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On the Narrowest Tube of a
Simple Symmetric Random Walk

by
E. Csaki and A. Foldes

Summary. Let X],Xz,... be i.i.d. random variables with

P(X; = #1) = P(X{ = -1) = 1/2. Put S5 =0, S = X;+...+X (n > 1),

Our aim is to investigate the a.s. behavior of U(aN,N) =

min max |S... - S.| and V(ay,N) = min max  |S..|.
0<j<N-a, O<i<a, 9% 9 N O<j<N-a, O<i<a, 911
-y U<isay S<-ay U<isay
It is shown that for ay = [c Tog N] both U(aN,N) and V(aN,N) are a.s.

constant for large N, except for certain values of ¢, when U and V

can take two values for large N.

1. INTRODUCTION
Let {W(t), t > 0} be a standard Wiener process. Suppose that
a, is a non-decreasing function of t such that 0 < a <t and t/at

is non-decreasing. By investigating the small values of the increments

(1.1) ;(t,aT) = sup |W(t+s) - W(t)]|,
05§5§T

Csbrgd and Révész [5, Theorem 1.7.1] proved the following results.

THEOREM A
(1.2) lim inf yp inf  g(t,ap) 825+ ¢
T Ofﬁf]-aT

where



8(109%— + Tog Tog T)\1/2
- T :
(1-3) Y1 © V) >

1Ta-|-

If we also have

log(T/a;)

TogTog 17" =2 T >

then

(1.5) Tim inf  t(t,a;) 325,

T Ofﬁff-aT

In Csaki and Foldes [2] a similar result is given for

(1.6)  &lt,ap) = sup [W(tes)],
O§§5§T

i.e. for the Wiener process instead of the increments.

THEOREM B
(1.7) lim inf g inf  g£(t,ap) 8:5- 1,
T Ofﬁff—aT
where
4 Tog g- + 8 Tog log T \1/2
_ T
(1.8) BT = > ,
'ITaT

If we also have condition (1.4), then




(1.9) limg, inf  g(t,ap) 8:5.

T T OitiT'aT
Similar problems can also be investigated for partial sums of
i.i.d. random variables. Let {X;, i > 1} be a sequence of i.i.d.
random variables with mean 0 and variance 1. Put 8g = 0,
Sp = Xyte. oty (n > 1). Suppose that {a , n > 1} is a non-decreasing
sequence of integers such that 0 < a, =N and n/an is non-decreasing.
In the case ;im an/1og n = », referring to a small deviation result of
>0

Mogul'skii [7] the following theorem is formulated in Csorgo and Révész

[5, Theorem 3.3.1.%]

THEOREM C
In the case when 1im aN/1og N =« we have
Neeo
(1.10)  Tim inf  min max yy|S .| 351,

C N . jHi T 73
Nooo 0<j<N ay 051_<_aN :

where vy is given by (1.3). If the condition (1.4) is also satisfied,

then

a.sS. 1.

(1.17) lim  min max YNIS -S

=S
Moo O<j<N-ay O<i<ay 97

It is not difficult to see that an analogue of Theorem B is also

true. Our first result states

THEOREM 1. In the case when lim aN/log N =  we have

N->o0




Iaés. 1

s

(1.12) Tim inf min max BN|S

Moo O<j<h-a, O<isay " 01T

where By is given by (1.8). If the condition (1.4) is also satisfied,

then

(1.13) Tim  min max BN[S |25+ 1

. t JHi
N->o Ofng—aN 0§J§pN

Theorem 1 can be proved by the same way as Theorem B was proved
in Csdki and Foldes [2] using the above mentioned small deviation
results of Mogulskii [7]. So we omit this proof.

The more interesting case is ay = [c Tog N] and is yet unsolved.

The following conjecture is formulated in Cstrgo and Révész [5]:

CONJECTURE

(1.14) 1im  min max |S

N-><0 ijfN_aN ijpr J*+i

where o(c) is a function which uniquely determines the distribution of

Xi.

As a small step towards the solution of this problem we investi-
gate it for the simple symmetric random walk, 1i.e. when
P(X] = +1) = P(X]
this case. Define

= -1) = 1/2 and show that (1.14) is nearly true in

(1.15) U(a,N) = min max |S - S

- |
0<j<N-a 0O<j<a 3 J



and call it the narrowest tube for the increments. Since U(aN,N)

is integer valued, (1.14) would mean that U(AN,N) takes only the parti-
cular value o(c) when N is Targe enough. In fact this is true for almost
every c, but there are exceptional values of ¢ when U(aN,N) can take 2
values even for large N.

We investigate also

(1.16) V(a,N) = min max |S

.
O<j<N-a O<i<a 9"

and call it the narrowest tube around zero.

We formulate our main results.

THEOREM 2. Assume that X1,X2,... are i.i.d. random variables with

P(X, = #1) = P(Xi = 1) = 1/2. Lg;_aN = [c Tog N], ¢ > 0 and define

o = a(c) > 1 as the solution of the equation

1

-

mT_ _ C
(1.17) CoS 5— = €

If af(c) is not an integer, then for almost all w, there exists an

N0 = NO(c,w) such that

(1.18)  Ulay,N) = [a(c)] 1 N > N,

—

f a(c) is an integer, then for almost all w there exists an

N0 = No(c,w) such that




(1.19) ac) - 1 < U(ay,N) < afc) if N > Ny

Moreover

(1.20) P(U(aN,N) alc) - 11.0.) =1
and

(1.21)  P(U(agN) = a(c) i.0.) =1

THEOREM 3. Assume that X],Xz,... are i.i.d. random variables with

P(X; = +1) = P(X; = -1) = 1/2. Let ay = [c Tog N], ¢ > 0 and define

a* = a*(c) > 1 as the solution of the equation

1
(1.22) cos —g—- - e 2C

If a*(c) is not an integer, then for almost all o there exists an

N* = N*(c,w) such that

0
(1.23)  V(ag,N) = [o*(c)]  if N> N&.

If a*(c) is an integer, then for almost all w there exists an

= Na(c,w) such that

*
0

(1.24)  a*(c) -1 < V(ayN) <a*(c) if N> N,



Moreover

(1.25) P(V(ay,N) = a*(c) - 1 7.0.) =1

N’

and

(1.26) P(V(ay,N) = a*(c) i.0.) =1

N’
Theorem 2 and Theorem 3 will be proved in Section 2 and Section 3,
respectively.
The basic formula used in our proofs is due to ET1is [6] (see also

Takacs . [9]):

LEMMA A. Leta>1, a>1, 8 > 1, x be integers such that

-8 < X < a. Then

P(-8 < Sk <a, k=1,...,a-1, S_ = x) =

a
(1.27)
o oiB kmy® . kma . km(o-x)
aig.kzo (cosa;EQ sin T sin =2~
By using the formula
o 1 + cos Kk k
. Tla-X) _ otB - {-
(1.28) Yy sin kn(a-x) _ (2 (-1) )
. X=-8 oth sin KT 2
ot+B

we obtain



P(-B < Sk <a, kK=1,...,a) =

(1.29) : : K )
ot+B- da + C0S ——
2 E (cos Kk sin Kma atB (1 - (-1) )
atp & atB atg . kn 2
k=1 sin vy

For large a the dominating terms of the above sums are for k=1
and k=a+g-1 and it is easy to see that for large a the following inequa-

lities hold:

COROLLARY.

(]'30) K (cos _Tr_a < P(—B <S < o k=-| a) < K (COS L)a
1 atg’ = ko =7 m et =T otB

with some constants K] and KZ’ depending only on o+ and not on . a.
In our proofs K] and K2 will denote the above constants, but K*, K?,
etc. will denote further constants, whose values are not important for

the proof and may change from time to time.

2. THE TUBE FOR THE INCREMENTS
In this Section we prove Theorem 2, based on the following 4

lemmas .

LEMMA 2.7. If a >1 is an integer and

_1
T C
(2.1) COS 5 < e



then for almost all w there exists :an Ny = NO(c,w) such that

(2.2) U(aysN) > @ for N> Ny,

where U(a,N) is defined by (1.15) and ay [c Tog N].

LEMMA 2.2. If o > 2 is an integer and

1
T “c
(2.3) Cos 5> €

]

then for almost all ¢ there exists an Na N6(c,w) such that

(2°4) U(aNaN) <o fg_r; N > Na,

where U(a,N) is defined by (1.15) and a [c Tog NJ].

N

LEMMA 2.3. Let the events A? (j=0,1,...) be defined by

(2.5) A% = { max IS

S-I < OL(C)},
J 0<i<a

jHi T 7]

where the solution a(c) of (1.17) is an integer., Then

N

2.6 I A
N_aN

i.o.) =1,



10

where ay = [c Tog N].

LEMMA 2.4. The following inequality holds true for a > 1, k > 1

and & large enough:

P(U(a,(k*1)a - 1) > a)
(2.7)

a k .
> (1 - K, a(cos §£J ) - K, a(cos ?E) ,

where U(a,N) is defined by (1.15) and K2 is the constant of (1.30).

PROOF OF LEMMA 2.1.

From the inequality (2.1) it follows that there exists an integer

P > 0 such that
(2.8) cos =~ <e
o
Define N, = k. Then by (1.30),

P(U(ay >N . 1) < a) <N .,P( max |S.| < a)
Nk k+1 — Tk+1 OjjfﬁN J
k
a
KN ( 1T) Nk K*(k_l_-l)p( _1T)C P 109 k
< Bfgpicos 77 < €S 7

< k*kB,



11

where, from (2.8)

(2.9) B =p *+ pc log cos §£-< -1.

Hence

(2.10) E P(U(aNk,Nk+1) <) <o

and Lemma 2.1 follows from Borel-Cantelli lemma and from the simple

inequality

(2.11) U(aNk,Nk+-|) < U(aN,N) if Nk <N < Nk+1'

PROOF OF LEMMA 2.2.

Since
(2.12) U(a,,N) < inf sup |S;,.. - S;
N0 = N o<i<a, T3y Jdy
0<j<—-1"-=N
= a
‘N
and © sup |S;,.. - S.. | are independent for j=0,1,2,..., we obtain
Oci<ay I 9%

from»(1.30)



12

N

P(U(ay,N) > o) 5_(P(0 sup |S;] > a)) ay
<i<ay

LI

N _my¢ log N
N) a (z—-1)(cos 20c)

‘a ay

m
(1 - K](cos ?E)

™
N ¢ log cos 70

< e (e Tog -

if N is large enough. But from (2.3), ¢ log cos (w/(2a)) > -1, and hence

y P{U ,N) > a) < =,
I PUap) 2 )

So Lemma 2.2 follows from Borel-Cantelli lemma.

PROOF OF LEMMA 2.3.
From (1.17) and (1.30) we obtain

a

aN T
N-aN) Z_K](cos ?EJ

K*
(2.13)  P(A Vs

By choosing Nk = [(c + 1)k Tog k], it can be easily seen that

N, <N

- a
S ST

ay

holds for large enough k, hence the events AN k

k™N

.are independent for
k

k > ky and since
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a
N
K
7 P(A
ko Ngeay

) = =,

k

(2.6) follows from Borel-Cantelli lemma.

Since:

(2.14) U(ay,N) < max |S; e = S |,
N OSﬁE?N N-a\+i N-ay

Lemma 2.3 gives also
(2.15) P(U(aN,N) <afc) -1 1d.0.) =1.
PROOF OF LEMMA 2.4.

Let the events Aj = A? (j=0,1,...) be defined by (2.5) and assume

that a is large enough so that (1.30) holds true. Then

p|

(2.16) {U(a,(k+1)a - 1 > o} = A0ﬁ1... ka1

Introduce the following notations:

(2.17) Py P(AOA1"'Aka-1)’ k =1,2,...

(2.18) D =Ry gy R, k=12



Fdr k = 1, we have

Py = P(ﬂoﬂ1...ﬂa_]) > 1 - aP(AO)
and (2.7) follows from (1.30).
Furthermore
Py = P(RgA .. A, 1) = P(AgA .. A _
< p, + P(D,)

a
Hence from P(Dz) < )} P(A;) = aP(AO),

pz Z_p] = P(Dz) >1 - ZaP(AO) i_(] = aP(Ao))

14

> 1 - 2aP(AO)
1D2) + P(AOA]...Aa_]D )
2
- aP(AO)

and (2.7) for k = 2 follows again from (1.30).

For k > 3 we have

Pr-1 = PRy Ry 1yan1) =

= P(AA,...A

of- - Ark-1ya-1 B!

f_pk + P(Bk)pk—z

+ P(EO...



Using this inequality with k-1 replaced by k-2,
< Py + pk-1P(Dk) + P(Dk)P<Dk-1)'

Since

we obtain

(2.19)  p > (1 - aP(A)))p, 1 - a“P(Ay)

and by induction it is easy to see that

(2.20)  py > (1 - aP(A))® - ap(Ay)

Applying (1.30) again, we get (2.7).

15

a

Now we are ready to prove Theorem 2. Lemma 2.1 and Lemma 2.2

clearly imply (1.18) and (1.19), while Lemma 2.1 and Lemma 2.3 imply

(1.20). It remains to prove (1.21).
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By putting a = ay = [c Tog N], k = [N/ay]l, o = a(c) into the
N N

inequality (2.7), one can easily see that

(2.21) Tim inf P(U([c log N], N) > a(c)) > O,

N->co

where a(c), the solution of (1.17) is an integer. Consequently
(2.22) P(U([c 1og NI, N) > a(c) i.0.) > 0.

We can not'c1aim however that the above probability is equal to

1, since
(2.23) {U([c log NI, N) > afc) i.0.)}

is not a tail event. A small modification of the argument given above,

however gives the desired result. Consider

(2.24) { min max |S

- S| > alc) i.0.}
aytl<j<N-ay Ozi<ay, J

j+i
which is already a tail event since ay > = as N + =, therefore its
probability is either 0 or 1. But similarly to the above argument
one can verify also that the probability of (2.24) is bounded away

from 0 and hence



17

(2.25) P( min max |S
aytl<izN-ay O<i<ay

-S 1(1((:) i.o.) =1.

g+ 7 S5l

On the other hand it follows from Theorem C that for almost all

(2.26) min max |S

O<j<a O<i<a 91

if a is large enough, therefore we have also
(2.27) P(U([c Tog N], N) > a(c) i.0.) =1

which together with Lemma 2.2 yields (1.21). This completes the proof

of Theorem 2.

3. THE TUBE AROUND ZERO
In this Section we prove our Theorem 3, based on the following

4 Temmas.

LEMMA 3.1. If o > 1 is an integer and

]
m T 2c
(3.1) cos 5 < e

then for almost w there exists an N0 = NO(c,w) such that
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(3.2) V(asN) >« for N> N

where V(a,N) is defined by (1.16) and ay = Lc Tog N].

LEMMA 3.2, If o > 2 is_an integer and

1
T T 2c
(3.3) Cos 5> €

then for almost all » there exists an Na Na(c,w) such that

(3.4) V(ay.N) <o for N> N

where V(a,N) is defined by (1.16) and ay [c Tog N].

LEMMA 3.3. Let the events Ag(j'= 0,1,...) be defined by

(3.5) A2 = { max |S

< a*(c)}
J o 0<iza

jil

where the solution a*(c) of (1.22) is an integer. Then

ay

(3.6)  P(A

i.o.) =1,
N

where ay = [c log N].

LEMMA 3.4. The following inequality holds true for o > 1, n > a and
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a large enough:

P(V(a,n+a) > a) >

(3.7)
n a
> 1 (1-5 (cos 50 )
j=a+1 %1 ¢

with some constant K* (which may depend on «, but not on a and n),

where

(3.8) V(a,n+a) = min  max |S

in - max Syl
a<j<n O<i<a 37

PROOF OF LEMMA 3.1.

Define

Then

a-1

(3.10) P(Aj) = Z=_§+] P(AjISj = z))(sj =z).

From Stirling's formula we obtain
(3.11)  P(S, =12) <

for -a<z<a, J>0

with certain constant KO’ depending only on a. Hence



20

o2
(cos ?E') .

Therefore

P(V(ay,N) <a) < } . P(A,) <

ay _'jZO ) 2

N-

(3.14) < K*(cos-—l)aN(1 + ZaN ) <
* - 20, .

1
=1 3
'naN
* - ——
< K*N ay (cos 20L) .

Considering a subsequence Nk = k" k = 1,2,... with integer o > 0,

we clearly have for Nk <N < Nk+1

(3.15) Va2 Vay Nyy)

hence it is enough to prove that under the conditions of our Lemma 3.1

for almost all w there exists k* = ka(c,w) such that

(3.16) V(aNk,Nk+]) >a for k 2 k¥,
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From (3.14) we obtain

o © N
T, K
kZ1 P(V(aNk"\lkﬂ) <o) ikZ1 K*(a) Mgy (oos ) 7 <
o 2. C log Nk
* _—
(3.17) 5'k=1 K (a)/Nk+] (cos 20L) <
i
o o t log cos 7

K*(a) (k+1)P72 &

[A

k=1

The last number (3.17) clearly converges if
0/2 + o c log cos ?g¥< -1

which is equivalent to

2+tp
(3.18) cos - < @ 2PC

20,
If (3.1) holds then there exists a big enough integer p which
satisfies (3.18) implying the convergence of (3.17) and hence our

Temma.

PROOF OF LEMMA 3.2.

To prove Lemma 3.2. we need the following result. Let
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(3.19) Tn = min{j: 0 <], Sn+j = 0}

We define a sequence of stopping times as follows. Let a be a positive

integer, and let

no(a) =0, F’k(a) = nk_](a) + a, nk(a) = Tgk(a) k=1,2
Denote ak(a) = nk(a) = gk(a)
Then clearly {ak(a)} k=1,2,... is a sequence of independent identically

distributed random variables having the same distribution as Ta'

Let N be the largest integer for which
N
(3.10) 121 ai(aN) + (vN + 1)aN <N

For vy We proved the following result (see Cséki and Fdldes |3]

and also for more general recurrent random walk in Csaki and Foldes

[41).

LEMMA 3.3. If ay < %N then there exists a small enoughfc] and a big

enough C2 such that for any 0 < e < 1

l-e a. £
(3.11)  Pluy < (N 2) < ¢ (Y2 .
N 1 ay 2' N
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Now we are ready to prove Lemma 3.2. From the inequality

V(a,,N) < inf sup |S

< + i| we obtain the following esti-
OEKEYN Ogjf@N

aN’ nk(aN)

mation. Let Aj be defined by (3.9). Then

N
(3.22) P(V(aN,N) > o) = P( A:) <
. j’ -
3=0
\)N -
P(kgo ni(ay) )
P(kib nk(aN)a VN < C](Eﬁ) ) +
v 1-¢
p( nN R o > G (N 2
k=0 Nglay)” N =TThay -
1-¢e
Mye ) N
Co()% + (1 - P(A
by LEMMA 3.3.

Consequently applying (1.30) we have for ay = [c Tog N]

(4
P(V(ay,N) > o) < cz(g_lgg_,'l)Z +

NNz el < N
(3.23)
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¢ log N 155

€
c log N \2 ) T
< Co(—f2—)" + expt-K?(cos EEJ (

N
< gy(e 8 )

c log N

Choosing a sequence Nk = k” k = 1,2,... similarly to the proof of

Lemma 3.1. it is enough to show that

[oo]

(3.24) kZ1 P(V(aNk+1’Nk) > a) <+ o,
[
ot ot log (k+1)\2Z
Y P(V(a N) >a) < ) |C cp +
i=] Nk+] k k=1 2 k°
(k+1) S
_myC p log (k+1 k 2 g
* eng_K?(COS Za) (c o 10g (k+1))
p(1-¢) \
€ T 2
o > c p log cos 5— k
) <c2(c 0 109 (KH))2 4 exp-k(k+1) 20 T,
k=1 K (c o Tog (k+1))
which is clearly convergent if
(3.25) c o log cos ?§-+ 0 1%§-> 0

and

(3.25) PE 5
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Under the condition of our Lemma we may choose a small enough
e > 0 such that

- 1-¢
T 2c
(3.27) cos 5 > e

and to this e we might choose an integer p > 0 such that (3.26)
should hold. For this choice of ¢ and ¢ (3.25) is valid and this proves

(3.24) implying the lemma.

PROOF OF LEMMA 3.3.
From (1.30), (3.10) and the local central limit theorem one can

obtain that

a

(cos =%)

(3.28) P(Ag.‘) > =

S

if a and j are large enough, where A? is defined by (3.9). Hence

from (1.22),

ay Ky
(3.20)  p(AN ) >k

N

and we may choose a subsequence Nk = [(c+1)k log k] such that

(3.30) N <N, -a
k kL Ny
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for k large and

aNk
(3.31) T P(A

) ==
N, -a
Kk k Nk

But this is not enough, because in this case the events in the brackets
are not independent, even for large k. We apply the following version
of Borel-Cantelli lemma due to Erdos and Rényi (see Rényi [8]):

If E P(B) = oonandn
Y 1 P(BB,)
(3.32) 1im inf k=; 2=1 %
e (] P(B))?
k=1

<1,

N
then P(B, 1.0.) = 1. To verify (3.32) for B, = Ay K, consider two
k Nk
ay 3,
events Aj and Aj » where j] +ag < j2. Then the probability of joint
1 2

occurrence of these two events can be written as

a a
1 %2
. A =
P(AJ] J2)
(3.33)
§—1 %-1 a]‘ ) ( )
= . ] P(A. . = X P S- =X X
X F-atl xp=-atl 91 91 [T EC T
a2| |
< P(A;S|S. =X, )P(S, =x,]S. =X1)s
g 3y 2 Ty 2yt

while
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a a
P(AJ-:)P(Ajz) -
(3.34)
= (%L_] ! P(Aa.1|S. = x4)P(S. = xq) %
)"(".-I'=:-0L+'| X2=-—oc+] I ‘]1+a1 L :‘h+‘a] B
S PAZ|S, = x,)P(S. = x,).
3,75, T2h i, T2

From the Tocal Timit theorem (or from Stirling's formula),

(3.35) P(sz = X2) v FZ- for =-~a < Xo <

and

/2
n(3y-31-2¢)

for -a < x1 < q

—u<X2<a,

provided j2 and j2-j]-a] are large enough and j2 and 5 have the same

parity. Hence it can be seen that for all ¢ > 0,

3.3 A ]A 1 ,,————J A ! A
7 P(A. A. + — P(A. )P(A.
( ) ) ( J-I 32) = ( e) JZ'J-I-a] ( J-I) ( 32)
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provided Jp=Jqy-3; 1s large enough. Since Nk+] - aNk+1 - Nk + ®
as k - », we have for large enough k and k < ¢,

Nz'aN

(3.38)  P(B,B,) < (T+c) W—’l(]; P(B,)P(B,).
2

Now from (3.38) one can verify (3.32) similarly to Csaki-Csdrgo-Féldes-

Révész [1, Lemma 3.4.]

PROOF OF LEMMA 3.4,
Assume that a is large enough, so that the inequality (1.30)
holds true. Let Aj be defined by (3.9). We show that

(3.39) P(Aa+1"'An) 3_P(Aa+])...P(An),
provided a is large enough and n > a.
We start from the following identity:
_ n-1

a1 A) =P A ) - PA) T PR A AR,

P(A .
k=a+1

(3.40)

The next step is to show that
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(3.41)  P(A A) > P(A 1. A _(A) P(A)

atl” k 1 k
We distinguish three cases.
Case (i). n-a < k < n-1.

In this case we have

, rR(Aa+]"'Ak-1AkAn) =
(3.42)
a-1 _ 7
x=_a+1P(Aa+]"'A AAISisq = )H(Sk+a = X) =
a-1 _ _ X

] x=§a+1 P(Aa+1."Ak']Aklbkfa=X)P(k+aT?én+als |<alsk+a )P(Sk+a—X)

But from (1.30),
n-k

(3.43) P(  max |Sil < alS

x) > Ky(cos »2)
k+a<i<n+a - 2a

k+a

for -a <X < a, P(S =x) > 0, and from (3.13),

k+a

K* M2
(3.44) P(An) i-‘/% (COS Z) .

Since n-k < a, we have for large enough n,

(3.45) P(  max |51| < alS

X.) z_P(An)
k+a<i<n+a

k+a
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and this together with (3.42) yields (3.41).
Case (ii). n-a-/a < k < n-a.

In this case we have

P(A 41+ A 1AA,) =
(3.46)
a-1
) x=-a+1P(Aa+]"'Ak-1AkAn|Sk+a = X)P(Syyq = X)
a-1 .
) x=-a+] P(Aa+]."Ak']AkISk+a ) X)P(Anlsk+a = X)P(5k+a = Xx).
But from (1.30),
a=1
P(A[Sgaq = %) = y=_§+] P(AL IS =Y)P(S =y (S 4, = X)
(3.47)
. a~-1
2 Ky eos 7) '=;§+1 P(S, = ¥ISyyy = X)

a
- i -
= Kq(cos Za) POIS,] < elSpey = %)

From the local Timit theorem

K? K?
(3.48) P(|S,| < ]S = x) > >
n k+a = ika T WE

for -a <X < o and P(Sk+a x) > 0, hence by (3.44) for large enough a,
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(3.49)  P(A IS, = x) > P(A)

k+a

and (3.46) yields (3.41).

Case (iii). a+tl <k < n-a-va.

Compare
o-1
(3.50)  P(A) = T P(AIS, = ¥)P(S, = ¥)
y=-a+]
and
a-1
(3.51)  P(A[Sp,, = %) = yz_gﬂ P(AIS, = ¥IP(S, = yIS,,, = X)

Then either both P(Sn=y) and P(Sn=y|Sk+a=x) are zero or by the

local 1imit theorem (or Stirling's formula)

(3.52) P(S, = ¥) mJ“:ﬁ (n =+ =)

and

(3.53)  P(S, = yIS 4, = X) v —L2——, (n-k-a > )
Ym(n-k-a)

Therefore

(3.54) P(Sn y) < P(S, = y|Sk+a = X)
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for -o < X < a, -0 <y < a and a large enough, which gives also (see
(3.50) and (3.51))

(3.55)  P(A) < P(A [Sy,, = X)

k+a
implying (3.41) as in case (ii).

(3.40), (3.41) and a simple induction argument yield (3.39)
and this together with (3.13) proves (3.7).

g

Now we cam complete the proof of Theorem 3 similarly to the proof
of Theorem 2. Lemma 3.1 and Lemma 3.2 imply (1.23) and (1.24), while
Lemma 3.1 and Lemma 3.3 imply (1.25). So we have to prove (1.26).

By putting a = ay = [c Tog N], n = N-aN into (3.7) one can easily

see that

. v
(3.56) Tim inf P(V(a

N-rco

neN) > a*(c)) > 0

where o*(c), the solution of (1.22) is an integer. Consequently
"y

(3.57) P(V(ay.N) > a*(c) i.0.) > 0.

But the event

(3.58)  {f(ay,N) > a*(c) 1.0}
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is a tail event (for Sn), therefore its probability is either 0 or

1. Moreover

(3.59) min max  |S
0<j<a O<i<a

j+1.| > a*(c) a.s.

for large enough a follows from Theorem 1. Hence we have also
(3.60) P(V([c Tog NJ, N) > a*(c) i.0.) =1

and this with Lemma 3.2 implies (1.26). The proof of Theorem 3 is

comp]eté.
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