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Summary

By providing a simple form for the expected value of the inverse of
a noncentral chi-square random variable, it is possible to give a simple
form for the mean and risk of the James-Stein estimator. A theorem is also
given for the evaluation of other inverse moments of the non-central chi-

square random variable.



Section 1. Introduction

Let X be a k-dimensional normal random vector with mean ¢ and identity
covariance matrix Ik' Under squared error loss the risk of an estimator

5(X) of 6 is
R(5,0) = E[(3(x)-0) E(5(x)-0)]
For k>3, James and Stein [6] gave estimators of the form
6 (X) = < - —c > X
c 2
|1X] |

(where c is an appropriately chosen constant) and HX||2 = xtx. They showed

that 8c dominates éo(x) =X, i.e.

R(ec,e) < R(eo,e) = k for all o.

This result has generated a great deal of interest and been extended in many

directions. (See Berger [2], Brandwein and Strawderman [4], Efron and Morris [5].

In fact, results of Brandwein [3] extend this result from the normal distribution
for X to all distributions for X which are spherically symmetric distributions
about 6.) The best choice of ¢ is (k-2) for éc and the purpose of this paper

is to present a simple form for the risk with ¢ = (k-2) although the method

would work for other values of ¢ and other specifications of the model with

their corresponding Stein-type estimators. A theorem which may be of independent
interest is given in Section 3 which provides a simple form for E[}xi’x)—h]where

xE N is a noncentral chi-Square random variable and k > 2n.
4 .

Section 2. A Simple Form for the Risk and Mean of the James-Stein Estimator.

Assume the - k-dimensional vector X is normally distributed with mean vector

6 and identity covariance matrix I, with k>3.

k



The James-Stein estimator o is defined as

8(X) = (1 - ﬂi‘%) X s
[1X1
with risk

R(0,8) = E[|[8(0)-0]1?] = k-(k-2)2E[<xﬁ’)\>'1] .

\

(See Judge and Bock [7], p. 171.) From the theorem for the evaluation of

E[<Xi,k>-1]’ we have for even k,
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If k is odd, then
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where

2
dt
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8(y) =e” )f/ e
0

is Dawson's integral.
Note that ® (y) is nonnegative and that its maximum value is
.5410442246. .. which occurs for y = .9241388730... (see page 298, Handbook [1].)

1

For large y, & (y) is essentially 2y~'. Tables for & (y) are given in [1].



Here is a picture of ® (y) from page 297 of Handbook [1].
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Figure 1
It has an inflection point at y = 1.5019752682.... where & (y) = .4276866160.

(See page 298, Handbook [1].)

In the case that k = 4,

A
R(6,0) = 4 4" (1-e 2 ).
If k = 6,
N Y
R(e,8) = 6 - 4 ((%) /'2!> (e 2.1+ %)
A
-6 - 32 (o2 -1+%>
If k = 3,
: 1 1
-1 o(3))
If k = 5,
R(6,8) = 5 - 92" <1-2 (%) : .,\9((%>%>



Note that 6 is a biased estimator of 9. The mean of o is

<1 - (k-2) E [ 5 ] >e
XK+2 30

For k even, we have

I

E[6]

E61 = 01 (k-2)/2) (K2) (-am)? e 2 - ]

For k odd, we have
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Section 3. A Simple Form for the Expected Value of the Inverse Moments of a

Noncentral Chi-square Random Variable.

This corollary is a special case of the theorem that follows. The
form is closed for the expected value of inverse moments of a noncentral
chi-square random when the degrees of freedom are even.
Corollary: Let Xi,k have a noncentral'chi-square distribution with noncentrality

parameter A. If k is an even integer greater than two, then
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If k is an odd integer greater than two, then
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where

L2y 42
o(y)=eY 7 et dt
0

is Dawson's integral.

Note: (1) Recall that
r(m+3) / v(3)

= (m-2) (m-1-2%) ....(3)

a product of m terms.
(2) The values of ® (y) are nonnegative and the maximum value is

less than .542. For large y, 8 (y) is approximately %y'j.

The expression is very simple for even degrees of freedom. In particular,

woef(6,)]

For k =
A
= >\_1<1-e 2 >
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For k = 6, E[(XG A) ]
_A
= 2x'2 (e 2 _ 1+ 2/2).
If kK = 3, then



For large values of the argument & (y) is essentially y']. For

.
-1 2

. S . . A A3 . A
instance if (EJ is .005 (ie. (§J ~14), then (E) § (E)

= .501259494

-1 -1
Thus E[<X§ A> ]Rﬁ% (%) = 7! for large A.

The corollary is a special case of the following theorem.

Theorem: Let k and n be nonnegative integers and assume k is greater than

2n. If k is an even integer then
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Proof:

Let k be an integer greater than 2n. Then
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If k is even, then k/2 is an integer and Temma 2 of the Appendix

implies that
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If k is an odd integer setting a = %—and j-= iﬁéll- - ntg in lemma 1 of

the Appendix gives
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- 2y t2
where 8 (y) = e™ [ e' dt is the Dawson integral.
0 ged.



Appendi x

Lemma 1. Assume j is a nonnegative integer. Then
1

1 Jj-
f'e(x'])ax 2dx
0

(4] -1 1 -1 r(m+]+l)
I(j+5) R . m
-2 (-a)‘J{a %9(a%) - I[,-)) T (-a) i (—2-
1 ’ =0 r(h
r'(5) m 7
where
2y .2
2(y) z eV Tebat
0
is the Dawson integral.
Proof:
Suppose j > 1. Then using integration by parts,
1 J~n
i e(x-l)ax 2dx
0
.1 . 1
_— 1 J_'|__
_ px-1)a, 972 -1x=]1 1,51 2.(x-1)a
E§ ) X “a ]§=0 _ é a (J-z)& e(x ) dx
1,1 b (x-1)a i1
=a  -a (j-g) [ e X dx
0

Repeated applications of integration by parts imply that
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Now for j = O,
. 1
1 : J-= 1 -
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The integral [ XT3y 2 4y may be written as
0

‘i..._l

1
using the transformation t = a x2.
L 1

This is 2a 2E’J(az) where

is the Dawson integral.

Thus
1 (1)a 973
f e(x' )aX 2 dx
0
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The proof of the following is given on p.188 of Judge and Bock [7].
Lemma 2

1 : m
/ yme'(y'])cdy = m!c'(mﬂ){eC - 7 Moy
0 n=0
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