@E(m) =0, form > 1. This, in turn, uging (22) recursively, implies
that rj(O) =0, v j > 1, which contradicts part (i) and in particular
ri(O) < 0. Finally the proof of (iii) follows from essentially a similar
argument. 0

Lemma 2(ii) together with the assumption (A3) implies that Varo,x(wg)
is positive and finite. Lemma 2(iii) guarantees condition C2 of the

previous section, which in turn guarantees the positivity of the variance
) _

°0
case.

of (14) and hence the existence of an optimal C(a)-test for the present
The next lemma gives some further expressions needed for the construc-
tion of the optimal C(a)-test.

. _ -1
LEMMA 3. (1) Varo’x(QA(X)) =1,

(i1) COVO,A(QE(X),mk(X)) = jz1 3 ri(O),
(ii1) bO(a) = & T3 ri0),

=
(1) Vary {9, (X)) = Vo0,

where

) Y= Lo 1 ryos, 0,
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with

min(2,k)
(32) B, (M) = )} 2

-r (min(
% r=0

r

z,k)) [max{s,k)]!
[max(2,k)-r]!

Proof of the above lemma is omitted as it follows from lengthy but rather
straightforward standard calculations using the expressions (22) and (23).
Unfortunately however in this generality, the expression for the
Varo,x(@g) could not be further simplified, although it could be repre-
sented in other alternative forms. Finally the following theorem gives
the desired optimal C(a)-test, which can be easily established using the

theory of section 2 (in particular (13)) and the lammas 1-3.

THEOREM 1. Subject to the assumptions (A]) - (A3), an optimal C(a)-test

for testing HO: ¢ = 0 against H]: g >0 1is to reject H0 whenever

[a VPN
Zn(x) > Zq_ where

1

(3 F0) - 017 TG,
n 0 i21 i

(38)  F06A) = g (X) - b20g, (XD,

(35)  oa(a) = Varg[§(X,2)]

[ . 2
=V - I(O)] s
o(?) x[jzl jor

~

is the upper o-point of the standard normal distribution and A

z
1-a
stands for a locally root n consistent estimator of the nuisance parameter

A.

The next theorem deals with an important special case of theorem

1, where the test statistic (33) simplifies considerably.



THEOREM 2. Subject to the conditions of theorem 1, if moreover r&(O) =0

for k > 3, then the test statistic (33) reduces to

L
(36) Z () =13 (2n)?

[(X;-3)% - X
;

.].

i

ne~1=s

1

Furthermore if the sample mean X is a locally root n consistent estimator

of A, then taking i = X, the statistic (36) further reduces to

1
) L
67 4,00 = (PP G-l
where
38 2175 %)2
(38) = ﬁ-iz1 (X1 - X)°.

The condition rk(o) = 0 for k > 3 in theorem 2 holds for several
well known compound Poisson alternatives such as negative binomial distri-
butions, Neyman type A distributions to mention a few (see also remark
(a) of section 5). Again it is interesting to note that the test statis-
tic (37) is the classical dispersion coefficient. Even more interestingly
the optimal C(a)-test based on (36) for the case when ré(O) = 0 for k > 3,
coincides with the corresponding optimal C(a)-test for Poisson hypothesis
against certain mixtures of Poisson as alternatives, obtained by
Klonecki [6] (see also LeCam and Traxler [7]). This is not surprising,
since the class of compound Poisson distributions overlaps with the class

of mixtures of Poisson distributions (see Puri and Goldie [14]). For

12

instance, the negative binomial distributions belong to both these classes.

Thus the C(o)-test based on (36) is optimal against a much larger class
of alternatives than the ones considered here. This property has been

referred to as the 'robustness of optimality' property by Neyman (see

[1] and [6]).
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As an illustration we apply the above test based on (37) for testing
the gdodness of fit of a Poisson hypothesis against compound Poisson alter-
natives with r&(O) = 0 for k > 3 (and also against the mixture of Poisson
alternatives considered by Klonecki [6]), to a set of data considered
by Neyman in his classical paper on contagious distributions (see [8]).
Neyman of course used there the classical chi-square test of goodness
of fit of Poisson hypothesis. The data given below are taken from Neyman
[8], but they go back to 'Student' [15], where he observed the distribu-

tion of yeast cells in 400 squares of haemacytometer.

# of cells 0 1 2 3 4 5 Total

observed
frequency 213 | 128 37 18 3 1 400

Here with n=400, we obtain A = X = 0.68250; S2

PR 1/2 .2

Zn(x) = (g& . §%— - 1] = 2.6770, which is highly significant with P-

= 0.81169 with

value = 0.0037, compared with the P-value > 0.02, obtained by Neyman

while using the classical chi-square test of goodness of fit. The test
(37) was also applied to another set of data on distribution of European
cornborers considered by Neyman [8]. We wish to remark here that whenever
either the compound Poisson distribution or the mixture of Poisson (see
Klonecki [6]) are suspected as alternatives to Poisson hypothesis, the
much simpler large sample test based on (37) is highly recommended (based

on the above optimality considerations) instead of the classical chi-square

test of goodness of fit for Poisson hypothesis.

(a) It is interesting to note that subject to appropriate minor modifi-

cations of assumptions (A]) - (A3), the above results of lemmas 1-3
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and theorems 1-2 remain valid even when the p.g.f. (3) and hence the
probabilities rk's are allowed to depend upon the nuisance parameter
X besides £, as long as we make the additional assumption that the

quantities

ar, (€,2)

(39) oA

£=0
exist and are all zero, for k > 1. Consider the special case of negative

binomial distribution which falls under this more general set up. Here

(40) E(s¥) = p®(1-ps)™; [s| <1, 0<p <1, a>0.

-1

Reparameterising this with £ = o« and A =-a9,; p, this can be rewritten

as
(4 E(sY) = expl-a(1 - b ()],
where

(42) h, ,(s) = k§1 rk(z,x)sk,

with

(xek) N1 - expl-2eD)X, k > 1.

(43) r(E52)
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Evidently Tim gk(g,x) = 61k' Also it can be easily shown that
: £40

ary (£52)
(44) — =0, for k > 1,
oA _ —
£=0
and that
-A/2, for k =1
ar (€,51) _ _
(45) — = {af2, for k =2
0, for k > 3.

It follows that the test based on (37) remains an optimal C(a)-test for
this case.

(b) The situation where the present problem arose (see Neyman and Puri
[11], [12] and Puri [13]) was in the area of radiation biology, where

for a possibly compound Poisson process, one can only observe the total
counts of events over varying intervals of times (O,ti], i=1,2,...,n,

and not their actual times of occurrences. This means that Xi's are
although mutually independent but are not necessarily identically distri-
buted. For such situations similar optimal C({a)-tests have been obtained
using the generalizations of Neyman's theory of C(o)-tests by Bartoo and
Puri [1] and Biihler and Puri [2], and will be reported elsewhere.

(c) 1In closing we remark that the question of testing Poisson hypothesis
is raised and answered here within the classical a-level testing hypothesis
frame-work. The study of the same question from a decision theoretic

and a Bayesian point of view will be dealt with elsewhere.
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